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Aims To improve short-and long-term predictions of mortality and atrial fibrillation (AF) among patients with congenital
heart disease (CHD) from a nationwide population using neural networks (NN).

...................................................................................................................................................................................................
Methods
and results

The Swedish National Patient Register and the Cause of Death Register were used to identify all patients with
CHD born from 1970 to 2017. A total of 71 941 CHD patients were identified and followed-up from birth until
the event or end of study in 2017. Based on data from a nationwide population, a NN model was obtained to pre-
dict mortality and AF. Logistic regression (LR) based on the same data was used as a baseline comparison. Of 71
941 CHD patients, a total of 5768 died (8.02%) and 995 (1.38%) developed AF over time with a mean follow-up
time of 16.47 years (standard deviation 12.73 years). The performance of NN models in predicting the mortality
and AF was higher than the performance of LR regardless of the complexity of the disease, with an average area
under the receiver operating characteristic of >0.80 and >0.70, respectively. The largest differences were observed
in mortality and complexity of CHD over time.

...................................................................................................................................................................................................
Conclusion We found that NN can be used to predict mortality and AF on a nationwide scale using data that are easily obtain-

able by clinicians. In addition, NN showed a high performance overall and, in most cases, with better performance
for prediction as compared with more traditional regression methods.
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Introduction

Congenital heart disease (CHD) is the most common congenital
malformation currently affecting almost 1% of all live-births
worldwide.1,2 For most patients, CHD is a lifelong condition
with varying severity depending on the congenital malformation
per se, or the accompanying interventions, comorbidities, risk
factors, or life style.3 Currently, 90% of patients with mild, 75%
with moderate, and 40% with the complex disease will reach the
age of 60 years and increasingly experience the risk of acquired
cardiovascular disease.3–5 Previous knowledge on the impact of
common cardiovascular comorbidities including hypertension,
diabetes, atrial fibrillation (AF), and heart failure on mortality
have mostly been performed on a general population without
CHD. Recent reports have indicated a substantially higher risk of
mortality among patients with CHD as a consequence of such
comorbidities, as compared with controls.6–9

In more traditional epidemiological cohort studies using med-
ical data, the most common practice to analysis and compare risk
is the use of e.g. logistic regression (LR) or survival analysis meth-
ods such as Kaplan–Meier (survival probability) and Cox propor-
tional hazard regression models for comparing risk between
groups. An important aspect of these models is the medical and
practical decisions to be considered for the models to be valid.
For some cases, this could be a challenge for researchers to con-
sider all possible aspects, especially for more complex diseases.
The complexity and long-term perspectives of CHD may poten-
tially benefit from improved analysis methods such as neural net-
works (NN) and deep learning but so far there is limited data
from patients with CHD.10 In an analysis of a large contemporary

single-centre cohort of 10 019 CHD patients, the authors
reported good performance of a disease severity score derived
from deep learning models in the prediction of mortality during
an 8-year follow-up period.11 Additionally, in a recent study
about auscultation of heart sound among CHD patients using an
AI-AA platform showed high accuracy in detection of abnormal
heart sound with the good concordance with auscultation from
physicians.12 Improvements in computational power over the
past two decades have led to an increase in the use of deep
learning-driven algorithms in the field of healthcare science.13–16

Neural networks are deep learning algorithms that are one of
the most successful tools for machine learning. They consist of a
series of connected layers that, when appropriately trained, out-
put increasingly meaningful representations of the input data
leading to the sought-after result.17 Previous models have been
created using data from multi-imaging techniques or wide-
spectrum biomarkers. However, this will be less useful for the
regular clinician coming across many patients with CHD where
such data may not be routinely available. Prediction of morbidity
such as AF and mortality may influence both the use and timing
of preventive medical treatment such as anticoagulation as well
as the planning of lifetime management. However, few studies
have reported on the long-term predictability of mortality and
AF among patients with CHD using commonly attainable comor-
bidities as risk factors.

