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We present a joint multi-robot trajectory optimizer that can compute trajectories for tens of
robots in aerial swarms within a small fraction of a second. The computational efficiency of
our approach is built on breaking the per-iteration computation of the joint optimization into
smaller, decoupled sub-problems and solving them in parallel through a custom batch
optimizer. We show that each of the sub-problems can be reformulated to have a special
Quadratic Programming structure, wherein the matrices are shared across all the
problems and only the associated vector varies. As result, the batch solution update
rule reduces to computing just large matrix vector products which can be trivially
accelerated using GPUs. We validate our optimizer’s performance in difficult
benchmark scenarios and compare it against existing state-of-the-art approaches. We
demonstrate remarkable improvements in computation time its scaling with respect to the
number of robots. Moreover, we also perform better in trajectory quality as measured by
smoothness and arc-length metrics.

Keywords: multi-robot trajectory optimization, batch optimization, convex, collision avoidance, obstacle avoidance,
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1 INTRODUCTION

Deployment of multiple aerial vehicles such as quadrotors is critical for applications like search and
rescue and exploration and mapping of large areas (Schranz et al., 2020). Over the last decade, robot
fleets have also become ubiquitous in applications like ware-house automation that have a substantial
economic impact on society (Li et al., 2020; Bolu and Korçak, 2021). Furthermore, with the advent of
connected autonomous cars, it becomes imperative also to view urban mobility as a multi-robot
system (Zhou et al., 2017). A fundamental component of any multi-robot system is the coordination
planning that guides individual robots between their start and goal locations while avoiding collisions
with the environment and other robots. In this paper, we adopt the optimization perspective for
multi-robot motion planning (Rastgar et al., 2021). In this context, the existing approaches broadly
fall into two spectra. On one end, we have the centralized approaches wherein the trajectory of all the
robots are computed together. The centralized approach can be further subdivided into sequential
(Chen et al., 2015), Park et al. (2020) and joint optimization (Augugliaro et al., 2012; Rastgar et al.,
2021) respectively depending on whether the trajectories of the robots are computed one at a time or
simultaneously. On the other end of the spectrum, we have online distributed model predictive
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control (DMPC) (Luis et al., 2020; Soria et al., 2021) based
approaches wherein each individual robot computes its
trajectories in a decoupled manner based on the trajectory
prediction of the other robots in the environment. In some
works, the prediction module is replaced by robots
communicating their current trajectory with each other (Luis
and Schoellig, 2019).

Centralized approaches, especially the joint optimization
variants, provide a rigorous treatment of the collision
avoidance constraints and access a larger feasible space formed
by all trajectory variables of all the robots. However, joint
optimization quickly becomes intractable as the number of
robots increases (Chen et al., 2015). In contrast, the
distributed MPC approaches can run in real-time but can lead
to oscillatory behaviors, and consequently, low success rates of
collision avoidance (Luis and Schoellig, 2019; Luis et al., 2020).
This is because the trajectories computed at each control cycle by
any robot are only collision-free with respect to the predicted (or
prior communicated) trajectories of other robots and not the
actual trajectories followed by them.

Our main motivation in this paper is to improve the
computational tractability of multi-robot trajectory planning
using a distributed optimization approach to the extent that it
becomes possible to compute trajectories for tens of robots in
densely cluttered environments in a few tens of milliseconds. To
put in context, the said timing is several orders of magnitude
faster than some of the existing approaches for joint multi-robot
trajectory optimization (Augugliaro et al., 2012; Bento et al.,
2013). Such improvements in computation time would ensure
the applicability of our approach for even online re-planning
besides the standard use case of computing offline global
trajectories for the robots. For example, consider a scenario
wherein each robot uses local real-time planners such as
Dynamic Window Approach (Fox et al., 1997) or DMPC (Luis
et al., 2020) to avoid collisions with other robots in a distributive
manner. Our approach could provide global re-planning for the
local planners at more 5 Hz. or more.

On the application side, our main focus is on coordination of
multiple quadrotors, typically for applications like search and
rescue and coordinated exploration. These applications require
point-to-point, collision-free navigation and forms the main
benchmark in our experiments. However, our algorithm can
be useful for coordination of multiple wheeled mobile robots
and even autonomous cars.Contributions: The computational
efficiency of our approach is built on several layers of
reformulation of the underlying numerical aspects of the joint
multi-robot trajectory optimization. We summarize the key
points and the benefits that it leads to below.Algorithmic: Our
main idea is to break the per-iteration computation of the joint
multi-robot trajectory optimization into smaller, distributed sub-
problems by leveraging the solution computed in the previous
iterations. Although similar ideas have appeared in many existing
works (Bento et al., 2013; Luis and Schoellig, 2019), a core
challenge remains: how to efficiently solve the decoupled
problem arising at each iteration in parallel. The basic
assumption is that the decoupled optimizations can be
parallelized across separate CPU threads (Bento et al., 2013).

However, our recent works have shown that such a parallelization
approach does not scale well with an increase in the number of
problems (Adajania et al., 2022). The inherent limitation stems
from the available CPU cores and thread synchronization issues.

