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ABSTRACT: The optimal adsorption sites and the binding
energies of neutral Au3 clusters with 20 natural amino acids
under the gas phase and water solvation were systematically
investigated based on density functional theory (DFT) calcu-
lations. The calculation results showed that in the gas phase Au3
tends to bind with N atoms of amino groups in amino acids, except
methionine, which tends to bind with Au3 through S atoms. Under
water solvation, Au3 clusters tended to bind to N atoms of amino
groups and N atoms of side chain amino groups in amino acids.
However, methionine and cysteine bind more strongly to the gold
atom through the S atom. Based on the binding energy data of Au3 clusters and 20 natural amino acids under water solvation
calculated by DFT, a machine learning model (gradient boosted decision tree) was proposed to predict the optimal binding Gibbs
free energy (ΔG) of the interaction between Au3 clusters and amino acids. The main factors affecting the strength of the interaction
between Au3 and amino acids were uncovered by the feature importance analysis.

1. INTRODUCTION
Gold nanoparticles (AuNPs) have been widely used in medical
diagnosis and medical therapy because they can be used as
intermediates in the fabrication of nanoscale devices and as
carriers for drug delivery.1−3 The AuNPs can be quickly
absorbed by the human body due to their extremely small size
and surface characteristics. Once it enters the blood, proteins
will easily be adsorbed on AuNPs to form protein crowns.4

Furthermore, due to their optical properties (e.g., fluores-
cence) and biocompatibility with biomolecules (peptides,
amino acids (AAs), and proteins), some human proteins can
retain their function in the presence of AuNPs and coat the
protein layer to regulate surface properties, which provides a
means for intracellular interactions and imaging.5−7 Therefore,
studying AuNPs and protein interactions is crucial for
understanding the protein corona and regulating protein
surface engineering.

It is well known that proteins are composed of AAs, so the
study of the interaction between AuNPs and proteins can be
simplified as the study of the interaction between Au
nanoclusters (AuNCs) and AAs. Over the past few years,
there has been growing interests in studies to elucidate the
interactions of AuNCs with different AAs. For example, Xie et
al. reported the interaction of Aun clusters (n = 3 and 4) with
cysteine and glycine, and found that the best site for Au3 to
interact with cysteine and glycine was the amine group.8

Pakiari et al. investigated the binding mode and binding energy
of Au3 and Ag3 clusters to AAs (glycine and cysteine) using

density functional theory (DFT) calculations and demon-
strated that the interaction of AAs with gold and silver clusters
is governed by two main factors, including the anchoring N−
Au(Ag), O−Au(Ag), and S−Au(Ag) bonds and the unconven-
tional N−H−Au(Ag) and O−H−Au(Ag) hydrogen bonds.9

Rai et al. studied the interaction of proline with Au3 by DFT
calculations and found the tendency to bind to Au clusters
through the amide terminals.10 Buglak et al. reported the
binding of the gold ion Au+ and diatomic neutral Au2 to the
full set of AAs using DFT and the RI-MP2 computation.11 The
studies demonstrated that the interaction of gold cations and
neutral gold clusters with protonated and deprotonated AA
residues is not much different. The binding affinity of AAs to
Au2 clusters was determined in the following order: Cys(H+) >
Asp(H+) > Tyr(H+) > Glu(H+) > Arg > Gln, His, Met [Asn,
Pro, Trp] > Lys, Tyr, Phe > His(H+) > Asp > Lys(H+) > Glu,
Leu > Arg(H+) > Ile, Val, Ala > Thr, Ser > Gly, Cys.11 There
are also many studies on the interaction of larger size AuNCs
with AAs. For example, Srivastava studied the interaction
between cysteine and gold clusters and found that the binding
strength between gold clusters and cysteine was positively
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correlated with the S−Au bond order and negatively correlated
with the S−Au bond length.12 Abdalmoneam et al. reported
the stability and electronic properties of Aun (n = 8 and 20)
clusters interacting with alanine (Ala) and tryptophan (Trp) in
their canonical and zwitterionic configurations.13 They found
that the geometry of the gold clusters and the polarity of the
AAs determined the nature of the interactions in the gas and
solvation phases. To design asymmetric nanocatalytic materi-
als, the enantiospecific interactions of cysteine with chiral Au55
clusters were investigated. It was found that the driving force
for enantioselectivity was related to the finite size of the
adsorption “substrate”, which in this case corresponded to the
cluster facet.14−16 In order to understand the relative
interaction strength between the AAs and the Au surface,
Feng and colleagues used molecular dynamics (MD)
simulations to study the Gibbs free energy of adsorption of
20 different AAs on the Au(111) surface,17 and the order of
their interactions is found to be aromatic < cationic < polar <
aliphatic. Interestingly, Kruger et al. demonstrated that the
optimal size of gold clusters bound to organic molecules
consists of three to four bonded gold atoms by ab initio
molecular dynamics simulations. This indicated that Au
clusters with n = 3 or n = 4 were very easy to interact with
organic molecules (AAs, peptides, and proteins).18 However,
despite the efforts of researchers on the interaction of Au
clusters with AAs,10,19−25 the interaction of AuNCs with the
full set of protein AAs (20 species) in the gas phase and
solvated environments has not been systematically studied.
The main influencing factor affecting the binding strength
between gold clusters and AAs is not clear.

