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A B S T R A C T   

The 3-ketoacyl-CoA thiolase is the rate-limiting enzyme for linear dicarboxylic acids production. However, the 
promiscuous substrate specificity and suboptimal catalytic performance have restricted its application. Here we 
present both biochemical and structural analyses of a high-efficiency 3-ketoacyl-CoA thiolase Tfu_0875. Notably, 
Tfu_0875 displayed heightened activity and substrate specificity for succinyl-CoA, a key precursor in adipic acid 
production. To enhance its performance, a deep learning approach (DLKcat) was employed to identify effective 
mutants, and a computational strategy, known as the greedy accumulated strategy for protein engineering 
(GRAPE), was used to accumulate these effective mutants. Among the mutants, Tfu_0875N249W/L163H/E217L 

exhibited the highest specific activity (320% of wild-type Tfu_0875), the greatest catalytic efficiency (kcat/KM =

1.00 min− 1mM− 1), the highest succinyl-CoA specificity (KM = 0.59 mM, 28.1% of Tfu_0875) and dramatically 
reduced substrate binding energy (− 30.25 kcal mol− 1 v.s. − 15.94 kcal mol− 1). A structural comparison between 
Tfu_0875N249W/L163H/E217L and the wild type Tfu_0875 revealed that the increased interaction between the 
enzyme and succinyl-CoA was the primary reason for the enhanced enzyme activity. This interaction facilitated 
rapid substrate anchoring and stabilization. Furthermore, a reduced binding pocket volume improved substrate 
specificity by enhancing the complementarity between the binding pocket and the substrate in stereo confor-
mation. Finally, our rationally designed mutant, Tfu_0875N249W/L163H/E217L, increased the adipic acid titer by 
1.35-fold compared to the wild type Tfu_0875 in shake flask. The demonstrated enzymatic methods provide a 
promising enzyme variant for the adipic acid production. The above effective substrate binding pocket engi-
neering strategy can be beneficial for the production of other industrially competitive biobased chemicals when 
be applied to other thiolases.   

1. Introduction 

Given the limited availability of fossil fuels, utilizing the catalytic 
activity of enzymes in microorganisms to convert renewable resources 
into various chemicals has been shown to offer significant advantages 
[1,2]. The first step in the formation of target chemicals involves the 
carbon-carbon bond formation and carbon chain elongation, both of 
which rely on Claisen condensation [3,4]. Typically, Claisen condensa-
tion is usually catalyzed by a large family of thiolases [5] to construct 
diverse carbon skeletons in compounds [6,7]. The thiolase superfamily 
encompasses an array of enzymes including Archeal thiolase, thiolase I 

and II, HMG-CoA synthase (HMGS), β-ketoacyl-ACP synthase I, II and III 
(KAS I, II and III), β-ketoacyl-CoA synthase (KCS), and polyketide syn-
thase I, II, and III (PKS I, II and III) (Fig. 1) [3,7]. Notably, thiolase I is 
predisposed to the synthesis of medium-chain (C4–C8) [8] linear 
aliphatic compounds, which are commonly employed as precursors for 
fuels [9] and polymers [10,11]. Consequently, advancing our knowl-
edge of the structural and biochemical foundations of thiolase I may 
enhance the versatility of these enzymes in the enzymatic and microbial 
production of desired chemicals. 

The broad substrate spectrum of thiolase I has impeded its industrial 
application due to the resultant production of a diverse array of by- 
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products [2]. Hence, improving the enzyme activity and selectively for 
specific substrates is the ongoing pursuit of enzyme engineers. With the 
emergence of rational enzyme design, it is generally believed that the 
thiolase I can basically achieve the desired transformation [12]. The 
Claisen condensation reaction occurs within the substrate binding 
pocket of thiolase superfamily. Therefore, engineering substrate binding 
pocket would directly affect the substrate specificity and the Claisen 
condensation efficiency. However, the investigation of the substrate 
binding pocket of thiolase I has been rarely reported. Blaisse et al. 
employed methods of sequence and structural alignment to elucidate the 
distinctions between binding pockets of thiolase Acat5 and Acat2 [5]. 
Their findings suggest that the incorporation of large benzene rings of 
phenylalanine residue constricts the binding pocket. This constriction 
augments the interactions between the amino acid residues of binding 
pocket and the substrate, thereby enhancing the substrate specificity 
and enzyme activity towards linear compounds [5]. These results un-
derscore the potential of modifying the dimensions of the substrate 
binding pocket to refine the catalytic efficiency and substrate selectivity 
for linear compounds. In addition to enhancing substrate specificity for a 
particular substrate, tailored mutations can be designed for various 
substrates to attain targeted substrate specificity. Sofeo et al. modified 
the binding pocket of acetyl-CoA synthetase (atACS) by substituting 
phylogenetically related residues within the substrate-binding sites. 
Before modification, the only substrate of atACS was acetate, and after 
modification, it was intended to enhance the substrate specificity to-
wards either linear (hexanoic acid) or branched (methyl valerate) car-
boxylates [13]. The kcat and KM for atACSV399A/W427G mutant were 8.04 
s− 1 and 0.09 mM for butyrate. While, the kcat and KM for atACST324G/-

V399A/W427G mutant were 5.07 s− 1 and 0.14 mM for hexanoate. 
Currently, enhancements to the catalytic efficiency and substrate spec-
ificity of thiolase I predominantly rely on irrational approaches, such as 
random mutation, which entail a significant workload. Consequently, 
this study aims to integrate rational design techniques, including deep 
learning and molecular dynamics simulations, to improve the catalytic 
performance and substrate specificity of thiolase I. 

Recently, we developed a reverse adipate degradation pathway 
(RADP) for the production of dicarboxylic acids, including glutaric acid 
[14], adipic acid [15], and pimelic acid [16], which play an important 
role as biofuels [11] and nylon monomers 9. The 3-ketoacyl-CoA thio-
lase, a member of the thiolase I family, serves as the initial and 
rate-limiting enzyme in the RADP pathway. It catalyzes the Claisen 
condensation reaction between substrates such as malonyl-CoA, succi-
nyl-CoA, or pimeloyl-CoA, and extension unit acetyl-CoA, resulting in 
the formation of a 3-oxoacyl-CoA intermediates of dicarboxylic acids 
[15–17]. However, the wide substrate spectrum of 3-ketoacyl-CoA thi-
olase often generates mixed products which limited their application in 

biosynthesis of specific compounds [2]. In this regard, further improving 
the substrate specificity of 3-ketoacyl-CoA thiolase was crucial to 
improve the biosynthesis efficiency based on Claisen condensation. 
Using Tfu_0875 as a 3-ketoacyl-CoA thiolase in RADP, it was found that 
the yield of adipic acid was higher than that of other dicarboxylic acids, 
demonstrating that the substrate specificity and catalytic efficiency of 
succinyl-CoA were higher [15]. In order to improve the substrate spec-
ificity of Tfu_0875 and the efficiency of the Claisen condensation, 
rationally designing the substrate binding pocket of Tfu_0875 would be 
a powerful and reliable approach. 