Thus our main algorithmic contribution in this paper lies in
deriving a novel optimizer that can be efficiently run in a batch
setting. In other words, our optimizer can take a set of decoupled
optimization problems and vectorize the underlying numerical
computations across multiple problem instances. Consider an
optimizer that solves a given problem by adding two vectors as a
hypothetical example. We can trivially vectorize the computation
over different problem instances by stacking each problem’s vectors
together in the form of a matrix and adding them together.
Moreover, this matrix addition can be easily parallelized over
GPUs for many problem instances. Our proposed optimizer
achieves similar vectorization but for a set of difficult non-convex
sub-problems, resulting in each iteration of joint multi-robot
trajectory optimization. Specifically, we show that solving the
decoupled sub-problems predominantly reduces to solving novel
equality constrained quadratic programming (QP) problems under
certain collision constraint reformulations. The novelty of the QPs
stems from the fact that they all share the same matrices (e.g.,
Hessian), and only the vectors associated with the QPs vary across
the sub-problems. We show that solving all the QP sub-problems in
one shot reduces to computing one large matrix-vector product that
can be trivially parallelized over GPUs using off-the-shelf linear
algebra solvers.Applied: We release our entire implementation for
review and to promote further research on this problem. We also
release the benchmark data sets used in our simulations.State-of-
the-art Performance We compare our GPU accelerated optimizer
with two strong baselines (Park et al., 2020; Rastgar et al., 2021) and
show massive improvement in computation time while being
competitive in trajectory quality as measured by metrics like arc-
length and smoothness. Our first comparison is with (Park et al.,
2020) that uses a sequential approach for multi-robot trajectory
optimization. Our computation time is at least 76.48% lower than
that of (Park et al., 2020) for a smaller problem size involving 16
robots. Moreover, the performance gap increases substantially in our
favor as we increase the number of robots and make the
environment more cluttered by introducing more static obstacles.
We observe similar trends in trajectory arc-length and smoothness
comparison between the two approaches. Our second comparison is
with (Rastgar et al., 2021) that searches directly in the feasible joint
space formed by all the pair-wise collision avoidance constraints.
Our proposed optimizer shows improved scalability over (Rastgar
et al., 2021) for a larger number of robots while being also superior in
trajectory arc length and smoothness.

2 PROBLEM FORMULATION AND
RELATED WORK

This section introduces the general problem formulation for
multi-robot trajectory optimization. We subsequently use the
problem set-up to review existing works and contrast our
optimizer with them. We begin by summarizing the main
symbols and notations used throughout the paper.
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2.1 Symbols and Notations
In this paper, the lower normal and bold letters denote the scalars
and vectors, respectively, while the upper bold case variants
represent matrices. The left and right super-scripts denoted by
k and T will be used to denote the iteration index of the optimizer
and transpose of the vectors and matrices. The time-stamp of any
variable will be denoted by t. The symbol ‖.‖2 stands for l2 norm.
We summarize some of the main symbols in Table 1 while some
are also introduced in their first place of use. At some places, we
perform a special construction where time-stamped variables are
stacked to form a vector. For example, xi will be formed by
stacking xi(t) at different time instants.

2.2 Robot Kinematics
Our optimizer is designed for robots with holonomic motion
models. That is, the motion along each axis is decoupled from
each other. This is a common assumption made in quadrotor
motion planning. Many commercially available wheeled mobile
robots also have similar kinematic model. Under certain
conditions, even motion planning for car-like vehicles also
adopt similar kinematic model and thus our optimizer is
suitable for those as well Werling et al. (2010).

2.3 Trajectory Optimization
For holonomic robots modeled as series of integrators, the joint
trajectory optimization can be formulated in the following
manner.

min
xi t( ),yi t( ),zi t( )

∑
t,i

€x2
i t( ) + €y2

i t( ) + €z2i t( )( ), (1a)

xi t0( ), _xi t0( ), €xi t0( ), yi t0( ), _yi t0( ), €yi t0( ), zi t0( ), _zi t0( ), €zi t0( )( ) � bo,i,∀i
(1b)

xi tf( ), _xi tf( ), €xi tf( ), yi tf( ), _yi tf( ), €yi tf( ), zi tf( ), _zi tf( ), €zi tf( )( ) � bf,i, ∀i

(1c)

−
xi t( ) − xj t( )
yi t( ) − yj t( )
zi t( ) − zj t( )

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠
T

S

xi t( ) − xj t( )
yi t( ) − yj t( )
zi t( ) − zj t( )

⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠
+ 1≤ 0,∀t, i, j ∈ 1, 2, . . . , nr{ }, j ≠ i{ },
S �

a2 0 0

0 a2 0

0 0 b2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1d)

The cost function Eq. 1a minimizes the squared norm of the
acceleration at each time instant for all the robots. The equality

constraints Eqs. 1b and 1c enforces the initial and final boundary
conditions on positions, velocity, and accelerations on each robot
trajectory. The pair-wise collision avoidance constraints are
modeled by inequalities Eq. 1d, wherein we have assumed that
the robots are shaped as axis-aligned spheroids with axis
dimensions (a, a, b). For the ease of exposition, we consider
all robots to have the same shape. Extension to a more general
setting is trivial. The constraints Eq. 1d are typically enforced at
pre-selected discrete time-stamps, and thus a fine resolution of
discretization is necessary for accurately satisfying the
constraints. For now, we do not consider any static obstacles
in the environment in the formulation above. The extension is
trivial as static obstacles can be considered robots with zero
velocity and whose trajectories are not updated within the
optimizer’s iteration.

Let the trajectory of each robot along each motion axis x, y, z
be parameterized through nv number of variables. For example,
these variables could be time-stamped way-points representing
the trajectory or the coefficients of their polynomial
representation (see Eq. 8). Then, for a set-up with nr number
of robots and a planning horizon of np, optimization Eqs. 1a–1d
involves nrpnv variables, and 18pnr equality constraints. The
number of pair-wise collision constraints would be (nr2 )pnp.

The number of decision variables in optimization Eqs. 1a–1d
scales linearly with the number of robots. Although this increase
poses a computational challenge, the main difficulty in solving the
optimization stems from the non-convex pair-wise collision
avoidance constraints Eq. 1d as the rest of the cost and
constraint functions are convex. Moreover, the number of
collision avoidance constraints increases exponentially with the
number of robots. Existing works (Augugliaro et al., 2012; Chen
et al., 2015; Li et al., 2020; Park et al., 2020; Rastgar et al., 2021)
have adopted different simplifications on the collision avoidance
constraints to make multi-robot trajectory optimization more
tractable. We thus next present a categorization of these works
based on the exact methodology used.