Inspired by recent reports and the needs to gain insight into
the interaction of small-sized Aun clusters with AA, in this work
we systematically studied the interaction of Au3 with 20 natural
AAs in the gas phase and water solvation by DFT calculations.
On the basis of DFT energy calculation results, we propose an
efficient machine learning model to search the main factors
affecting the binding affinity between Au3 clusters and AAs. In

our model, we only use the properties of the 20 natural AAs as
descriptors and not the structural/electronic properties of the
Au3−AA complex (which requires performing many additional
DFT calculations). The main factor to affect the interaction of
Au3 with AAs was revealed by feature importance analysis. To
the best of our knowledge, this is the first machine learning
study done for the interaction of AuNCs with AAs.

2. COMPUTATIONAL METHODS AND DETAILS
2.1. DFT Computations. The geometry structure of the

Au3, 20 natural AAs (arginine, histidine, lysine, asparagine,
glutamine, tryptophan, methionine, cysteine, alanine, phenyl-
alanine, tyrosine, valine, isoleucine, serine, leucine, glycine,
aspartic acid, threonine, glutamic acid, and proline) and Au3−
AAs complexes were optimized by DFT with the M06-2X
functional in Gaussian 09 software.26,27 The cc-pVTZ basis set
was used for atoms in AAs, while for Au atoms the Los Alamos
effective core potential (ECP) def2-QZVP basis set was
applied.28,29 The initial structure of Au3−amino acid
complexes was constructed by placing gold clusters near the
active sites of AAs, in which the active sites of AAs considered
include amino groups, thiols, benzene rings, and hydroxyl and
carbonyl groups. Binding Gibbs free energy (ΔG) between Au3
and 20 natural AAs can be calculated via the formula: ΔG =
G(Au3−AAs) − G(Au3) − G(AAs), where G(Au3−AAs) is the
free energy of Au3 AA complexes, G(Au3) and G(AAs) are the
free energy of Au3 and AA molecules at 298.15 K and 1.0 atm,
respectively.
2.2. Machine Learning Method and Details. To

uncover the main factors affecting the strength of Au3−AA
interactions with the Au3 cluster, we trained a machine learning
model based on the results of DFT calculation.30 The structure
and physical chemistry properties of AAs are used as the
feature set, and the optimal ΔG is used as the target value.
Since the useful features in the data set only account for a small
part of the entire data set, in order to reduce the redundancy of
features and speed up the model convergence, we need to

Figure 1. Structure and molecular formulas of 20 natural AAs.
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perform feature selection on the feature set before training. In
addition, before training the machine learning model, we also
need to randomly split the entire data set into training and test
sets in a ratio of 8:2. Three machine learning methods were
used to train the data in the training set, including gradient
boosted decision tree (GBDT), K-nearest neighbors (KNN),
and lasso regression.31−33 Meanwhile, in order to evaluate the
performance of these algorithms, the root mean square error
(RMSE) and coefficient of determination (R2) are used as
evaluation criteria.34 When training the model and adjusting
the parameters to achieve the minimum RMSE and the
maximum coefficient of determination (R2), the feature
importance of the model can be counted in different ways,
such as the feature output GBDT35 and SHapley Additive
exPlanations (SHAP).36