The aim of this study was to investigate the possibility of
improving the prediction of short- and long-term mortality and
AF from birth using easily attainable variables through the use of
a NN that would analyse Swedish registries containing data of a
complete nationwide population of CHD patients born between
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1970 and 2017 as well as to compare performances against trad-
itional regression methods.

Methods

Study population
The present study uses data from the Swedish National Patient Register
and the Cause of Death Register. The National Patient Register was
started in 1964 and has obtained a full nationwide coverage of all in-
hospital admissions and contributory diagnoses since 1987. All hospitals
in Sweden are required to report to the register with the exact date of
hospitalization. As such, if a patient was not registered (stated as ‘N/A’
and coded as ‘0’ in the database) it was regarded as the patient did not
have a certain event. Because of this, there are no missing data for the
diagnoses used in the current study. Thus, starting 2001, all diagnoses
from outpatient clinics were also recorded in the National Patient
Register. The Cause of Death Register records the mortality data of
Swedish citizens nationwide starting from 1961. Diagnoses are coded
according to the International Classification of Disease (ICD) system,
ICD-8 (1968–86), ICD-9 (1987–96), and ICD-10 (1996 onwards). The
National Patient Register and the Cause of Death Register were linked
through the unique Swedish 10-digit personal identifier. All CHD patients
were divided according to their birth year into five different groups: (i)
1970–79, (ii) 1980–89, (iii) 1990–99, (iv) 2000–09, and (v) 2010–17.

Definitions of diagnosis
In the current cohort, all patients with at least one outpatient visit or a
discharged diagnosis of CHD from the hospital and were born between
1970 and 2017 were identified in the National Patient Register and Cause
of Death register and followed-up until death or the end of the study dur-
ation in December 2017. Currently, CHD patients were followed-up
from birth rather than diagnosis date. A majority of all diagnoses of CHD
cases were identified at birth. Because of the very long follow-up time,
CHD patients were divided into birth decades in order to capture poten-
tial treatment effect over time. Diagnoses were identified through ICD 8,
9, and 10 codes. Supplementary material online, Table S1 lists the full
ICD-codes used for the identification of CHD in the National Patient
Register and the Cause of Death Register. In addition, the CHD popula-
tion were grouped into six groups according to a hierarchical classifica-
tion system based on lesion severity according to the Botto/Liu
classification. Lesion Groups 1 and 2 represent the most complex condi-
tions, while Lesion Groups 3, 4, and 5 represent those with coarctations
of the aorta, ventricular septal defects, and atrial septal defects, respect-
ively. Lesion Group 6 represents those with CHD not included in the
other lesion groups.18,19 Corresponding ICD-codes for each lesion
groups are shown in Supplementary material online, Table S2.
Comorbidities including hypertension, diabetes mellitus, heart failure,
myocardial infarction, and AF were defined by ICD-codes as described in
Supplementary material online, Table S3. Congenital cardiac intervention
was defined as when a CHD patient underwent at least one cardiovascu-
lar surgical procedure or a cardiac interventional catheterization accord-
ing to the Swedish Classification of Operations (6th edition, Swedish
version) or following the classification of surgical procedures (1.9th edi-
tion, Swedish version).

Statistical analysis
Baseline characteristics of the study population are shown as categorical
and continuous data. Categorical variables are shown as numbers with
percentages, while continuous variables are presented as means with
standard deviations and medians with interquartile ranges. A NN was

used to predict the 1-, 3-, 5-, 10-, 20-, and 30-year mortality and develop-
ment of AF, using clinically relevant input variables obtained from the na-
tional registries such as age, decade of birth, sex, lesion groups and year
of onset of AF (excluded for the prediction of AF), heart failure, hyper-
tension, diabetes, myocardial infarction, and congenital cardiac interven-
tion. For performance, the averaged area under the receiver operating
characteristics (AUROC) with 95% confidence interval (CI) was esti-
mated. Logistic regression (LR) was used for baseline comparison. An
overview of the study design can be seen in Figure 1, while a more detailed
description of the data processing, algorithm training, and evaluations for
NN methods used are available in the Supplementary material online,
Methods section. For model validation and prediction, the TRIPOD check-
list was used as reference and confirmation.