2.4 Literature Review
2.4.1 Joint Optimization With Conservative Convex
Approximation
The most conceptually simple approach is to solve Eqs. 1a–1d as
one large optimization problem, wherein the trajectory of every
robot is computed in one shot. Authors in (Augugliaro et al.,
2012) simplified the joint optimization by deriving a conservative
affine approximation of the collision avoidance constraints Eq.
1d and consequently reducing Eqs. 1a–1d to a sequence of QPs.
As a result, their solution process becomes somewhat tractable for
a moderate number of robots (≈ 10). However, the computation
time of (Augugliaro et al., 2012) scales poorly because the number
of affine constraints still increases exponentially with the number
of robots. Our prior work (Rastgar et al., 2021) substantially
improved the scalability of joint multi-robot trajectory
optimization by reformulating the Euclidean collision
constraints Eq. 1d into polar form and augmenting them into
the cost function by using concepts from the Alternating
Direction Method of Multipliers (ADMM). Moreover, we
showed that such reduction allowed one-time offline caching

TABLE 1 | Important symbols.

np, nv, nr Planning Steps, Number
of Variables Parameterizing

Trajectory along Each
Motion Axis, and

Number of Robots,
Respectively

a, b Spheroid dimensions
xi(t), yi(t), zi(t) Position of ith robot at time t
�xi(t), �yi(t), �zi(t) Predicted position of jth agent
λi Lagrangian multiplier
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of the most expensive parts of the computation. As a result
(Rastgar et al., 2021), achieved over two orders of magnitude
speed-up over (Augugliaro et al., 2012) for 16 robots. The current
proposed work provides a further significant improvement over
(Rastgar et al., 2021) in computation time and trajectory quality.

2.4.2 Sequential Optimization
Sequential planners plan for only one robot at a time. At any
given planning cycle, the previously computed robot
trajectories are considered dynamic obstacles for the
currently planned robot. As a result, these approaches
ensure that the number of decision variables does not
increase with robots. Moreover, the number of collision
avoidance constraints increases linearly as the planning
cycle progresses. However, note that the linear increase in
the number of constraints does not translate to similar scaling
in computation time. Even state-of-the-art interior-point
solvers have cubic complexity with respect to the number
of constraints.

A critical disadvantage of sequential planners is that each
subsequent robot has access to less feasible space to maneuver. As
a result, optimization problems become progressively constrained
as the planning cycle progresses, leading to potential infeasibility.
Authors in (Chen et al., 2015a) tackle this problem by developing
an incremental constraint tightening approach. The authors
integrate a subset of collision avoidance constraints into the
optimization problem, and the size of this set is gradually
increased based on the actual collision residuals.

Sequential planners naturally have the notion of priority, and
these can be chosen carefully for improved performance. For
example (Li et al., 2020), adopts a priority-based optimization
method in which the robots are divided into groups/batches with
pre-determined priorities, and the trajectory optimization
problem is solved from the highest to the lowest priority
group. Similar approach was adopted in (Park et al., 2020).
Performing sequential planning over a small batch of robots
reduces its conservativeness. On the other hand, it introduces an
additional challenge of ensuring collision amongst the robots in a
given batch. Authors in (Park et al., 2020) tackle this bottleneck
by leveraging graph-based Multi-robot Path Finding (MAPF)
methods.

2.4.3 Distributed Optimization
Distributed optimizers at each iteration, break Eqs. 1a–1d into
decoupled smaller problems. For example, see (Bento et al., 2013;
Halsted et al., 2021). The key insight upon which all existing
works build is that the only coupling between different robots
stem from the pair-wise collision constraints Eq. 1d (Halsted
et al., 2021). Thus, we if we discard this coupling, Eqs. 1a–1d can
be easily reduced to nr number of decoupled optimizations. One
way to achieve the said decoupling is to let each robot make
prediction of how the trajectories of other robots are going to look
in the immediate next iterations and use that to simplify the
collision avoidance constraints. More formally, let
(�xj(t), �yj(t), �zj(t)) be the predicted position of jth robot at
time t. Then, the collision avoidance constraints can be
simplified as Eq. 2.

xi t( ) − �xj t( )
yi t( ) − �yj t( )
zi t( ) − �zj t( )

⎛⎜⎜⎝ ⎞⎟⎟⎠
T

S
xi t( ) − �xj t( )
yi t( ) − �yj t( )
zi t( ) − �zj t( )

⎛⎜⎜⎝ ⎞⎟⎟⎠ + 1≤ 0 (2)

Note that (�xj(t), �yj(t), �zj(t)) is a known constant in Eq. 2.
Figure 1 shows how the process of using Eq. 2 to formulate
decoupled optimization problems for each robot. Existing works
differ in their method of computing the prediction
(�xj(t), �yj(t), �zj(t)). The simplest possibility is to set it as the
solution obtained in the previous iteration (Bento et al., 2013),
which is what we use in our formulation as well.

2.4.4 Online Distributed Model Predictive Control
DMPC approaches are the online variants of the distributed
optimization approach. In other words, if we run one iteration
of distributed optimization and let each robot move with the
computed trajectory, we recover the DMPC works such as (Luis
et al., 2020), Luis and Schoellig (2019). This insight also points to
the main issue of DMPC. At each control cycle, imagine a robot i
receiving information (directly through communications or
indirectly through prediction) about the trajectory that the
other robot j computed. Then it uses this information to
construct collision avoidance constraints in its trajectory
optimization set-up. However, robot j will follow the same
process and update its trajectory as well. Thus, essentially both
robot i and j compute their motion based on outdated
information about each other’s behavior.