Taking inspiration from the engineering of substrate binding pockets 
in the aforementioned thiolases, it is possible to enhance the substrate 
specificity and catalytic efficiency of 3-ketoacyl-CoA thiolase through 
iterative structure-guided mutations aimed at reducing the space within 
the binding pocket. In this work, we focused on a thermostable 3- 
ketoacyl-CoA thiolase Tfu_0875 to rationally design its substrate bind-
ing pocket by the DLKcat approach [18] and the greedy accumulated 
strategy for protein engineering (GRAPE) [19] to improve enzyme ac-
tivity and substrate specificity of succinyl-CoA. After GRAPE, a global 
optimal mutant (Tfu_0875N249W/L163H/E217L) was obtained, exhibiting 
that reducing the size of the substrate binding pocket enhances the in-
fluence of the surrounding residues on the substrate succinyl-CoA, 
resulting in improved substrate specificity and catalytic efficiency. 
When the best mutant was applied in the production of adipic acid, a 
significant improvement in titer was observed. 

2. Results 

2.1. Characterization of the 3-ketoacyl-CoA Tfu_0875 

The thermophilic actinobacterium T. fusca sourced 3-ketoacyl-CoA 
thiolase Tfu_0875 exhibited a high thermostability and functionally 
catalyzed the Claisen condensation reaction to lengthen of the carbon 
chain [20]. Purification via affinity chromatography followed by 
SDS-PAGE analysis revealed that Tfu_0875 possesses a molecular weight 
marginally above 40 kDa, aligning with the predicted molecular weight 
of 40.6 kDa (Fig. S1). Tfu_0875 belongs to the thiolase I which prefers 
medium-chain length substrates [8]. Therefore, we selected acetyl-CoA, 
malonyl-CoA, succinyl-CoA, and glutaryl-CoA as substrates to conden-
sation with an extension unit acetyl-CoA by Tfu_0875 for evaluating the 
substrate specificity [14–16]. As a result, Tfu_0875 demonstrated a 
relatively broad substrate range, spanning from C2 to C5 carbon chain 
lengths. When catalyzing substrate succinyl-CoA, the Tfu_0875 exhibi-
ted the highest enzyme activity 1.85 μmol⋅min− 1⋅mg− 1 (Fig. 2A). 

The pH and temperature had a substantial impact on the activity of 
Tfu_0875. Herein, the enzyme activity was detected at different reaction 

Fig. 1. Classification, stereostructures, and catalytic substrate types of the thiolase superfamily. The corresponding catalytic substrates and monomer 
structure of each type of thiolases were summarized in the corresponding box. The conserved β-sheets in this superfamily were marked in raspberry. 
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pH and temperature. Under the pH range from 5.0 to 9.0, the enzyme 
activity of Tfu_0875 had good adaptability and did not change signifi-
cantly in acidic, neutral, or alkaline environments (Fig. 2B). This phe-
nomenon was consistent with the other thermophilic enzymes whose 
enzyme activity is usually not significantly affected by pH changes [21, 
22]. On the other hand, the reaction temperature results of Tfu_0875 
show that Tfu_0875 demonstrated a wide temperature tolerance, and its 
optimum reaction temperature at 37 ◦C. The enzyme remained at least 
37% of the highest activity when reaction temperature at 20–50 ◦C 
(Fig. 2C). Collectively, the high thermostability, broad reaction tem-
perature, and pH range make Tfu_0875 potentially suitable for the 
production of various chemicals. However, its broad substrate spectrum 
poses a challenge to this application. 

2.2. Screening of effective single mutations of Tfu_0875 via the deep 
learning 

Generally, enzyme specificity for a target molecule is positively 
related to its activity [23]. Therefore, it is possible to simultaneously 
enhance the specificity and activity of Tfu_0875 by altering the binding 
pockets [24]. To identify the amino acid residues that could potentially 
influence the enzyme activity and substrate specificity, we performed 
docking simulations of succinyl-CoA into the binding pocket of the 
crystal structure of Tfu_0875 (PDB ID: 7VTR). Subsequently, we selected 
mutation candidates from the amino acid residues located within a 5 Å 
range of succinyl-CoA. These mutation targets included 16 amino acid 
residues: M120, G147, L163, E217, S218, R220, E221, T222, K226, 
F234, I240, S246, P247, L248, N249, and F318 (Fig. 3A). To identify the 

key candidates, we performed alanine scans on the above 16 amino acid 
residues. The results revealed that 9 mutations (M120A, G147A, L163A, 
E217A, S218A, R220A, E221A, I240A, and N249A) significantly 
impacted the enzyme activity (Fig. 3B). These amino acid residues were 
identified as potential key determinants influencing the biding and 
catalysis of succinyl-CoA. Wherein, the mutant Tfu_0875M120A exhibited 
a remarkable increase in enzyme activity, with the highest activity being 
185% of the wild-type Tfu_0875. So, M120 no longer participated in the 
subsequent screening, and the remaining 8 key amino acid residues 
participated in the screening. 

Currently, high-throughput screening methods were unavailable to 
identify positive mutants from the Tfu_0875 saturation mutagenesis li-
brary, resulting in a time- and labor-consuming screening process. In this 
regard, selecting proper mutants or hot spots by computer-assisted or 
artificial intelligence method is a necessity for developing smart li-
braries. Deep learning-based kcat prediction (DLKcat) was a tool for 
predicting enzyme turnover numbers and was able to capture the effects 
of amino acid substitutions on the kcat values of individual enzymes [18]. 
Amino acid sequences of Tfu_0875 variants were processed by con-
volutional neural network (CNN), and the simplified molecular-input 
line-entry system (SMILES) for succinyl-CoA was processed by a graph 
neural network (GNN). Subsequently, the protein sequences and SMILES 
for succinyl-CoA were calculated using a Neural attention mechanism, 
the kcat values were predicted based on the comprehensive dataset 
(Fig. 3C). There are 20 amino acids in nature, and only 18 mutations are 
possible in the remaining 8 amino acid residues after removing their 
own amino acids and alanine. Among the 144 (8 × 18) virtual mutants, 
17 potential dominant mutants whose predicted kcat values higher than 

Fig. 2. The detected performance of the Tfu_0875. (A) Claisen condensation reaction (left) and catalytic efficiency (right) of Tfu_0875 on substrates with different 
carbon chain lengths. (B–C) Effects of different pH values (B) and reaction temperature (C) on the enzyme activity of Tfu_0875. Acetyl-CoA and succinyl-CoA were 
used as extender unit and substrate, respectively. The bright blue column indicated the highest catalytic activity under the indicated conditions. The data was 
presented as the mean ± s.d. ns, no significance. 
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that of Tfu_0875 were obtained after DLKcat prediction, and the optimal 
mutants of the corresponding amino acid residues were verified. Finally, 
9 mutants were identified to be effective with enzyme activity increased 
by 9%–144% of Tfu_0875 (Fig. 3D and Table S4). 