Feature importance in GBDT is specific to the model and is
calculated based on the number of times a feature is used to
split the data in the trees of the model.35 The importance of a
feature is proportional to the reduction in impurity (e.g., Gini
impurity) achieved by splitting on that feature. SHAP is a
model agnostic method that provides global and local feature
importance values.36 It is based on game theory and provides a
unified framework for interpreting the output of any machine
learning model. The SHAP value of a feature measures the
contribution of that feature to the prediction of a specific
instance, while the global SHAP value of a feature measures its
importance across all instances in the data set. One advantage
of SHAP over feature importance in GBDT is that SHAP
values provide a more nuanced understanding of how each
feature contributes to the prediction for each specific instance.
This can help identify interactions between features and
potential confounding factors that may not be captured by
global feature importance. The GBDT model used in this work
comes with an output of feature importance, but considering
the understanding of each specific instance in the data set, we
chose the SHAP method. In this way, the importance
relationship between each feature and the predicted value of
machine learning can be obtained, and the main factors
affecting the interaction strength of Au3 and AAs can be
identified.

3. RESULTS AND DISCUSSION
3.1. Interaction between Au3 Cluster and 20 Natural

AAs. Studying AuNPs and protein interactions is critical for
understanding protein corona formation and regulating protein
surface engineering. Human proteins are mainly composed of
20 natural AAs. As shown in Figure 1, the structures of these
20 natural AAs are different, but most of them have carboxyl
groups, amino groups, and individual thiol groups and

hydroxyl groups. Since carboxyl, amino, thiol, and hydroxyl
groups are electron-rich groups, S atoms, N atoms, and O
atoms can be regarded as the active adsorption sites for the
interaction of Au3 with AAs.

Among the 20 kinds of natural AAs, only the methionine
(Met) and cysteine (Cys) contain carboxyl, amino, thiol, and
hydroxyl groups at the same time, so their interaction with Au3
is discussed first. The configuration of Au3·Met and Au3·Cys
complexes was comprehensively sampled. The optimal binding
configuration was determined by DFT energy calculation. As
shown in Figure 2, when Au3 interacts with Met and Cys, the
Au atom can bind with the N, S, and O atom, respectively,
forming three different Au3·Met complexes (Au3·Met_1, Au3·
Met_2, and Au3·Met_3) and Au3·Cys complexes (Au3·Cys_1,
Au3·Cys_2, and Au3·Cys_3), respectively. As shown in Table
1, for the interaction between Au3 and Met, Au3·Met_1 is the

most stable complex under the gas phase and water solvation.
Au3 is bonded to the S atom and the ΔG is −17.09 and −12.80
kcal/mol in the gas phase and water solvation, respectively. For
the interaction between Au3 and Cys, under water solvation,
the S atom is the most favorable binding site to Au3. However,
in the gas phase, the N atom of the amino group is the most
favorable binding site to Au3. The ΔGg and ΔGaq are −17.01
and −10.95 kcal/mol for Au3·Cys_1, and the ΔGg and ΔGaq
are −11.91 and −11.31 kcal/mol for Au3·Cys_2, respectively.

Phenylalanine (Phe), tryptophan (Trp), and tyrosine (Tyr)
contain benzene rings, which also can act as an active site to
bind with Au3 clusters. Figure 3 shows the optimized binding
molecular structure of Au3·Phe, Au3·Trp, and Au3·Tyr,
respectively. It is found that Au3 tends to bind with N atoms
of AAs in both the gas phase and water solvation and the
binding affinity of Au3 to the benzene ring is much weaker
(Table 2).

For the remaining 15 AAs, including alanine (Ala), serine
(Ser), glycine (Gly), arginine (Arg), aspartic acid (Asp),
histidine (His), glutamic acid (Glu), glutamine (Gln),
asparagine (Asn), threonine (Thr), proline (Pro), leucine

Figure 2. Interaction of the Au3 with methionine (Met) and cysteine (Cys).