2.4.5 Batch Optimization Over CPU Vs. GPU
Parallelization of a batch of optimization problems across CPUs
and GPUs operates fundamentally differently, and both classes of
approaches have been tried in existing works to speed up multi-
robot trajectory optimization. Each CPU core is efficient at
handling arbitrary numerical computations, and thus solving a
batch of optimizations problems in parallel is conceptually
simple. We can solve each problem in a separate thread
without needing to make any change in the underlying
numerical algebra of the optimizer (Adajania et al., 2022),
(Bento et al., 2013). As mentioned earlier, the scalability of
CPU parallelization is limited by the number of cores (typical
6 in a standard laptop). On the other hand, GPUs have many
cores, but these are primarily efficient at parallelizing primitive
operations such as matrix-vector and matrix-matrix
multiplication. Moreover, GPUs excel in performing the same
primitive operations over many data points. Thus, to fully
leverage the compute power of GPUs, it is necessary to modify
the underlying numerical aspect of an optimizer to fit the
strengths of GPUs. For example, GPU acceleration of
Newton’s method requires adopting indirect matrix
factorization over the more common direct approaches
(Kylasa et al., 2019). One optimization technique that trivially
accelerates over GPUs is Gradient Descent (GD) since it boils
down to just matrix-vector multiplication. Authors in (Hamer
et al., 2018) leverage this insight for developing a fast multi-robot
trajectory optimization algorithm. One critical issue of (Hamer
et al., 2018) is that the proposed GD is very sensitive to hyper-
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parameters like weights of the different cost function, learning
rate, etc.

GPUs are designed using threads grouped into blocks, which
are themselves organized as grids to parallelize computations for
computational efficiency (Li et al., 2012). The GPU first tiles an
n × nmatrix using p × q tiles indexed with a 2-dimensional index
to multiply large matrices. The output of each tile in the result
matrix is independent of other tiles, which allows for
parallelization. The parallelized CUDA code uses a block of
threads to compute each tile of the result matrix, and to
compute the entire result matrix; it uses a n

p ×
n
q grid of thread

blocks. Many threads and blocks in modern GPUs allow for
simultaneous computation of tile outputs, allowing for a many-
fold boost in the computation time required for large matrix
multiplications. Most off-the-shelf GPU-based libraries have this
inbuilt CUDA programming for parallel GPU computations and
can be utilized for achieving computational speed-ups in matrix
multiplications.

3 METHODS

3.1 Overview
Similar to (Bento et al., 2013), we break the joint multi-robot
trajectory optimization Eqs. 1a–1d into decoupled smaller

sub-problems at each iteration. This is illustrated in Figure 1.
At a conceptual level, this decoupling process can be interpreted
in the following manner: the robots communicate among
themselves the trajectories they obtained in the previous
iteration of the optimizer. Each robot then uses them to
independently formulate their collision avoidance constraints.
Our work differs from existing works in the way the decoupled
problems illustrated in Figure 1 is solved. As mentioned before, a
trivial approach to solving the sub-problems in parallel CPU
threads is not scalable for tens of robots. In contrast, our main
idea in this paper is to develop a GPU accelerated optimizer that
can solve a batch of optimization problems in one shot.

In this sub-section, we aim to provide a succinct mathematical
abstraction of our main idea. We discuss a special class of
problems that are simple to solve in batch fashion. To this
end, consider the following batch of equality constrained QPs,
i ∈ {1, 2, . . ., nr}.

min
ξi

1
2
ξTi �Qξi + �qT

i ξi( ), st : �Aξi � �bi (3)

In total, there are nr QPs to be solved, each defined over variable
ξi. The QPs defined in Eq. 3 have a unique structure. The Hessian
�Q and the constrained matrix �A are shared across the problems
and only the vectors �qi and �bi varies across the batch. This special
structure leads to efficient batch solution formulae. To see how,

FIGURE 1 | Figure shows our approach for breaking the joint optimization (first block) at each iteration into decoupled sub-problems (third group of blocks). Each
robot exchanges their current computed trajectories with each other. For the next iteration, robots will use the communicated trajectories to frame their collision
avoidance constraints. Thus, in this manner, we can avoid the inter-robot coupling in collision constraints. Our core novelty in this paper is a batch optimizer that can solve
all the decoupled problems in parallel over GPUs. It is also possible to replace the trajectory exchange set-up with a model that predicts the nature of the robot
trajectories in the immediate next iteration. Note that we only show the x component of the trajectory purely to maintain clarity in the figure.
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note that each QP in the batch can be reduced to solving the
following set of linear equations.

�Q �AT

�A 0
[ ] ξi

μi
[ ] � �qi

�bi
[ ], ∀i ∈ 1, 2, . . . , nr{ } (4)

where μi are the dual optimization variables. Now, it can be
observed that the matrix on the left-hand side of Eq. 4 is
independent of the batch index i, and thus, the solutions for
the entire batch can be computed in one shot through Eq. 5.

ξ1 | . . . | ξnr
μ1 | . . . | μnr

[ ] � �Q �AT

�A 0
[ ]−1( )
︷������︸︸������︷matrix

�q1 �q2 . . . �qnr
�b1 �b2 . . . �bnr

[ ]
︷��������︸︸��������︷stacked vectors

, (5)

where | represents that the columns are stacked horizontally. The
batch solution Eq. 5 amounts to multiplying one single matrix
with a batch of vectors. Furthermore, the matrix is constant, and
its dimension is independent of the number of problems in the
batch. Thus, operation Eq. 5 can be trivially parallelized over
GPUs using off-the-shelf libraries like JAX (Bradbury et al.,
2020).How it all fits: In the next few sub-sections, we will
show how the distributed sub-problems of Eqs. 1a–1d, shown
in Figure 1 can be solved efficiently in a batch setting. Specifically,
we reformulate these problems in such a way that the most
intensive part of their solution process reduces to solving a batch
of QPs with the special structure presented in Eq. 3.

3.2 Collision Avoidance in Polar Form
An important building block of our approach is rephrasing the
collision avoidance constraints into the following polar
representation from (Rastgar et al., 2021; Rastgar et al., 2020).

f c xi t( ), yi t( )( ) � xi t( ) − �xj t( ) − adij t( )sin βij t( )cos αij t( )
yi t( ) − �yj t( ) − adij t( )sin βij t( )sin αij t( )
zi t( ) − �zj t( ) − bdij t( )cos βij t( )

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭, dij t( )≥ 1,

(6)

where αij(t), βij(t), dij(t) are unknown variables that will be computed
by the optimizer along with each robot’s trajectory. Physically, αij(t)
and βij(t) represent the 3D solid angle of the line-of-sight
connecting robot i and j based on the predicted motion of the
latter. The variable dij(t) is the ratio of the length of the line-of-sight
vector with minimum safe distance

''''''''''
a2 + a2 + b2

√
(see (Rastgar

et al., 2021)).