2.3. Improving the substrate activity and specificity of Tfu_0875 on 
succinyl-CoA by the greedy accumulated strategy 

The obtained effective single substitutions (Fig. 3D) could be iterated 
to further improve the enzyme activity of Tfu_0875 to the succinyl-CoA. 
However, the iteration of these effective mutants may lead to dominant 
mutation interacting with each other, resulting in unfavorable epistatic 
interactions and a decrease in enzyme activity during the iteration 
process [25]. To overcome this challenge, we applied a greedy accu-
mulated strategy for protein engineering (GRAPE) to engineer Tfu_0875 
(Fig. 4A) [19]. By incrementally addressing the effective substitutions in 

the GRAPE scheme with multilayer upward branches, it becomes 
possible to determine and quantify negative trade-offs, thus providing 
effective strategies to avoid apparent dead ends. To do this, the effective 
single substitutions (Fig. 3D) were classified into two clusters using the 
K-means approach [26], based on their relative enzyme activity, the 
distance from the active center (C90, C378, H348) to the Cα of 
succinyl-CoA, as well as the number of hydrogen bonds formed between 
the substitutions and succinyl-CoA (Fig. 4A). These conditions are 
regarded as critical factors that influence substrate binding and the 
catalytic process. Then we performed an iterative site-specific muta-
genesis based on the K-means analysis to achieve global optimization 
[10,19]. Each round of GRAPE engineering would produce the best 
mutation combination of Tfu_0875 which could serve as a template for 
further GRAPE engineering. The GRAPE engineering was iterated until 
the enzyme activity did not significantly increase or even decrease 
(Fig. 4A). 

Fig. 3. Screening for effective single mutants of the Tfu_0875. (A). The homologous tetrameric structure of Tfu_0875. Subunits were coloured differently (left). 
The 16 amino acid residues (limon) and there active residues (C90, C378, and H348; hotpink) within 5 Å range centered on succinyl-CoA (blue) were exhibited 
(right). (B) Relative enzyme activity of mutants and Tfu_0875 in alanine scanning. Mutants with no significant change, significant increase, and significant decrease 
in enzyme activity were color as gray, pink, and purple, respectively. (C) The diagram of the deep learning to predict the kcat of mutations by DLKcat. (D) The relative 
enzyme activities of effective sites as determined by experiment. *, **, *** and **** represent p-values of mutants <0.05, 0.01, 0.001 and 0.0001 in comparison with 
Tfu_0875, respectively. Error bars are standard deviations (n = 3). 
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After K-means analysis, the M120A, G147V, L163H, I240D, and 
N249W were characterized into cluster 1, whereas the E217L, S218C, 
R220C, and E221G were characterized into cluster 2 (Table S5). We 
selected N249W as the starting template for the first round of GRAPE 
engineering, as it has been shown to greatly enhance enzyme activity. 
Other substitutions in the first cluster (M120A, G147V, L163H, and 
I240D) were combined with the N249W in the first round of GRAPE 
engineering, resulting in the best mutant Tfu_0875N249W/L163H with 27% 
enhancement in enzyme activity compared with Tfu_0875N249W. How-
ever, using Tfu_0875N249W/L163H as the template for the next round of 
GRAPE engineering to accumulate any remaining residues in the first 
cluster (M120A, G147V, and I240D) led to a reduction in enzyme ac-
tivity (Fig. 4B). The KM values of Tfu_0875N249W and Tfu_0875N249W/ 

L163H were lower than the Tfu_0875, meanwhile, the kcat values of 
Tfu_0875N249W and Tfu_0875N249W/L163H were higher than the Tfu_0875 

(Table 1). Therefore, Tfu_0875N249W/L163H was identified as the most 
effective mutant in the first cluster, and was selected as the template for 
the GRAPE engineering in the second cluster substitutions. 

Combining substitutions in the second cluster (E217L, S218C, 
R220C, and E221G) with N249W/L163H generated a best mutant 
Tfu_0875N249W/L163H/E217L, and the specific activity of Tfu_0875N249W/ 

L163H/E217L was 320% of that of Tfu_0875. Comparing with 
Tfu_0875N249W/L163H, the decreased KM value and increased kcat value of 
Tfu_0875N249W/L163H/E217L indicated a gradual increase in affinity and 
turnover number of the mutants to the succinyl-CoA (Table 1). Finally, 
the KM and kcat values of the best mutant Tfu_0875N249W/L163H/E217L was 
0.59 mM and 0.59 min− 1 to succinyl-CoA, 28.1% and 184.4% that of 
Tfu_0875, respectively. Thus, Tfu_0875N249W/L163H/E217L exhibited a 
significantly improved catalytic efficiency (kcat/KM = 1.00 min-
− 1mM− 1), which was 6.67-fold higher than that of Tfu_0875 (Table 1). 

Fig. 4. Applying GRAPE strategy to improve the enzyme activity of Tfu 0875 on succinyl-CoA. (A) Schematic representation of the GRAPE strategy. In step 1, 
DLKcat were used to predict effective single mutants. Then, the effective single mutants were chosen for experimental validation. Step 2, Classify these single mutants 
according to their positions, interactions, and activities. In step 3, accumulation of the mutants in each cluster according to the greedy algorithm. (B–C) Enhancing 
the relative enzyme activity of Tfu_0875 by greedy accumulation in the first cluster (B) and second cluster (C). Relative enzyme activity = (enzyme activity of 
mutant/enzyme activity of Tfu_0875) × 100%. 
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However, using Tfu_0875N249W/L163H/E217L as the template for the next 
round of GRAPE engineering to accumulate any remaining residues in 
the second cluster (S218C, R220C, and E221G) decreased the enzyme 
activity (Fig. 4C). Finally, the greedy accumulation process resulted in a 
total of 14 combined mutants. Tfu_0875N249W/L163H/E217L was identified 
as the most effective mutant in the second cluster, showing a significant 
improvement in relative enzyme activity. 

Furthermore, we investigated the binding specificity and catalytic 
efficiency of the iteratively mutated enzymes for substrates of varying 
carbon chain lengths. The results indicated that as the number of iter-
ations in the mutations increased, both the affinity (KM) and catalytic 
turnover number (kcat) for succinyl-CoA improved significantly. How-
ever, these iterative mutations had only a marginal effect on the binding 
and turnover numbers for acetyl-CoA, malonyl-CoA, and glutaryl-CoA 
(Table 1). Finally, compared to succinyl-CoA, the optimum mutant 
Tfu_0875N249W/L163H/E217L exhibited catalytic efficiencies (kcat/KM) that 
were 8.33-fold, 14.28-fold, and 7.14-fold greater for acetyl-CoA, 
malonyl-CoA, and glutaryl-CoA, respectively. In contrast, the wild- 
type Tfu_0875 displayed only 1.67-fold, 2.50-fold, and 1.67-fold 
higher for the same substrates (Table 1). These results suggest that the 
iterative mutations have significantly improved specificity and activity 
towards succinyl-CoA, while the effects on other substrates were rela-
tively minor. 