Table 1. ΔG of Interaction between Au3 with Met and Cys
in the Gas Phase (g) and Water Solvation (aq)

complex adsorption site ΔGg (kcal/mol) ΔGaq (kcal/mol)

Au3·Met_1 S atom −17.09 −12.80
Au3·Met_2 N atom −14.28 −11.02
Au3·Met_3 O atom −6.80 −1.29
Au3·Cys_1 S atom −17.01 −10.95
Au3·Cys_2 N atom −11.90 −11.31
Au3·Cys_3 O atom −8.67 −0.14
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(Leu), isoleucine (Ile), leucine (Leu), and valine (Val), they
only contain two kinds of active sites (N atom and O atom) for
the interaction with Au3. Therefore, we only considered two
adsorption modes for each Au3−AA interaction. Figures S1−
S4 show the different bonding structures of Au3 with 15 kinds
of AAs and their ΔG. It was seen that Au3 is more likely to
bind with the N atom no matter in the gas phase or water
solvent.

Table 3 summarizes the ΔG and optimal adsorption sites for
the interaction between Au3 and 20 natural AAs under the gas
phase and water solvation. Comparing the interaction strength
of Au3 with 20 natural AAs, it was found that the binding
affinities of 20 natural AAs to the Au3 cluster can be ranked in
the following order: Arg > His > Lys > Asp > Gln > Trp > Met
> Cys > Ala > Phe > Tyr > Val > Ile > Ser > Leu > Gly > Asp >
Thr > Glu > Pro. The situation in water solvation is somewhat
different from that in the gas phase, the difference is that
cysteine prefers to bind with Au3 through the S atom, while in
the gas phase, the N atom of the amino group binds with Au3
more favorably in energy. Under aqueous solvation, the
binding affinities of 20 AAs to Au3 clusters was ranked in a
different order: Arg > Lys > Trp > His > Ala > Phe > Met >
Asn > Ile > Cys > Val > Asp > Gln > Ser > Thr > Leu > Tyr >
Gly > Glu > Pro. Moreover, under solvation, the optimal
adsorption site of AAs with Au3 is basically the N atom of
amino groups, but their ΔG is different. These results indicate

the ΔG value depends on the properties of the AAs themselves
but what properties is not clear. It is worth noting that our
work only considered the case of single site adsorption and the
actual solution environment was not taken into consideration.
3.2. Factors Affecting the Interaction Strength of Au3

and AAs. To quickly find the main factors affecting the
interaction strength between Au3 and AAs, the machine
learning method is used. The structure and physical chemistry
properties of AAs are used as the descriptors. The descriptor
and definition of descriptors are listed in Table 4. Previous
theoretical studies have shown that the strength of the
interaction between gold clusters and AAs is related to the
size and polarity of AAs.13−16 At present, in addition to the
molecular polarity index of AAs (MPI) and relative molecular
mass of AAs (M) being used as descriptors, the atomic charge
(q), the HOMO−LUMO gap of AA molecules (H−L), the
dipole moment of AA molecules (μ), volume of fragments after

Figure 3. Interaction of Au3 with Phe, Trp, and Tyr.

Table 2. ΔG of the Interaction between Au3 and Phe, Trp,
and Tyr in the Gas Phase (g) and Water Solvation (aq)

complex adsorption site ΔGg (kcal/mol) ΔGaq (kcal/mol)

Au3·Phe_1 N atom −15.87 −12.97
Au3·Phe_2 C atom −4.55 −3.09
Au3·Phe_3 C atom −4.40 −3.70
Au3·Phe_4 O atom −5.18 −2.38
Au3·Phe_5 O atom −1.62 −1.10
Au3·Trp_1 N atom −17.29 −13.78
Au3·Trp_2 N atom 0.58 0.13
Au3·Trp_3 C atom −2.81 1.01
Au3·Trp_4 O atom −9.69 −7.09
Au3·Trp_5 O atom −5.29 −3.90
Au3·Tyr_1 N atom −14.11 −9.60
Au3·Tyr_2 C atom −9.71 −6.17
Au3·Tyr_3 O atom −0.90 2.01
Au3·Tyr_4 O atom −5.88 −3.40
Au3·Tyr_5 O atom −0.69 −0.81

Table 3. Optimal Adsorption Sites of Au3 with 20 Natural
AAs in the Gas Phase and Water Solvation and the
Computed ΔG

complex

optimal
adsorption site

(g)

optimal
adsorption site

(aq)
ΔGg

(kcal/mol)
ΔGaq

(kcal/mol)