Neural network
Neural networks are deep learning algorithms that consist of a series of
connected layers. After appropriate training, these networks put out in-
creasingly meaningful representations of the input data eventually leading
to the sought-after result. Each layer is composed of computational units
that simulate the function of biological neurons, whose connection
weights were adjusted in the training phase to learn how to calculate the
desired output from the input data,17,20 as schematically shown in Figure
1.

We used a feed-forward NN based on three dense 32-neuron layers
and an output layer providing a single value between 0 and 1. The model
takes the input parameters (the variables defined in data pre-processing)
and a ground truth value of 0 (dies/no AF) or 1 (lives/AF) in the training
phase. The batch size in each training set was 100, and the number of
epochs was optimized to prevent overfitting by halting the training when
the validation accuracy of the hold-out validation set from the training
dataset had not increased for 10 epochs. This was repeated five times to
find the optimal number of epochs before re-training of the model on all
of the training data with the optimal number of epochs. We implemented
this model using the Python-based Keras library with a TensorFlow
backend.21

Logistic regression
Logistic regression is a predictive model that models a binary-dependable
variable, producing an appropriate baseline for other machine learning
models. The model was fitted using the same variables used for the NN
algorithm. The model was implemented using the Python-based Scikit-
learn package for machine learning.

Ethics
This study was approved by the Regional Ethical Review Board of
Gothenburg University (Gbg 912-16, T619-18) and complies with all ten-
ets of the Declaration of Helsinki. All personal identifiers were replaced
with a unique code for anonymization in the final data set.

Results

Characteristics of the study population
Table 1 shows the baseline characteristics of patients with CHD born
between 1970 and 2017 obtained from the registries. A total of 71
941 CHD patients were identified from the registries. During the
study period, a total of 5768 (8%) patients with CHD died, with a me-
dian follow-up of 13.5 years (interquartile range of 5.81–25.50 years).
Furthermore, a total of 995 (1.38%) developed AF, and 18 109
(25.17%) underwent at least one congenital cardiac intervention

570 K.W. Giang et al.

https://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztab065#supplementary-data
https://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztab065#supplementary-data
https://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztab065#supplementary-data
https://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztab065#supplementary-data


..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..during follow-up (Table 1). Baseline characteristics of the study popu-
lation were divided by lesion groups and birth decades are shown in
Supplementary material online, Tables S4 and S5. For the most com-
plex lesion groups (Lesion Groups 1 and 2) mortality and AF were
considerably higher compared to the less complex groups (Lesion
Groups 3–6). In addition, they also had considerably more interven-
tions e.g. surgical procedures compared to other groups.

Overall performance of mortality and
atrial fibrillation among congenital heart
disease patients
Figure 2 shows the resulting performance in the prediction of mortal-
ity and AF. Overall, the average performance for mortality among
CHD patients was higher for NN than LR from the first to the last
year with an AUROC of 0.92 (95% CI 0.91–0.92) to 0.87 (95% CI
0.86–0.88) compared with 0.86 (95% CI 0.86–0.86) to 0.81 (95% CI
0.79–0.82), respectively. For AF, a similar trend in performance was

observed with an AUROC of 0.86 (95% CI 0.85–0.86) to 0.74 (95%
CI 0.74–0.75) for NN and 0.85 (95% CI 0.84–0.86) to 0.72 (95% CI
0.71–0.72) for LR.

For the short-term performance of the 1- and 5-year mortality,
the NN was observed to outperform LR. The AUROC after 1 year
was 0.92 (95% CI 0.91–0.92) for NN as compared with the 0.86
(95% CI 0.86–0.86) for LR. Corresponding results for the 5-year
mortality was 0.85 (95% CI 0.85–0.85) and 0.75 (95% CI 0.74–0.75),
respectively. For the long-term performance, a similar trend was
observed with a decreasing AUROC, except for the 30-year mortal-
ity. The 10- and 30-year mortality showed an AUROC of 0.83 (95%
CI 0.82–0.83) to 0.87 (95% CI 0.86–0.88) for NN as compared with
0.70 (95% CI 0.69–0.70) to 0.81 (95% CI 0.79–0.82) for LR,
respectively.