2.4. Revealing the structure-function relationship of Tfu_0875N249W/ 

L163H/E217L by molecular dynamics (MD) simulations 

In order to reveal the structure-function relationship, succinyl-CoA 
was docked into the binding pocket of Tfu_0875 and Tfu_0875N249W/ 

L163H/E217L for 100 ns MD simulations [27]. The results showed that the 
binding energy of Tfu_0875N249W/L163H/E217L with succinyl-CoA was 
dramatically decreased, compared with that of Tfu_0875 (− 30.25 kcal 

mol− 1 v.s. − 15.94 kcal mol− 1), indicating an increased affinity after 
iterative mutation (Table 2). The root mean square deviations (RMSD) 
were calculated in 100 ns to examine the stability of the Tfu_0875/T-
fu_0875N249W/L163H/E217L-succinyl-CoA complexes (Fig. S2). Both 
Tfu_0875 and Tfu_0875N249W/L163H/E217L reached the equilibrium state 
after the 100 ns simulation. The root mean square fluctuation (RMSF) of 
the protein residues was calculated to assess protein flexibility (Fig. S3). 
The results showed that there was no significant difference in flexibility 
between Tfu_0875 and Tfu_0875N249W/L163H/E217L. 

The trajectories recorded during 100 ns of MD simulation revealed 
distinct spatial conformation in Tfu_0875 and Tfu_0875N249W/L163H/ 

E217L. By comparison, it was found that the volume of amino acid resi-
dues W249, H163, and L217 is larger compared to N249, L163, and 
E217 (Fig. 5A). Hence, substitutions of L163H, E217L, and N249W 
resulted in a decrease in the volume of the binding pocket from 1369.3 
Å3 to 1146.1 Å3 [28] (Fig. 5B and C). Further analysis of MD results 
showed that Tfu_0875 could interact with succinyl-CoA to form a total of 
six hydrogen bonds with R16, S162, R220, and T222, and to form a salt 
bridge with K226 (Fig. 5D). While, the Tfu_0875N249W/L163H/E217L could 
interact with succinyl-CoA to form a total of nine hydrogen bonds with 
T140, L217, I219, R220, K226, A233, A242, S246, and P247, two salt 
bridges with K226 and K231, and one Pi-cation interaction with R220 
(Fig. 5E). The reduction in the size of the binding pocket promotes 
increased interaction between the pocket and the substrate, leading to 
the rapid anchoring and stabilization of the substrate. This, in turn, fa-
cilitates the occurrence of the reaction. 

2.5. Adipic acid production in shake flask fermentation by employing 
Tfu_0875 and mutants 

3-Ketoacyl-CoA thiolase catalysis the carbon chain elongation of 
succinyl-CoA to generate 3-oxoadipyl-CoA, the precursor of adipic acid 
[29]. Hence, the production of adipic acid using the modified 3-ketoa-
cyl-CoA thiolase with improved enzyme activity and substrate speci-
ficity was expected to increase the yield of adipic acid. To do this, we 
replaced the 3-ketoacyl-CoA thiolase in the previously constructed 
strain pAD24 with Tfu_0875N249W, Tfu_0875N249W/L163H, 
Tfu_0875N249W/L163H/E217L [2,30] (Fig. 6A). In addition, gene cat1 was 
overexpressed to provide more precursor succinyl-CoA. An E. coli K12 
MG1655 ΔatoBΔsucDΔpflBΔarcAΔadhEΔldhAΔpoxBΔpta strain was 
used as the host to redirect carbon flux into adipic acid synthetic 
pathway and reduce the formation of by-products [31]. In wild-type 
Tfu_0875 overexpressed strain, the production of adipic acid was 
growth-coupled [15], and the highest titer of adipic acid (174.7 mg L− 1) 
achieved at 72 h (Fig. 6B). However, after Tfu_0875 was replaced by 
Tfu_0875N249W, Tfu_0875N249W/L163H, and Tfu_0875N249W/L163H/E217L, 
the titer of adipic acid increased to 188.0 mg L− 1, 209.1 mg L− 1, and 
235.0 mg L− 1 after 72 h of fermentation, 1.08-fold, 1.20-fold, and 
1.35-fold of that of Tfu_0875, respectively (Fig. 6C). LC-MS analysis 
confirmed the presence of the ion peak [M− H]− at m/z 145.05, which 
corresponded to the product ion of adipic acid and was consistent with 

Table 1 
Kinetic data of Tfu_0875 and mutants toward substrates with different chain 
lengths.  

Substrates Enzymes KM 

(mM) 
kcat 

(min− 1) 
kcat/KM 

(min− 1mM− 1) 

Succinyl- 
CoA 

Tfu_0875 2.10 ±
0.22 

0.32 ±
0.0022 

0.15 

Tfu_0875N249W 1.37 ±
0.26 

0.33 ±
0.0032 

0.24 

Tfu_0875N249W/ 

L163H 
1.14 ±
0.88 

0.39 ±
0.042 

0.34 

Tfu_0875N249W/ 

L163H/E217L 
0.59 ±
0.83 

0.59 ±
0.14 

1.00 

Acetyl-CoA Tfu_0875 2.28 ±
0.64 

0.21 ±
0.0039 

0.09 

Tfu_0875N249W 1.15 ±
0.81 

0.31 ±
0.0047 

0.27 

Tfu_0875N249W/ 

L163H 
2.19 ±
0.41 

0.22 ±
0.036 

0.10 

Tfu_0875N249W/ 

L163H/E217L 
2.18 ±
0.33 

0.26 ±
0.13 

0.12 

Malonyl- 
CoA 

Tfu_0875 3.32 ±
0.86 

0.19 ±
0.0048 

0.06 

Tfu_0875N249W 2.89 ±
0.25 

0.21 ±
0.24 

0.07 

Tfu_0875N249W/ 

L163H 
2.77 ±
0.03 

0.20 ±
0.02 

0.07 

Tfu_0875N249W/ 

L163H/E217L 
2.57 ±
0.18 

0.18 ±
0.21 

0.07 

Glutaryl- 
CoA 

Tfu_0875 2.33 ±
0.55 

0.21 ±
0.039 

0.09 

Tfu_0875N249W 2.27 ±
0.88 

0.20 ±
0.02 

0.09 

Tfu_0875N249W/ 

L163H 
2.28 ±
0.16 

0.20 ±
0.01 

0.09 

Tfu_0875N249W/ 

L163H/E217L 
2.20 ±
0.82 

0.30 ±
0.042 

0.14  

Table 2 
Binding energy of succinyl-CoA for Tfu_0875 and Tfu_0875N249W/L163H/E217.L.   