3.3 Proposed Reformulated Distributed
Problem
Using Eq. 6, we can reformulate the distributed sub-problems
presented in Figure 1 for the ith robot in the following manner.
We reiterate that (�xj(t), �yj(t), �zj(t)),∀j ≠ i is known based on
the prediction of the trajectories of other robots.

min
xi t( ),yi t( ),zi t( ),dij t( ),αij t( ),βij t( )

∑
t

€x2
i t( ) + €y2

i t( ) + €z2i t( )( ), (7a)

xi t0( ), _xi t0( ), €xi t0( ), yi t0( ), _yi t0( ), €yi t0( ), zi t0( ), _zi t0( ), €zi t0( )( )
� bo,i,∀i

(7b)

xi tf( ), _xi tf( ), €xi tf( ), yi tf( ), _yi tf( ), €yi tf( ), zi tf( ), _zi tf( ), €zi tf( )( ) � bf,i ,∀i

(7c)

f c:
xi t( ) − �xj t( ) − adij t( )sin βij t( )cos αij t( )
yi t( ) − �yj t( ) − adij t( )sin βij t( )sin αij t( )
zi t( ) − �zj t( ) − bdij t( )cos βij t( )

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭ (7d)

dij t( )≥ 1, ∀t, j, j|j ∈ 1, 2, . . . , nr{ }, j ≠ i{ } (7e)

3.3.1 Finite Dimensional Representation
Optimization Eqs. 7a–7e is expressed in terms of functions and
thus has the so called infinite dimensional representaton. To
obtain a finite-dimensional form, we assume some parametric
form for this functions. For different dij(t), αaij(t), βij(t), we
assume a way-point paramterization. That is, these functions are
represented through values at discrete time instants. The
trajectories along each motion axis are represented as
following polynomials.

xi t1( )
xi t2( )

..

.

xi tnp( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � Pcx,i,

_xi t1( )
_xi t2( )
..
.

_xi tnp( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � _Pcx,i,

€xi t1( )
€xi t2( )
..
.

€xi tnp( )
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � €Pcx,i.

(8)
Similar expressions as Eq. 8 can be written for the y, z

component of the trajectory as well. The matrix P is formed
with time dependent polynomial basis functions. Using Eq. 8, we
can re-write Eqs. 7a–7e in the following matrix form.

min
ξ1,i ,ξ2,i ,ξ3,i ,ξ4,i

1
2
ξT1,iQξ1,i( ), (9a)

Aeqξ1,i � beq, (9b)
Fξ1,i � gi ξ2,i, ξ3,i, ξ4,i( ), (9c)

ξ4,i ≥ 1, (9d)
where, ξ1,i = (cx,i, cy,i, cz,i), ξ2,i = αij, ξ3,i = βij and ξ4,i = dij. Note

that αij is formed by stacking αij(t) at different time instants.
Similar construction is followed for other elements in ξ2, ξ3. The
matrix Q is block diagonal matrix with €P

T€P as main diagonal
block. The affine constraint Eq. 9b is a matrix representation of
the initial and final boundary conditions Eqs. 7b and 7c. The
matrix Aeq and vector beq is constructed in the following manner.

Aeq � A 0
0 A

[ ],Aeq � P1| _P1|€P1|P−1|€P−1€P−1[ ]T, beq � b0,i

bf,i,
[ ]

(10)
where, P1, _P1, €P1,P−1, _P−1, €P−1 represents the first and last
elements of the corresponding matrices.

Matrix F and vector gi defining constraints Eq. 7e are
constructed as

F �
Fo 0 0
0 Fo 0
0 0 Fo

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ gi �
gx,i ξ2,i, ξ3,i, ξ4,i( )
gy,i ξ2,i, ξ3,i, ξ4,i( )
gz,i ξ2,i, ξ3,i, ξ4,i( )
⎡⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎦ (11)

where,

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 8903856

Guhathakurta et al. GPU-Accelerated Optimizer for Multi-Robot Trajectories

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


gx,i � �xj + adij sin βij cos αij,∀j, gy,i

� �yj + adij sin βij sin αij,∀j, gz,i � �zj + bdij cos βij,∀j

(12)
and Fo is formed by vertically stacking P, nr − 1 times. The

vectors �xj, �yj,�zj are formed by stacking �xj(t), �yj(t), �zj(t) at
different time instants.

REMARK 1. The subscript i signifies that Eqs. 9a–9c is
constructed for the ith agent.

REMARK 2. All the non-convexity in optimization Eqs.
9a–9d is rolled into the equality constraint Eq. 9c.

REMARK 3. The matrices Aeq, F in optimization Eqs. 9a–9d
is independent of the robot index. In other words, these matrices
remain the same irrespective of the which sub-problems shown in
Figure 1 we are solving.

Remark 3 sheds light behind our motivation of presenting the
elaborate reformulations of the collision avoidance constraints. In
fact, on the surface, our chosen representation Eq. 6 seems
substantially more complicated than the conventional form
Eq. 1d based on the Euclidean norm. In the next sub-section,

we present an optimizer that can leverage the insights presented
in Remark 3. More precisely, we will show that the due to the
matrices Aeq, F being independent of the robot index i, the most
intensive part of solving Eqs. 9a–9d reduces to the batch QP
structure presented in Section 3.1.