Regarding the short-term performance of AF, the results were
similar after 1 and 5 years with an AUROC of 0.86 (95% CI 0.85–0.86
and 0.86–0.87, respectively) for NN. The results were also similar at

(a)

(c)

(b)

Figure 1 Study methodology. (A,B) Schematic representation of the machine learning algorithms employed in this study: (A) neural network and (B)
logistic regression. (C) Schematic overview of the methodology employed in the study.
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0.85 and 0.84 for LR over time. Regarding the long-term perform-
ance, the result after 10 and 30 years differed slightly, with an
AUROC of 0.84 (95% CI 0.84–0.85) down to 0.74 (95% 0.74–0.75
CI) and 0.82 (95% CI 0.82–0.83) to 0.72 (95% 0.71–0.72 CI),
respectively.

Comparison of model performance of
mortality and atrial fibrillation by lesion
groups, birth decades, and congenital
cardiac surgery
Figure 3 and Supplementary material online, Tables S6–S8 show a
detailed comparison of prediction performance for mortality and AF
by lesions groups, birth decades, and congenital cardiac intervention.
The performance in predicting mortality was higher for NN com-
pared with LR. The highest performances within lesion groups were
observed for 1-year predictions, with an overall AUROC of �0.89–
0.91 and �0.83–0.85 for NN and LR, respectively. Over time, per-
formance was observed to decrease but remained higher for NN,
with an AUROC of �0.80–0.83 compared with �0.74–0.77 for LR
for 30-year predictions. From the first to the last birth decades, an
AUROC of �0.89–0.90 for NN and �0.83–0.84 for LR was
observed for 1-year predictions. For 30-year predictions, the
AUROC within birth decades was �0.83 and �0.76, respectively.
Among CHD patients who underwent congenital cardiac interven-
tion, an AUROC of 0.90 (95% CI 0.89–0.91) and 0.87 (95% CI
0.0.87–0.88) was found for 1- and 30-year predictions for NN, re-
spectively. Corresponding results for LR were 0.85 (95% CI 0.85–
0.86) and 0.81 (95% CI 0.80–0.82), respectively.

The prediction performance of AF was similar between models
but was slightly higher overall for NN. Among the lesion groups, an
AUROC of �0.80 was observed for 1-year predictions for both
models. For 30-year predictions, performance decreased to �0.69
for NN and �0.67 for LR. For birth decades, an overall AUROC of
�0.81 was found for both models for 1-year predictions. This result
decreased to �0.70 and �0.68 for 30-year predictions for NN and
LR, respectively. Among congenital cardiac surgery an AUROC of
0.83 (95% CI 0.82–0.84) and 0.82 (95% CI 0.81–0.84) was observed
for NN and LR, respectively, for 1-year predictions. The performance
for both models was observed to decrease for 30-year predictions
with AUROC of 0.73, 95% CI 0.73–0.74 for NN and 0.70 (95% CI
0.69-0.70) for LR.

Discussion

In the present study, we have developed and evaluated risk predic-
tion score models to predict mortality and AF specific to CHD
patients using easily attainable data through administrative medical
registers over a long period of follow-up. A NN was used to predict
mortality and development of AF over a short-and long-term per-
spective using a nationwide population that contained all patients
with CHD born between 1970 and 2017. When compared with a
simpler LR model, NN showed a higher predictive performance over
time, most notably in mortality.

Prediction of mortality on the individual— or at least a smaller
group— level is important to focus preventive action and treatments,
including anticoagulation for patients with AF or repeat surgery for
patients with moderately malfunctioning valves. The issue of acting
proactively and not simply reactively has been the focus for the

.................................................................................................