Au3·Tyr N atom in NH2 N atom in NH2 −14.11 −9.60
Au3·Val N atom in NH2 N atom in NH2 −13.77 −11.31
Au3·Ile N atom in NH2 N atom in NH2 −13.52 −11.98
Au3·Ser N atom in NH2 N atom in NH2 −12.88 −9.93
Au3·Leu N atom in NH2 N atom in NH2 −12.73 −9.77
Au3·Gly N atom in NH2 N atom in NH2 −12.59 −9.33
Au3·Asp N atom in NH2 N atom in NH2 −12.06 −10.74
Au3·Thr N atom in NH2 N atom in NH2 −10.71 −9.56
Au3·Glu N atom in NH2 N atom in NH2 −9.87 −7.71
Au3·Pro N atom in NH N atom in NH −8.58 −6.18
Au3·Arg N atom in NH N atom in NH −21.04 −16.16
Au3·His N atom in

imidazolyl
N atom in NH2 −20.09 −13.37

Au3·Lys N atom in NH2 N atom in NH2 −19.17 −15.12
Au3·Asn N atom in NH2 N atom in NH2 −19.13 −12.36
Au3·Gln N atom in NH2 N atom in NH2 −17.87 −10.35
Au3·Trp N atom in NH2 N atom in NH2 −17.29 −13.78
Au3·

Met
S atom S atom −17.09 −12.80

Au3·Cys N atom in NH2 S atom −17.01 −11.31
Au3·Ala N atom in NH2 N atom in NH2 −16.96 −13.08
Au3·Phe N atom in NH2 N atom in NH2 −15.87 −12.97
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removing HOOC−CH−NH2 or HOOC−CH−NH1 units of
AA molecules (V), chain lengths of AA molecules (L), the
proportion of S, O, C, and N atoms in AAs (PS, PO, PC, and
PN), the number ratio of N atoms and O atoms (RN/O) and the
C atoms and O atoms (RC/O) in AAs, and the number of O, S,
C, and N atoms in the AA molecule (nO, nS, nC, and nS) are
adopted as well.

In order to reduce the redundant features and speed up the
model convergence, the feature−feature correlation was first
analyzed before machine learning training. As shown in Figure
4, we found high correlations between many features, such as

the feature correlations between PS and nS, RN/O and nN, PN, M,
and V, L, PC, and nC, and MPI and μ, are as high as 0.8. To
ensure that two features with a correlation higher than 0.8 do
not appear simultaneously in the data set, we choose to retain
the features PS, RN/O, M, PC, and MPI, and delete features nS,
nN, PN, L, M, nC, and μ. It is worth mentioning that the
correlation between PS and q is also as high as 0.8, and
theoretically, one of the features should be deleted. However,
considering that only two of the 20 AA molecules have S

atoms, we choose to retain these two features. Features with a
feature correlation below 0.8 do not require additional
processing, so features H−L, nO, PO, and RC/O can be retained.

After analyzing feature−feature correlations, 10 features of
AAs (q, M, H−L, PO, PC, MPI, RN/O, RC/O, PS, and nO) were
used as input, and machine learning was trained to predict the
optimal ΔG value. Since deep learning techniques suffer from
black boxes, it is difficult to figure out the physical relationship
between features and target values, so different machine
learning methods are adopted. As shown in Figure 5, it shows
that three models (GBDT, lasso, and KNN) obtained by three
different machine learning methods (GBDT, lasso linear
regression, and KNN) are used in the same data set prediction
results. The results of the GBDT model show that the R2 of the
training set (train_set) and test set (test_set) are 0.992 and
1.000, respectively. This result indicates that the GBDT model
fits optimal ΔG values very well. Another result obtained by
the lasso method shows that the R2 of the training set
(train_set) and the test set (test_set) are 0.169 and 0.204,
respectively (Table 5), which means that the lasso model is not
suitable for fitting the optimal ΔG value. This may be because
there is no linear relationship between ΔG and eigenvalues.
Therefore, we can consider more nonlinear models in our
predictions or improve the linear models. The result of the
KNN model is that the R2 of the training set (train_set) and
the test set (test_set) are 0.162 and 0.483, respectively, which
means that the KNN model fits the most stable ΔG value
poorly. Although the KNN model is nonlinear, it does not
perform well for predicting the optimal ΔG value for the data
set. By evaluating these three models, we found that the GBDT
model was the best fit for this sample. On the one hand, the
RMSE of the train_set and test_set of the GBDT model are
0.231 and 0.001, respectively, and on the other hand, the gap
between the actual and predicted most stable ΔG values is
small. Therefore, the GBDT method is the best machine
learning method to predict the most stable ΔG for this sample.
It is worth mentioning that it has been shown that the t-
distributed stochastic neighbor embedding (t-SNE) method
can obtain better results than the KNN method for clusters.
For example, Zhou et al. showed that both one-dimensional
(1D) and two-dimensional (2D) models of the t-SNE
approach are advantageous in distinguishing important func-
tional states of the model heteromeric protein system.37 Raza
et al. showed that the t-SNE method is extremely efficient in
predicting defluorination of per- and polyfluoroalkyl sub-
stances (PFS) for their efficient treatment and removal.38