3.4 Augmented Lagrangian and Alternating
Minimization
Our proposed optimizer for Eqs. 9a–9d relies on relaxing the
non-convex equality constraints Eq. 9c as l2 penalties and
incorporating them into the cost function in the following
manner.

min
ξ1,i ,ξ2,i ,ξ3,i ,ξ4,i

(1
2
ξT1,iQξ1,i − 〈λi, ξ1,i〉 + ρ

2
Fξ1,i − gi ξ2,i, ξ3,i, ξ4,i( )**** ****22)

(13)
As the residual of the constraint term is driven to zero, we

recover the solution to the original problem. To this end, the
parameter λi, known as the Lagrange multiplier, plays an

FIGURE 2 | Trajectory snapshots for (A–C) 32 robots, each of radius 0.3 m arranged in a circle and 20 obstacles of radius 0.4 m (D–F) 32 robots, each of radius
0.3 m arranged in a circle and 8 randomly placed obstacles of radius 0.4 m (G–I) 36 robots, each of radius 0.1 m arranged in a grid configuration are required to move to
a line formation. Also, the environment has 4 static obstacles, each of radius 0.15 m.
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important part. Its role is to appropriately weaken the effect
of the primary cost function so that the optimizer can focus
on minimizing the constraint residual (Taylor et al., 2016).
The parameter ρ is a scalar and is typically constant.
However, it is possible to increase or decrease it
depending on the magnitude of the constraint residual at
each iteration of the optimizer.

The relaxation of non-convex equality constraints, as
augmented Lagrangian (AL) cost, is extensively used in
non-convex optimization (Ferranti and Keviczky, 2017;
Ferranti et al., 2018). However, what differentiates our use
of AL from existing works is how we minimize Eq. 13. Typical

approaches towards non-convex optimization are based on
first (and sometimes second) order Taylor Series expansion of
the non-convex costs or constraints. In contrast, we adopt an
Alternating Minimization (AM) based approach, wherein at
each iteration, we minimize only one of the variable blocks
amongst ξ1,i, ξ2,i, ξ3,i, ξ4,i while others are held constant at
specific values. In the next section, we present the various
steps of our AM optimizer and highlight how it never requires
any linearization of cost or constraints. Moreover, we show
how the AM steps naturally lead to a simple yet efficient batch
update rule using which we can solve Eqs. 9a–9d for all the
robots in one shot.

FIGURE 3 | Simulation snapshots for (A–F) 16 drones and 8 static obstacles of radius 0.3 m, and (G–L) 8 drones and 2 static obstacles of radius 0.3 m (A–C, G–I)
are screenshots of simulations on Gazebo. In (A–C), the gray static hovering drones represent static obstacles while in (G–I) white hovering drones represent static
obstacles. (D–F, J–L) are screenshots of RViz simulations with the brown hovering drones representing static obstacles. For the full simulation videos, please refer to the
following link: https://www.dropbox.com/scl/fo/xnostapkvf72uudyb840t/h?dl=0&rlkey=02gjjllohbomzi0kcifbqezt9.
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Algorithm 1. Alternating Minimization Based Solution for the
Ith Sub-Problem

3.5 AM Steps and Batch Update Rule
Our AM based optimizer for minimizing Eq. 13 subject to Eqs.
9b–9d is presented inAlgorithm1.Here, the left superscript k is used
to track the values of the variable across iteration. For example, kξ2,i
denotes the value of this respective variable at iteration k.

The Algorithm begins (line 1) by providing the initial guesses
for ξ2,i, ξ3,i, ξ4,i. The main optimizer iterations run within the
while loop for the specified max iteration limit or till the
constraint residuals are a below specified threshold. Each step
within the while loop involves solving a convex optimization over
just one variable block. We present a more detailed analysis of
each of the steps next.

3.5.1 Analysis
Step (14): This optimization is a convex QP with a similar
structure as Eq. 3 with

�Q � Q + ρFTF, �qi � −kλi − ρFTgi
kξ2,i,

kξ3,i,
kξ4,i( )( )T. (19)

Thus, we can easily solve Eq. 14 for all the robots in parallel to
obtain (ξ1,1, ξ1,2, ξ1,3, . . . , ξ1,nr) in one shot. The exact solution
update is given by Eq. 5.

For a constant ρ, the inverse of �Q needs to be obtained only
once irrespective of the number of robots. Thus, the complexity of
the batch solution of all the sub-problems stems purely from
obtaining the matrix-matrix products in Eq. 5 and FTgi, ∀i. We
can formulate the latter also as one large matrix-matrix product
in the following manner.

FT ([g1|g2| . . . |gnr]︷������︸︸������︷ )G

T (20)
The dimension of F, gi and G is ((nr − 1)pnp) × 3nv, ((nr − 1)

*np) × 1, and ((nr − 1)*np) × nr respectively. For convenience, we
recall that nr, np, nv represents the number of robots, planning
steps and coefficients of the trajectory polynomial (along each
axis) respectively. Thus, the row-dimension of F and G increases
linearly with nr.

FIGURE 5 | Figure showing the minimum of the pair-wise distances between the robots averaged across different benchmarks, some of which are shown in
Figure 2. The pair-wise distance is always greater than the lower bound shown in blue. Similarly, we also show the average minimum distance between the robots’ and
obstacles’ centers. The corresponding lower bound is shown in yellow which is always respected by the computed trajectories. (A) denotes the pairwise-distance plot
for the scenario in Figures 2A–C, (B) for Figures 2D–F and (C) for Figures 2G–I.