Binding energy (kcal⋅mol− 1) 
of Tfu_0875 

Binding energy (kcal⋅mol− 1) of 
Tfu_0875N249W/L163H/E217L 

ΔGVDW
a − 21.92 − 36.92 

ΔGEt
b 409.69 203.04 

ΔGpolar
c − 399.44 − 190.10 

ΔGapolar
d − 4.27 − 6.27 

ΔGBinding
e − 15.94 − 30.25  

a van der Waals energy. 
b Electrostatic energy. 
c Polar-solvation energy. 
d Nonpolar solvation energy. 
e ΔGBinding = ΔGVDW + ΔGEt + ΔGpolar + ΔGapolar. 
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the standard adipic acid (Fig. 6D). No succinic acid, glutaric acid, and 
pimelic acid were found in the fermentation solution. It may require the 
addition of acetyl-CoA synthase, malonic acid synthase or glutaric acid 
synthase similar to succinyl-CoA synthetase to increase the level of 
acetyl-CoA, malonyl-CoA or glutaryl-CoA. Overall, the rational design of 
the substrate binding pocket of Tfu_0875 led to a significant improve-
ment in enzyme activity and specificity and promoted the production of 
adipic acid. This approach could also be useful in the biosynthesis of 
other chemicals that require the condensation of acetyl-CoA and 
succinyl-CoA. 

3. Discussion 

3-Ketoacyl-CoA thiolase is attractive enzyme for the biosynthesis of 
products with varying chain lengths and functionalities [8,16,29]. 
However, the inherent promiscuity of their substrate specificity often 
results in the production of a mixture of products, which can split the 
metabolic flux and reduce productivity [32]. In this study, we focused on 

the substrate binding pocket of a T. fusca sourced 3-ketoacyl-CoA thio-
lase Tfu_087 to improve enzyme activity and substrate specificity. Using 
the DLKcat strategy to rationally predict effective amino acid residues, 
obtained the 11 effective residues for increasing enzyme activity toward 
succinyl-CoA (Fig. 3B). Then, by using the GRAPE strategy to iteratively 
optimize these effective residues, the enzyme activity of the optimal 
mutant Tfu_0875N249W/L163H/E217L was increased to 221 % relative to 
Tfu_0875 (Fig. 4C). The smaller substrate binding pocket, along with 
stronger interactions between Tfu_0875N249W/L163H/E217L and 
succinyl-CoA, are likely the main reasons of the improvement in enzyme 
activity and specificity. This mechanism provided a reference for future 
modifications of other 3-ketoacyl-CoA thiolases. Using 
Tfu_0875N249W/L163H/E217L to produce adipic acid, the highest titer 
reached 235.0 mg/L, 1.35-fold of that of the Tfu_0875. This highly active 
Tfu_0875 mutant obtained by rational design also holds potential com-
mercial value for future industrial production of adipic acid. 

The substrate binding pocket of the enzymes composed of residues 
that directly or indirectly involved in the catalysis [33]. Therefore, 

Fig. 5. Structure changes of Tfu_0875 and Tfu_0875N249W/L163H/E217L and their interactions with succinyl-CoA. (A) The steric changes of the substrate binding 
pocket of Tfu_0875 and Tfu_0875N249W/L163H/E217L. The sphere of N249, L163, and E217 were marked by palecyan, and the sphere of W249, H163, and L217 were 
marked by light-blue. (B–C) Average surface representation of Tfu_0875 (B, greencyan) and Tfu_0875N249W/L163H/E217L (C, lightblue) in complex with succinyl-CoA at 
final 100 ns MD trajectory. The substrate binding pockets were marked in yellow, and their volumes were measured using ProteinsPLUS. (D) Detailed view of key 
interaction between succinyl-CoA and Tfu_0875 after MD simulation. (E) Detailed view of key interaction between succinyl-CoA and Tfu_0875N249W/L163H/E217L after 
MD simulation. The hydrogen bonds were marked with blue dotted lines, the salt bridges were marked with hotpink dotted lines and the Pi-cation intercation was 
marked with an orange dotted line. 
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adjusting the substrate binding pocket has the potential to increase 
substrate specificity and the enzyme activity [34], directing more 
metabolic flow towards the target product rather than synthetic 
by-products, ultimately increasing the overall yield [9]. However, the 
identification and rational mutation of effective amino acid residues 
from the substrate binding pocket remains a challenge. In resolving this 
challenge, Robinson et al. used phylogenetics and bioinformatics to 
identify key residues in the substrate binding pocket of thiolase. They 

then used a random forest model of machine learning to screen key 
residues from thiolase OleA, leading to the identification of residues 
172, 173, 284, 287, and 316 as significant determinants within the 
substrate binding pocket [35]. However, this machine learning method 
requires the acquisition of a large number of dataset (>1000) for 
random training, which determines the chemical characteristics of each 
sequence [35]. In contrast, the DLKcat is not limited by the dataset and 
can directly capture changes in substrate turnover, a direct indicator of 

Fig. 6. Adipic acid production by using engineered Tfu_0875 in shake flask fermentation. (A) Metabolic pathway for the production of adipic acid. The orange 
arrows indicated the TCA pathway. The purple arrows indicated the adipic acid synthesis pathway. The red arrows indicate knocked-out genes. PaaH, 3-hydroxyacyl- 
CoA dehydrogenase; PaaF, 3-hydroxyadipyl-CoA dehydrogenase; TER, trans-enoyl reductase; Acot8, adipyl-CoA transferase; Cat1, coenzyme A transferase. Pta, 
phosphate acetyltransferase; PoxB, pyruvate oxidase; AdhE, acetaldehyde dehydrogenase; LdhA, lactate dehydrogenase; PflB, pyruvate formate-lyase; AtoB, acetyl- 
CoA acetyltransferase; SucD, succinyl-CoA synthetase alpha subunit; ArcA, DNA-binding transcriptional dual regulator. (B) The titer of adipic acid produced by 
Tfu_0875 under different fermentation time. (C) Adipic acid production by Tfu_0875 and its mutants at 72h. ** and *** represent p-values of mutants <0.01 and 
0.001 in comparison with Tfu_0875, respectively. Error bars represent the s.d. from three independent assays. (D) LC-MS analysis of adipic acid produced in the 
culture medium (below) and adipic acid standard (above). 
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enzyme activity [18]. Moreover, combining the identified effective 
substitutions into a single mutant is a time- and labor-consuming task 
[36]. Rational iterative mutation methodologies can significantly reduce 
the workload of protein engineering [37]. The GRAPE strategy used in 
this study is a systematic clustering and greedy combination approach 
[19]. It groups mutant residues based on similar principles at the 
beginning of the iteration, which helps reduce workload and effectively 
mitigate initial iteration-induced epistasis. 