Table 1 Baseline characteristics of patients with
congenital heart disease born in 1970–2017 (n 5 71 941)

Patients with congenital

heart disease

Sex

Male 36 102 (50.18%)

Female 35 839 (49.82%)

Born in Sweden 67 814 (94.26%)

Birth decades

1970–79 7545 (10.49%)

1980–89 9814 (13.64%)

1990–99 13 997 (19.46%)

2000–09 21 459 (29.83%)

2010–17 19 126 (26.59%)

Lesion groups

Lesion Group 1a 5421 (7.54%)

Lesion Group 2b 3855 (5.36%)

Lesion Group 3c 3358 (4.67%)

Lesion Group 4d 22 950 (31.90%)

Lesion Group 5e 14 635 (20.34%)

Lesion Group 6f 21 722 (30.19%)

All-cause mortality 5768 (8.02%)

Atrial fibrillation 995 (1.38%)

Myocardial infarction 205 (0.28%)

Heart failure 2714 (3.77%)

Hypertension 1399 (1.94%)

Diabetes 713 (0.99%)

Congenital cardiac

intervention

18 109 (25.17%)

Mean follow-up time,

years (SD)

16.47 ± 12.73

Median follow-up time,

years (IQR)

13.50 (5.81–25.50)

IQR, interquartile range; SD, standard deviation.
aLesion Group 1 was defined as conotruncal defects [common arterial trunk, aor-
topulmonary septal defect, transposition of the great arteries (unrepaired lesions
and surgically repaired), tetralogy of Fallot, double-outlet left ventricle, double-
outlet right ventricle and congenitally corrected transposition/discordant atrio-
ventricular and ventriculoatrial connection].
bLesion Group 2 was defined as severe non-conotruncal defects (common ven-
tricle, and hypoplastic left heart syndrome endocardial cushion defect/atrioven-
tricular septal defect). In addition this group contains univentricular heart defects.
cLesion Group 3 was defined as coarctation of the aorta.
dLesion Group 4 was defined as ventricular septal defect.
eLesion Group 5 was defined as atrial septal defect.
fLesion Group 6 was defined as all other heart and circulatory system anomalies
that were not included in the other lesion groups.

572 K.W. Giang et al.
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treatment of CHD in recent years. As important as it is not to inter-
vene too late, it may be just as important to refrain from intervening
too early in young individuals, who have many life years ahead of
them and may face multiple interventions. In contrast, for the elderly
patient with acquired heart disease, an intervention that is predicted
to last 10–15 years is often enough to last their lifetime.

A recent study from a single tertiary centre that used deep learning
algorithms estimated that the prognosis and the potential of guiding
therapy in adult patients with CHD were high.11 That study included

patients above the age of 18 years old and analysed over 44 000 med-
ical records with an accuracy over 90%. Other studies also using
deep learning algorithms and with more clinical details have shown
similar results with high predictability.22 Our study, which used NN,
demonstrated an overall good prediction of mortality and AF from
birth up to the age of 47 years old. This study included both children
and young adults with CHD, which is especially important, as the
highest relative mortality in patients with CHD has been reported to
occur during childhood and, more specifically, during the first 5 years

(g) (h) (i) (j) (k) (l)

(a) (b) (c) (d) (e) (f)

Figure 2 Performance of the machine learning algorithms on the internal test data set. Average receiver operating characteristics curves and area
under the receiver operating characteristics for neural network (NN) (orange lines) and logistic regression (LR) (blue lines) for the predicted the
short- and long-term prognosis on (A–F) mortality and (G–L) atrial fibrillation. The receiver operating characteristics curves for 10 resamples are
shown as the shaded region around the average receiver operating characteristics curves, and the corresponding 95% CI for the area under the re-
ceiver operating characteristics is shown in parentheses.