On basis of the best model GBDT, we ranked the feature
importance of the models to find out the main factors affecting
interactions of Au3 with AAs. Figure 6 shows the top 10
important features selected by the SHAP method and the 10
features in a descending order. Surprisingly, the simple
characteristic ratio of the number of N atoms to the number
of O atoms (RN/O) had the greatest impact on the predicted
ΔG, while the number of O atoms in the amino acid (nO) had
the least impact on the predicted ΔG. Notably, the molecular
polarity index of AAs (MPI) and AA relative molecular mass
(M) of AAs are among the highest three characteristics. This
indicates that the main factors affecting the interaction strength
of Au3 with AAs are RN/O, MPI, and M, which is somewhat
similar to the conclusion reached by Abdalmoneam et al.13

That is, the polarity of the amino acid determines the
properties of the interaction between the gold clusters and the
AA in the gas phase and the solvent phase. Since M and RN/O

Table 4. Descriptor and Definition of Descriptors

descriptor the definition of descriptors

MPI the molecular polarity index of AA molecules
μ the dipole moment of AA molecules
V volume of fragments after removing HOOC−CH−NH2/1 of AA

molecules
L chain length of AA molecules
M relative molecular mass of AA molecules
q the charge of the N, S, or O atom connected to Au3

H−L the HOMO−LUMO gap of AA molecules
PS the proportion of S atoms in AA molecules
PO the proportion of O atoms in AA molecules
PC the proportion of C atoms in AA molecules
PN the proportion of N atoms in AA molecules
nO the number of O atoms in AA molecules
nN the number of N atoms in AA molecules
nS the number of S atoms in AA molecules
nC the number of C atoms in AA molecules
RN/O the number ratio of N atoms and O atoms in AA molecules
RC/O the number ratio of C atoms and O atoms in AA molecules

Figure 4. Feature−feature correlation map of the top features.
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are closely related to the size and steric hindrance of AAs and
the number of functional groups amino and oxygen-containing
groups, the interaction of gold clusters with AAs can be
regulated by modulating the size of AAs and crown energy
groups, thus affecting the formation of protein crowns as well
as regulating the surface formation of proteins. This is essential
for regulating the formation of protein crowns and for
regulating the surface engineering of proteins.

4. CONCLUSIONS
Overall, the ΔG of Au3 interacting with 20 natural AAs under
the gas phase and water solvation conditions was computed by
DFT. On the basis of the computed ΔG and optimal
absorption configuration, a machine learning model (GBDT)
based on the GBDT method is proposed for predicting the ΔG
value of Au3 interacting with AAs under water solvation
conditions. Based on the GBDT model and feature importance
analysis, it is found that the ratio of the number of N atoms to
the number of O atoms of AAs (RN/O), the molecular polarity
index of AAs (MPI), and the relative molecular mass (M) of
AAs are the main factors that affect the strength of the
interaction between Au3 and AAs. This suggests that the
interaction of gold clusters with AAs can be regulated by

modulating the size of the protein and the number of amino
and oxygen-containing groups in protein. Our work not only
addresses the question of optimal sites for Au clusters to react
with AAs but also proposes the main factors affecting the
strength of their interactions.
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Table 5. Train_RMSE, Train_R2, Test_RMSE, and Test_R2
of Various Machine Learning Models

model Train_RMSE Train_R2 Test_RMSE Test_R2

GBDT 0.231 0.992 0.001 1.000
lasso 2.368 0.169 0.956 0.204
KNN 2.378 0.162 0.771 0.483

Figure 6. Highest ranking important features selected by SHAP and
the corresponding Pearson correlation coefficient and mutual
information values.
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