Generally, the size of the substrate binding pocket and the strength of 
interactions with substrates are crucial factors that determine specificity 
and catalytic efficiency [24]. In this study, we observed that the 
enhanced interactions between succinyl-CoA and the substrate binding 
pocket were accompanied by improvements in activity (Fig. 5B and C). 
This finding is consistent with a previous report where the substrate 
binding pocket of thiolase CaTHL was engineered, resulting in the 
mutant CaTHLV77Q/N153Y/A286K [9]. This mutant exhibited a remarkable 
over 3-fold increase in activity. The improved activity can be attributed 
to the increased interaction of the surrounding amino acids with the 
substrate, thereby enhancing the catalytic efficiency [9]. Furthermore, 
the study by Blaisse et al. also supports our findings. They found that the 
substrate binding pocket of thiolase Acat5 contained a Phe residue that 
reduced the space in the binding pocket, leading to a strong substrate 
preference for linear substrates [5]. These findings are consistent with 
our study, where reducing the space in the binding pocket improves 
linear substrate specificity, while increasing the interaction with sur-
rounding residues enhances enzyme activity. Thus, our results align with 
previous studies, providing further evidence for the importance of 
modulating the binding pocket for substrate specificity and enzyme 
activity. 

Given the pivotal role of 3-ketoacyl-CoA thiolase, this enzyme offers 
the potential for synthesizing a wide range of chemicals by utilizing 
different acyl-CoAs as both extender units and substrates [2,8]. This 
enzyme not only enables the synthesis of medium-chain dicarboxylic 
acids but also facilitates the production of ω-phenylalkanoic acids, 
ω-hydroxy acids, ω-1-keto acids, ω-1-methyl alcohols, and 2-methyl 
acids [2]. The diverse range of products synthesized by this enzyme 
serves as a promising starting point for metabolizing and generating a 
wide array of chemical compounds. Consequently, future efforts can 
focus on modifying the enzyme to catalyze specific substrates, thereby 
enhancing the efficient synthesis of various compounds and increasing 
the yield of desired products. A relevant study by Bonk et al. exemplifies 
this concept by improving the yield of polyhydroxyalkanoates through 
rational modification of the substrate specificity of 3-ketoacyl-CoA thi-
olase BktB [32]. Compared with other 3-ketoacyl-CoA thiolase, 
Tfu_0875 exhibits superior thermal stability and pH adaptability, mak-
ing it an ideal platform enzyme for biosynthesis. 

Overall, this study demonstrates the effectiveness of using deep 
learning approaches to identify subtle variations that can enhance the 
substrate specificity of succinyl-CoA and Claisen condensation in 
Tfu_0875. The combination of these identified variations, 
Tfu_0875N249W/L163H/E217L, designed through the GRAPE strategy, 
proves to be a valuable catalyst for efficient Claisen condensation in 
traditional fermentation processes. This work represents an advance-
ment in enzyme design methodology, complementing conventional 
computational design approaches, and paves the way for highly efficient 
adipic acid production. 

4. Materials and methods 

4.1. Genes, strains, and medium 

E. coli JM109 was used as the host for plasmid cloning. E. coli BL21 
(DE3) was used as the host to express the proteins. E. coli K12 MG1655 
Δ8 was used as the host to produce the adipic acid. The E. coli strains 
were grown on Lysogeny Broth (LB) at 37 ◦C. LB medium containing 50 
μg mL− 1 kanamycin was used for plasmid cloning, collecting bacteria, 

and seed cultivation. Modified MOPS medium [2] which contained 4 g 
L− 1 glucose, 20 g L− 1 glycerin, 20 mM succinic acid, 50 μg mL− 1 

kanamycin, and 50 μg mL− 1 chloramphenicol, pH 7.4 was used for 
adipic acid production in shake flasks fermentation. The genes used in 
this study were listed in Table S1. Plasmids utilized in this study were 
donated by other colleagues in our laboratory (Table S2 and Fig. S4) 
Tfu_0875 was subcloned to pET28a vector. 

4.2. Construction of mutant library 

The mutagenesis libraries for specific amino acid residues were 
generated using the pET-28a-Tfu_0875 as a template. 2 × Phanta Flash 
Master Mix (520, Vazyme Biotech co. Ltd., Nanjing, China) was used to 
perform site-specific mutagenesis. In the process of mutation, we used F- 
primers/R-primers containing mutational bases as primer pairs for PCR 
to linearize plasmids pET28a-Tfu_0875. The full-length pET28a- 
Tfu_0875 PCR product containing the mutations were purified by the 
PCR Product Purification Kit (Sangon Biotech, Shanghai, China) and 
digested by restriction enzyme DpnI (TaKaRa, Dalian, China). Finally, 
the digested products were transformed into E. coli JM109. Primers used 
in this study were listed in Table S3. 

4.3. Protein expression and purification 

The E. coli BL21(DE3) harboring Tfu_0875 and its mutants were 
grown on LB medium containing 50 μg mL− 1 kanamycin at 37 ◦C and 
250 rpm overnight as seeds. These seeds were exponentially growing to 
OD600 = 1.0 at 37 ◦C, and then were treated with 0.8 mM isopropyl β-D- 
1-thiogalactopyranoside (IPTG) to induce. These cells were cultured for 
12–14 h at 25 ◦C. All cells were collected by centrifugation at 4500g for 
5 min and washed with buffer A (50 mM Tris-HCl, pH 7.4, and 200 mM 
NaCl) twice, and then disrupted by ultrasonication on ice. Then the 
lysate was centrifuged at 6000 g for 30 min, and the supernatant was 
filtered by a 0.45 μm membrane filtration. The collected supernatant 
was loaded onto Ni-NTA affinity chromatography (5 mL, GE health, 
ShangHai, China). The target protein was eluted with buffer A (50 mM 
Tris-HCl, pH 7.4, and 200 mM NaCl) with 20 mM imidazole and buffer B 
(50 mM Tris-HCl, pH 7.4, 200 mM NaCl, and 200 mM imidazole) [9]. All 
plasmid schematic diagrams were illustrated in Fig. S1. The protein 
concentration was determined by Bradford’s method (Sangon Biotech, 
Shanghai, China). 

4.4. Enzyme assay 

The spectrophotometric method was used to assay the activity of 3- 
ketoacyl-CoA thiolase by monitoring the increase in absorbance at 412 
nm [38]. Briefly, the solution was performed in a 100 μL total reaction 
volume containing 50 mM Tris buffer (pH 7.4), 40 mM KCl, 1 mg/mL 
acetyl-CoA, 1 mg/mL dicarbonyl-CoA, and 5 mg/mL Tfu_0875 or its 
mutants. The reaction solution was performed at 37 ◦C for 30 min and 
then added with 100 μL of 10 mM DTNB solution. The 3-ketoacyl-CoA 
thiolase could condense 2 molecules of acyl-CoA to release CoA, 
whose –SH reacted with DTNB to generate 2-nitro-5-thiobenzoic acid 
(NTB− ). The increase in absorbance due to 2-nitro-5-thiobenzoic acid 
(NTB− ) formation was registered for 1–3 min at 412 nm. 