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 3 Performance dependence on the specific input variables. Average area under the receiver operating characteristics for mortality and atrial
fibrillation for neural network (yellow to red lines for increasing number of years) and logistic regression (magenta to dark blue lines for increasing
number of years) for the input variables: (A, B, G, H) lesion groups (C, D, I, J) birth decades, and (E, F, K, L) whether the patient had undergone congenital
surgery or not. The 95% CI is shown as the shaded regions around the lines. Note that birth decades are only included in appropriate long-term pre-
dictions relative to the end of the study in 2017.
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of age.23 In another study, using machine learning methods and NN
to predict operative mortality among patients who underwent car-
diac surgery using medical records showed no distinct advantages in
model performance over more traditional methods.24 However, in
our study involving a CHD population, we observed a notably favour-
able performance of NN as compared with LR for mortality after
congenital cardiac intervention.

A challenge with CHD patients is the complexity of the disease,
where each individual heart defect requires different and individual-
ized treatment over time. As such, predictive modelling using more
traditional regression models need to take into account several fac-
tors, such as potential interactions with risk factors, the complexity
of CHD, and improved survival over time. Acquiring these data along
with the necessary detailed clinical information, which is commonly
needed for modelling along with a long follow-up time, is difficult.
Therefore, an advantage of NN is the ability to accept a wide range of
data sources as input variables, making it possible to account and
adapt for different scenarios without the need of complex and
detailed information when modelling CHD patients. Currently, the
largest difference in model performance of NN and LR was observed
regarding the complexity of CHD patients, especially for mortality
within lesion groups and among patients that had previously under-
gone congenital cardiac intervention. Similar findings have been previ-
ously observed when comparing more advanced deep learning
models and more traditional regression methods for the prediction
of mortality in CHD patients.25 However, most of these studies have
used complex and detailed data with a shorter follow-up time. Our
models show good performance regarding predictability on mortality
and AF, both in the relatively short- and long-term periods. Most im-
portantly, we found that the models were better than the conven-
tional regression methods, while using simple and easily attainable
risk factors and comorbidities.

In summary, we have demonstrated that the use of NN shows
good predictability of mortality and AF as compared with more trad-
itional methods when using only a few variables easily attainable
through medical records. The largest differences in the performance
of the models over time were found in the complexity of CHD
patients. A combination of administrative and clinical data will there-
fore be promising for future use in NN in this complex, heteroge-
neous, and vulnerable patient group.

Strengths and limitations
Our study has several strengths and limitations. A major strength is
the use of data from a nationwide registry, which includes all patients
with CHD in Sweden born between 1970 and 2017. In addition, since
healthcare system is mainly funded by the Swedish government, it is
available to all citizens, which helps in minimizing the selection bias as
opposed to a single-centre study or other private healthcare systems.
Thus, our results can be deemed representative of the CHD patients
in Sweden. A limitation of this study is the sole use of administrative
data with no clinical or detailed medical records like blood pressure
levels, cholesterol levels, or potentially detailed medical treatments
e.g. the use of OAC or information on surgical techniques and peri-
operative clinical care, as they were unavailable at the time of the
study. The prediction models are therefore not able to take into

account any improvements in the different techniques for congenital
cardiac surgery or intervention over time as well as other confound-
ing biases. However, to counter for this, we performed separate cal-
culations by birth decades to capture the major effects of
intervention and medical improvements over time. Nevertheless, the
performance of our models for NN was good despite the ever-
changing landscape of congenital heart interventions. Additionally, a
limitation in all registry-based studies is the risk of misclassification or
incorrectly coded diagnoses. However, the validation of diagnoses in
the National Patient Register and the Cause of Death Register, espe-
cially for cardiovascular disease, has previously been shown to be
high, with a positive predictive value of 85%–95%. 26

Conclusions

The complexity of CHD combined with increasing survival is a chal-
lenge when making accurate risk models. In the current study, we
used only simple and easily attainable variables found in medical
records commonly available for most clinicians. Neural networks
showed a high performance overall and, in most cases, with better
performance for prediction as compared with more traditional re-
gression methods.

Supplementary material

Supplementary material is available at European Heart Journal – Digital
Health
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