FIGURE 4 | Empirical validation of convergence of our optimizer. The
figure shows the residual of ‖Fξ1,i − gi‖ averaged over all i (agent index) and
across different benchmarks.
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Step (15): The variable k+1ξ1,i computed in the previous step
and Eq. 8 can be used to fix the position trajectory k+1xi,

k+1yi,
k+1zi at the (k + 1)th iteration. Thus, optimization Eq. 15 reduces
the following form

∀i, j, k+1αij � min
αij

ρ

2

k+1xi − �xj
︷���︸︸���︷ k+1 ~xi − akdij sin βij cos αij

k+1yi − �yj
︷���︸︸���︷ k+1 ~yi − akdij sin βij sin αij

*************
*************
2

2

(21)
where �xj, �yj is formed by stacking �xj(t), �yj(t) at different time

instants.
Although Eq. 21 is a seemingly non-convex problem but it has

a few favorable computational structures. First, for a fixed
position trajectory k+1xi,

k+1yi,
k+1zi, we can treat each element

of αij as independent from each other. Thus, Eq. 21 reduces to (nr
− 1)*np decoupled problems. Second, the solution can be obtained
by purely geometrical intuition; αij is simply one part of the 3D
solid-angle of the line-of-sight connecting the ith robot and the
predicted trajectory of jth agent. The exact solution update is
given by the following.

k+1ξ2,i � k+1αij � arctan 2 k+1~yi, k+1~xi( ), (22)
Step (16): Following the exact same reasoning as the previous

step (15), we have the following solution update rule for ξ3,i:

ξ3,i � k+1βij � arctan 2
k+1~xi,

a cosk+1αij
,
k+1~z i
b

( ) (23)

Step k+1ξ4,i: Similar to the last two steps, each element of ξ4,i =
dij once the position trajectory k+1xi,

k+1yi,
k+1zi is fixed. Thus, Eq.

17 can be broken down into (nr − 1)*np parallel problems of the
following form.

k+1ξ4,i � k+1dij � min
dij ≥ 1

ρ

2

k+1xi − xj
︷���︸︸���︷ k+1 ~xi − adij sink+1βijcosk+1αij

k+1yi − yj
︷���︸︸���︷ k+1 ~yi − adij sink+1βij sink+1αij

k+1zi − zj
︷���︸︸���︷ k+1 ~z i − bdij cosk+1βij

*******************

*******************

2

2

(24)
Each optimization in Eq. 24 is a single variable QP with simple

bound constraints. We first obtain the symbolic formulae for the

FIGURE 6 | Comparison of trajectories generated by (Park et al., 2020) (A,C) and our optimizer (B,D) for 16 robots-12 obstacles (upper row) and 32 robots-20
obstacles (bottom row) benchmarks. Black spheres denote static obstacles and colored spheres denote robots. Our optimizer generates trajectories with smaller arc-
length than (Park et al., 2020).
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unconstrained version and then clip the resulting solution
to [0 1].

REMARK 4. Evaluating Eqs. 22 and 23 and the solution of Eq.
24 requires no matrix factorization/inverse or even matrix-matrix
products.We just need element-wise operation that can obtained for
all the sub-problems in one shot. In other words, we obtain
(ξ2,1, ξ2,2, . . . ξ2,nr), (ξ3,1, ξ3,2, . . . ξ3,nr), and (ξ4,1, ξ4,2, . . . ξ4,nr) in
parallel.

4 RESULTS

The objective of this section is twofold. First, to validate that a
distributed approach augmented with our custom batch optimizer
can indeed generate collision-free trajectories for tens of robots in
highly cluttered environments. Second, to compare our approach
with the existing state-of-the-art (SOTA) multi-robot trajectory
optimizer in terms of solutions quality and computation time.

FIGURE 7 | Comparison of our optimizer with (Park et al., 2020) in terms of arc-length and smoothness of obtained trajectories in 16 robots (A,B) and 32 robots
(C,D) benchmarks. Our optimizer generates trajectories with not only better smoothness, but also with shorter arc-lengths. Moreover, the performance gap between our
approach and (Park et al., 2020) increases as the environment becomes more cluttered.

TABLE 2 | Comparison with current state-of-the-art (Park et al., 2020) in terms of computation time.

Number of Robots Number of obstacles ours [s] (Park et al., 2020)[s]

32 24 0.21 12.897
32 20 0.20 11.827
32 16 0.20 12.423
32 12 0.19 12.504
16 24 0.17 0.795
16 12 0.17 0.661
16 8 0.16 0.680
16 4 0.16 0.702
16 2 0.15 0.621
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Implementation Details: We built our optimizer in Python
using JAX (Bradbury et al., 2020) as our GPU accelerated linear
algebra back-end.We considered static obstacles as robots with fixed
zero velocity. We modeled each robot by a sphere and each obstacle
by its circumscribing sphere. We experiment with a diverse range of
radii of both robots and obstacles. Simulations were run on a desktop
computer with 32 GB RAM and RTX 2080 NVIDIA GPU.

4.1 Benchmarks and Convergence
Our optimizer is tested using the following benchmarks.

• The robots’ start and goal positions are sampled along the
circumference of a circle.

• The robots are initially located on a grid and are tasked to
converge to a line formation.

By changing the number and positions of robots and static
obstacles, we created several variations of the mentioned
benchmarks and utilized them to validate our optimizer.
Figures 2A–I presents a few qualitative results in a diverse set
of environments. Figures 2A–C shows an environment with 32
robots and 20 obstacles. Interestingly, we observe a circular
pattern formation among the robots while passing through
narrow passages between static obstacles. In Figures 2D–F, 36
robots initially arranged in a grid are given the task to navigate to
a line formation while avoiding collisions with each other and
with the four static obstacles in the environment. Figure 3 shows
the execution of the computed trajectories in a high-fidelity
physics engine called Gazebo available in Robot Operation
System (Koenig and Howard, 2004).

A conceptually simple way of validating the convergence of the
proposed optimizer is to observe the trends in residual of
constraints Eq. 9c over iterations. If the residuals converge to
zero, the computed trajectories are guaranteed to be collision-
free. Figure 4 empirically provides this validation. It presents
‖Fξ1,i − gi‖ averaged over all i. Furthermore, we average the
residuals over different trials in various benchmarks. We can

observe from Figure 4 that, on average, 100 iterations are
sufficient to obtain residuals around 0.01. A further increase in
residuals can be obtained by increasing the number of iterations
but at the expense of increasing the computation time. In our
implementation, we adopt a heuristic wherein we inflate the size
of the robots with four times the typical residual observed after
100 iterations.