4.5. Clustering 

K-means algorithm [26] is an unsupervised partition-based clus-
tering algorithm, meanwhile, it is one of the most widely used algo-
rithms. It characterizes data using k prototype vectors (or, the centers or 
centroids of k clusters) and discovers these prototypes using a coordinate 
descent optimization approach that minimizes a sum-of-squares cost 
function. The distance between two data elements is used by the 
k-means algorithm to describe their similarity. When the criterion 
function approaches the optimum or the maximum number of iterations, 
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the k-means algorithm is ended. The mutants were characterized by a 
range of parameters, including enzyme activity improvements, distance 
to C90, distance to H348, distance to C378, difference in distance to Cα 
of succinyl-CoA and the H bonds with succinyl-CoA. For discriminating 
individuals, we used the WEKA program [39]. 

4.6. Molecular dynamics (MD) simulations 

The structures of succinyl-CoA and Tfu_0875 were prepared, and 
subsequently, succinyl-CoA was docked into the binding site. MD sim-
ulations of ligand-receptor docked complex were performed using 
Gromacs MD package [27]. Here, the AMBER99SB-ILDN force field was 
used to create the protein Tfu_0875 topology file, while the AMBER14SB 
force field was used by the ACPYPE script to create the ligand 
succinyl-CoA topology file. The molecular force field for the MD simu-
lation was chosen as OPLS3e (all-atom type force field) [40], and the 
system was solvated using the TIP3 water model. The system charge is 
neutralized by adding ions. Energy minimization was achieved using the 
steepest descent algorithm, with cutoff of 1.0 nm for Coulomb in-
teractions and van der Waals interactions. The coupling of 
temperature-pressure parameters adopts Berendsen coupling algorithm. 
Finally, simulations were performed for 100 ns for each system under 
periodic boundary conditions at 310 K temperature and 1.0 bar pres-
sure. The RMSD (Root Mean Square Deviation) of the backbone atoms 
was calculated and graphically analyzed to understand the nature of 
protein-ligand interactions. 

4.7. Analytical methods 

A spectrophotometer (UV-1800, AOE instruments, Shanghai, China) 
was used to measure optical density at 600 nm to assess cell prolifera-
tion. The fermentation broth was centrifuged at 12000 g for 10 min to 
obtain the supernatant, then diluted 1:1 by 10 mM H2SO4 and filtered 
with 0.22 μm membrane filtration (Biosharp, Shanghai, China). Adipic 
acid was qualitative analysis by liquid chromatography-mass spec-
trometry, which was run on a Waters MALDI SYNAPT Q-TOF MS (Wa-
ters, Milford, Massachusetts) in the negative mode electrospray 
ionization (ESI− ) [41]. When using MS/MS, m/z 145 was selected as the 
mass transition ion of adipic acid in multiple-reaction monitor (MRM). 
Adipic acid in supernatant was quantitative analysis by high perfor-
mance liquid chromatography (HPLC, Agilent 1260 Infinity II, Santa 
Clara, CA) equipped with an HPX-87H ion-exclusion column (Bio-Rad, 
Hercules, CA). 5 mM H2SO4 was used as mobile phase with a flow rate of 
0.6 mL/min at 35 ◦C. Adipic acid and other organic acids were deter-
mined by Agilent 1260 Variable Wavelength Detector set to 210 nm 
Fig.6D. 

Funding sources 

This work was supported by the National Key R&D Program of China 
(2022YFC2104600), National Natural Science Foundation of China 
(22378170), the Distinguished Young Scholars of Jiangsu Province 
(BK20220089), and the Tianjin Synthetic Biotechnology Innovation 
Capacity Improvement Project (TSBICIP-KJGG-015). 

Notes 

The authors declare no competing financial interest. 

Conflict of interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

CRediT authorship contribution statement 

Lixia Liu: designed the study and wrote the manuscript, performed 
the experiments and analyzed the results. Shuang Liu: performed the 
experiments and analyzed the results. Xiangyang Hu: performed the 
experiments and analyzed the results, All authors reviewed, approved, 
and contributed to the final version of the manuscript. Shenghu Zhou: 
supervised the project, designed the study and wrote the manuscript, 
critically revised the manuscript. Yu Deng: supervised the project, 
critically revised the manuscript. 

Acknowledgment 

We thank the staff at BL17B1, BL18U1 and BL02U1 beamlines at 
SSRF of the National Facility for Protein Science in Shanghai (NFPS), 
Shanghai Advanced Research Institute, Chinese Academy of Sciences, 
for providing technical support in X-ray diffraction data collection and 
analysis. 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.synbio.2024.04.014. 

References 

[1] Wackett LP, Wilmot CM. Hydrocarbon biosynthesis in microorganisms. In: 
Himmel ME, editor. Direct microbial conversion of biomass to advanced biofuels. 
Amsterdam: Elsevier; 2015. p. 13–31. 

[2] Cheong S, Clomburg JM, Gonzalez R. Energy- and carbon-efficient synthesis of 
functionalized small molecules in bacteria using non-decarboxylative Claisen 
condensation reactions. Nat Biotechnol 2016;34:556–61. https://doi.org/10.1038/ 
nbt.3505. 

[3] Jiang C, Kim SY, Suh D-Y. Divergent evolution of the thiolase superfamily and 
chalcone synthase family. Mol Phylogenet Evol 2008;49:691–701. https://doi.org/ 
10.1016/j.ympev.2008.09.002. 

[4] Zhou S, Hao T, Xu S, Deng Y. Coenzyme A thioester-mediated carbon chain 
elongation as a paintbrush to draw colorful chemical compounds. Biotechnol Adv 
2020;43:107575. https://doi.org/10.1016/j.biotechadv.2020.107575. 

[5] Blaisse MR, Fu B, Chang MCY. Structural and biochemical studies of substrate 
selectivity in Ascaris suum thiolases. Biochemistry 2018;57:3155–66. https://doi. 
org/10.1021/acs.biochem.7b01123. 

[6] Pereto J, Lopez-Garcia P, Moreira D. Phylogenetic analysis of eukaryotic thiolases 
suggests multiple proteobacterial origins. J Mol Evol 2005;61:65–74. https://doi. 
org/10.1007/s00239-004-0280-8. 

[7] Tan Z, Clomburg JM, Cheong S, Qian S, Gonzalez R. A polyketoacyl-CoA thiolase- 
dependent pathway for the synthesis of polyketide backbones. Nat Catal 2020;3: 
593–603. https://doi.org/10.1038/s41929-020-0471-8. 

[8] Liu L, Zhou S, Deng Y. The 3-ketoacyl-CoA thiolase: an engineered enzyme for 
carbon chain elongation of chemical compounds. Appl Microbiol Biotechnol 2020; 
104:8117–29. https://doi.org/10.1007/s00253-020-10848-w. 

[9] Kim S, Jang Y-S, Ha S-C, Ahn J-W, Kim E-J, Lim JH, Cho C, Ryu YS, Lee SK, Lee SY, 
Kim K-J. Redox-switch regulatory mechanism of thiolase from Clostridium 
acetobutylicum. Nat Commum 2015;6:8410. https://doi.org/10.1038/ 
ncomms9410. 

[10] Xu J, Cen Y, Singh W, Fan J, Wu L, Lin X, Zhou X, Huang M, Reetz MT, Wu Q. 
Stereodivergent protein engineering of a lipase to access all possible stereoisomers 
of chiral esters with two stereocenters. J Am Chem Soc 2019;141:7934–45. https:// 
doi.org/10.1021/jacs.9b02709. 

[11] Li G, Huang D, Sui X, Li S, Huang B, Zhang X, Wu H, Deng Y. Advances in microbial 
production of medium-chain dicarboxylic acids for nylon materials. React Chem 
Eng 2020;5:221–38. https://doi.org/10.1039/c9re00338j. 

[12] Reetz MT, Qu G, Sun Z. Engineered enzymes for the synthesis of pharmaceuticals 
and other high-value products. Nat Synth 2024;3:19–32. https://doi.org/10.1038/ 
s44160-023-00417-0. 

[13] Sofeo N, Hart JH, Butler B, Oliver DJ, Yandeau-Nelson MD, Nikolau BJ. Altering 
the substrate specificity of acetyl-CoA synthetase by rational mutagenesis of the 
carboxylate binding pocket. ACS Synth Biol 2019;8:1325–36. https://doi.org/ 
10.1021/acssynbio.9b00008. 

[14] Zhao M, Li G, Deng Y. Engineering Escherichia coli for glutarate production as the 
C5 platform backbone. Appl Environ Microbiol 2018;84:e00814–8. https://doi. 
org/10.1128/AEM.00814-18. 

[15] Zhao M, Huang D, Zhang X, Koffas MA, Zhou J, Deng Y. Metabolic engineering of 
Escherichia coli for producing adipic acid through the reverse adipate-degradation 
pathway. Metab Eng 2018;47:254–62. https://doi.org/10.1016/j. 
ymben.2018.04.002. 

[16] Bao Q, Zhi R, Zhou S, Zhao Y, Mao Y, Li G, Deng Y. Claisen condensation reaction 
mediated pimelate biosynthesis via the reverse adipate-degradation pathway and 

L. Liu et al.                                                                                                                                                                                                                                       

https://doi.org/10.1016/j.synbio.2024.04.014
https://doi.org/10.1016/j.synbio.2024.04.014
http://refhub.elsevier.com/S2405-805X(24)00065-6/sref1
http://refhub.elsevier.com/S2405-805X(24)00065-6/sref1
http://refhub.elsevier.com/S2405-805X(24)00065-6/sref1
https://doi.org/10.1038/nbt.3505
https://doi.org/10.1038/nbt.3505
https://doi.org/10.1016/j.ympev.2008.09.002
https://doi.org/10.1016/j.ympev.2008.09.002
https://doi.org/10.1016/j.biotechadv.2020.107575
https://doi.org/10.1021/acs.biochem.7b01123
https://doi.org/10.1021/acs.biochem.7b01123
https://doi.org/10.1007/s00239-004-0280-8
https://doi.org/10.1007/s00239-004-0280-8
https://doi.org/10.1038/s41929-020-0471-8
https://doi.org/10.1007/s00253-020-10848-w
https://doi.org/10.1038/ncomms9410
https://doi.org/10.1038/ncomms9410
https://doi.org/10.1021/jacs.9b02709
https://doi.org/10.1021/jacs.9b02709
https://doi.org/10.1039/c9re00338j
https://doi.org/10.1038/s44160-023-00417-0
https://doi.org/10.1038/s44160-023-00417-0
https://doi.org/10.1021/acssynbio.9b00008
https://doi.org/10.1021/acssynbio.9b00008
https://doi.org/10.1128/AEM.00814-18
https://doi.org/10.1128/AEM.00814-18
https://doi.org/10.1016/j.ymben.2018.04.002
https://doi.org/10.1016/j.ymben.2018.04.002


Synthetic and Systems Biotechnology 9 (2024) 558–568

568

its isoenzymes. Chembiochem 2022;23:e202200098. https://doi.org/10.1002/ 
cbic.202200098 (202200091 of 202200098). 

[17] Sui X, Zhao M, Liu Y, Wang J, Li G, Zhang X, Deng Y. Enhancing glutaric acid 
production in Escherichia coli by uptake of malonic acid. J Ind Microbiol Biotechnol 
2020;47:1–8. https://doi.org/10.1007/s10295-020-02268-6. 

[18] Li F, Yuan L, Lu H, Li G, Chen Y, Engqvist MKM, Kerkhoven EJ, Nielsen J. Deep 
learning-based kcat prediction enables improved enzyme-constrained model 
reconstruction. Nat Catal 2022;5:662–72. https://doi.org/10.1038/s41929-022- 
00798-z. 

[19] Cui Y, Chen Y, Liu X, Dong S, Tian Ye, Qiao Y, Mitra R, Han J, Li C, Han X, Liu W, 
Chen Q, Wei W, Wang X, Du W, Tang S, Xiang H, Liu H, Liang Y, Houk KN, Wu B. 
Computational redesign of a PETase for plastic biodegradationunder ambient 
condition by the GRAPE strategy. ACS Catal 2021;11:1340–50. https://doi.org/ 
10.1021/acscatal.0c05126. 

[20] Liu L, Zhou S, Deng Y. Rational design of the substrate tunnel of β-ketothiolase 
reveals a local cationic domain modulated rule that improves the efficiency of 
Claisen Condensation. ACS Catal 2023;13:8183–94. https://doi.org/10.1021/ 
acscatal.3c01426. 

[21] Lischnig T, P H, S W. Thermostability of endo-β-Xylanase from the thermophilic 
fungus Thermomyces lanuginosus. Biotechnol Lett 1993;15:411–4. https://doi.org/ 
10.1007/BF00128286. 

[22] Bruins ME, Janssen AEM, Boom RM. Thermozymes and their applications. Appl 
Biochem Biotechnol 2001;90:155–86. https://doi.org/10.1385/ABAB:90:2:155. 

[23] Chu W-T, Wang J. Energy landscape topography reveals the underlying link 
between binding specificity and activity of enzymes. Sci Rep 2016;6. https://doi. 
org/10.1038/srep27808. 

[24] Yu H, Ma S, Li Y, Dalby PA. Hot spots-making directed evolution easier. Biotechnol 
Adv 2022;56:107926. https://doi.org/10.1016/j.biotechadv.2022.107926. 

[25] Bu Y, Cui Y, Peng Y, Hu M, Tian Ye, Tao Y, Wu B. Engineering improved 
thermostability of the GH11 xylanase from Neocallimastix patriciarum via 
computational library design. Appl Microbiol Biotechnol 2018;102:3675–85. 
https://doi.org/10.1007/s00253-018-8872-1. 

[26] Jain AK. Data clustering: 50 years beyond k-means. Pattern Recogn Lett 2009;31: 
651–66. https://doi.org/10.1016/j.patrec.2009.09.011. 
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