For a further sanity check, we check for inter-robot and robot-
obstacle distances at each point along the computed trajectories
(Figure 5). Collisions are considered to have happened if the
distances are less than sum of the robots’ (blue line in Figure 5) or
robot-obstacles’ (yellow line in Figure 5) radii. Figure 5
summarizes the average behavior observed across several trials,
which validates the satisfaction of the collision avoidance
requirement.

4.2 Comparisons With State-Of-The-Art
This subsection compares our optimizer with existing state-of-
the-art approaches (Rastgar et al., 2021) and (Park et al., 2020).
We use the following metrics for bench-marking.

• Smoothness cost: It is computed as the norm of the second-
order finite-difference of the robot position at different time
instances.

• Arc-length: It is computed as the norm of the first-order
finite-difference of the robot positions at different time
instances.

• Computation Time: The time taken for each approach to
return a smooth and collision-free solution.

4.2.1 Comparison With (Park et al., 2020)
Figure 6 presents a qualitative comparison between the
trajectories obtained by our optimizer and (Park et al., 2020)
in two different benchmarks. Both approaches are successful;
however, ours results in shorter trajectories. This trend is further
confirmed by Figure 7. Our optimizer achieves an average

TABLE 3 | Comparison with (Rastgar et al., 2021) in terms of computation time, arc-length and smoothness cost.

Number of
Robots

Number of
obstacles

Benchmark Computation time
[s]

Arc-length [M] Smoothness Cost

16 robot 2 Rastgar et al. (2021) 0.34 13.488 0.102
2 Ours 0.15 9.999 0.048
4 Rastgar et al. (2021) 0.37 14.257 0.114
4 Ours 0.16 11.693 0.093
8 Rastgar et al. (2021) 0.70 15.539 0.140
8 Ours 0.16 11.118 0.089
12 Rastgar et al. (2021) 0.79 15.931 0.159
12 Ours 0.17 11.192 0.106
24 Rastgar et al. (2021) 1.49 24.198 0.164

32 robots 24 Ours 0.17 10.249 0.069
12 Rastgar et al. (2021) 1.688 23.855 0.157
12 Ours 0.19 22.593 0.132
16 Rastgar et al. (2021) 1.752 24.04 0.164
16 Ours 0.20 22.303 0.122
20 Rastgar et al. (2021) 1.804 24.14 0.170
20 Ours 0.20 23.156 0.210
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reduction of 3.90 and 13.72% in arc-length in 16 and 32 robots
benchmarks, respectively. Furthermore, the performance gap
between our optimizer and (Park et al., 2020) increases as the
environment becomes more cluttered with static obstacles. We
also observe similar trends in the smoothness metric, with the
performance gap being even starker. Our optimizer achieves an
average reduction of 35.86 and 59.06% in smoothness cost in 16
and 32 robots benchmark, respectively.

Table 2 compares the computation time of our optimizer and
(Park et al., 2020). Our optimizer shows better scaling with the
number of robots and obstacles in the environment. On the
considered benchmark, our optimizer shows a worst and best case
improvement of 74.28 and 98.48% respectively. The trends in
computation time can be understood in the following manner.
The approach of (Park et al., 2020) uses sampling-based multi-
agent pathfinding algorithms to compute initial guesses for the
robot trajectories. As the environment becomes more cluttered,
the computational cost of computing the initial trajectories
increases dramatically. Moreover, their sequential optimization
also becomes increasingly more computationally intensive as the
number of robots and obstacle increase.

In contrast, our optimizer only requires matrix-matrix
products, and the dimension of these matrices increases
linearly with the number of robots and obstacles. This linear
scaling along with GPU parallelization explains our
computation time.

4.2.2 Comparison With (Rastgar et al., 2021)
Table 3 compares the performance of our optimizer with (Rastgar
et al., 2021). Our core difference with (Rastgar et al., 2021) stems
from the fact that we break a large optimization problem into
smaller distributed sub-problems. In contrast, (Rastgar et al.,
2021), retains the original larger problem itself. However, both
our optimizer and (Rastgar et al., 2021) use GPUs to accelerate
the underlying numerical computations. Thus, unsurprisingly,
(Rastgar et al., 2021), shows a decent scaling with the number of
robots and obstacles. Nevertheless, our approach still
outperforms (Rastgar et al., 2021). Specifically, in 16 robot
benchmarks, our optimizer shows a worst-case improvement
of 2 times over (Rastgar et al., 2021) in computation time. As
the environment becomes more cluttered, this factor increases to
almost 10. In 32 robot benchmarks, the difference between our
optimizer and (Rastgar et al., 2021)’s computation time is around
nine times.

In terms of the arc-length and the smoothness metrics, our
optimizer shows an improvement of around 57 and 58%
respectively over (Rastgar et al., 2021). However, both
approaches provide comparable results in the more
challenging 32 robot benchmarks. The arc-length and
smoothness cost difference decreases the environment
becomes more cluttered.

5 DISCUSSIONS AND FUTURE WORK

Joint multi-robot trajectory optimizations are generally
considered intractable beyond a small number of robots.

This is because the number of pair-wise collision avoidance
constraints increases exponentially with the number of robots.
Moreover, even the best optimization (QP) solvers show
polynomial scaling with the number of constraints. In this
paper, we fundamentally altered this notion. By employing a
clever set of reformulations and parallelism offered by modern
computing devices such as GPUs, we managed to compute
trajectories for tens of robots in highly cluttered environments
in a fraction of a second. Our formulation is simple to
implement and involves computing just matrix-matrix
products. Such computations can be trivially accelerated or
parallelized on GPUs using off-the-shelf libraries like JAX
(Bradbury et al. (2020)). We benchmarked our approach
against two strong baselines and showed substantial
improvement over them in terms of computation time and
trajectory quality.

Our work has potential beyond multi-robot coordination. For
example, currently, we are looking to use the proposed multi-
robot trajectory optimization for interaction-aware trajectory
prediction. Our optimizer’s current form is suited for only
holonomic robots. In future works, we are looking to integrate
non-holonomic constraints to make our optimizer applicable for
coordination of car-like vehicles.
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