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Abstract The prefrontal cortex and hippocampus are crucial for memory-guided decision-

making. Neural activity in the hippocampus exhibits place-cell sequences at multiple timescales,

including slow behavioral sequences (~seconds) and fast theta sequences (~100–200 ms) within

theta oscillation cycles. How prefrontal ensembles interact with hippocampal sequences to support

decision-making is unclear. Here, we examined simultaneous hippocampal and prefrontal ensemble

activity in rats during learning of a spatial working-memory decision task. We found clear theta

sequences in prefrontal cortex, nested within its behavioral sequences. In both regions, behavioral

sequences maintained representations of current choices during navigation. In contrast,

hippocampal theta sequences encoded alternatives for deliberation and were coordinated with

prefrontal theta sequences that predicted upcoming choices. During error trials, these

representations were preserved to guide ongoing behavior, whereas replay sequences during inter-

trial periods were impaired prior to navigation. These results establish cooperative interaction

between hippocampal and prefrontal sequences at multiple timescales for memory-guided

decision-making.

Introduction
The neural substrates that support decision-making are still not fully understood. The link between

decision-making and neural representations at the behavioral timescale has been studied extensively

in various cortical and sub-cortical circuits of different species. Early classic work showed that during

tasks involving sustained attention or decision-making, neurons in the prefrontal cortex (PFC) and

the posterior parietal cortex (PPC) can exhibit persistent activity over seconds throughout retention

intervals for maintenance of decision-related information (Fuster, 2015; Goldman-Rakic, 1995;

Miller et al., 2018; Sreenivasan and D’Esposito, 2019). In contrast to these low-dimensional repre-

sentations that require long-lived stable states, decision-related information can also be held in a

dynamic population code. At the ensemble level, heterogenous activity patterns comprising sequen-

ces of neuronal activation that span entire task periods have emerged as a common coding scheme

in many brain regions, including PFC (Baeg et al., 2003; Fujisawa et al., 2008; Ito et al., 2015), hip-

pocampus (Ito et al., 2015; Pastalkova et al., 2008), PPC (Crowe et al., 2010; Harvey et al.,

2012), and striatum (Bakhurin et al., 2016; Barnes et al., 2005).

In addition to this behavioral-timescale activity, recent work has raised the possibility that neural

dynamics at fast, cognitive timescales that occur transiently during discrete subsets of task periods

can also underlie upcoming decisions. In many brain areas, such as prefrontal, parietal, orbitofrontal

cortices, and hippocampus, population activity can change in an abrupt, coordinated, and transient

manner in support of flexible decisions (Bernacchia et al., 2011; Durstewitz et al., 2010;

Johnson and Redish, 2007; Karlsson et al., 2012; Latimer et al., 2015; Lundqvist et al., 2016;

Rich and Wallis, 2016). For example, discrete transient bursts of gamma and beta oscillations in

PFC have been shown to increase with working-memory load during delays (Lundqvist et al., 2016).
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In particular, recent studies have identified time-compressed neuronal sequences in the hippocam-

pus as a specific cell-assembly pattern at fast timescales that can support decision-making

processes.

Hippocampal theta sequences provide time-compressed ensemble representations of spatial

paths within single cycles of theta oscillations (6–12 Hz) during active navigation, which reflect a can-

didate neural mechanism for planning at decision time (Johnson and Redish, 2007; Kay et al.,

2020; Papale et al., 2016; Pezzulo et al., 2019; Zheng et al., 2020; Zielinski et al., 2020).

Whether theta sequences exist in PFC during decision-making has yet to be determined. Further,

during pauses in exploration, replay sequences are observed in the hippocampus during individual

sharp-wave ripples (SWRs; Carr et al., 2011), and are known to interact with PFC to reactivate past

and future trajectories on the temporal scale of 100–200 ms during memory-guided decisions

(Shin et al., 2019; Tang and Jadhav, 2019). Disruption of fast sequences in the hippocampus, while

leaving behavioral-timescale spatial representations intact, can impair navigation decisions (Fernán-

dez-Ruiz et al., 2019; Jadhav et al., 2012; Petersen and Buzsáki, 2020; Robbe and Buzsáki,

2009). Thus, fast hippocampal sequences are promising transient activity patterns that can support

decision-making at sub-second speed (Buzsáki et al., 2014; Kay et al., 2020; Papale et al., 2016;

Pezzulo et al., 2019; Shin et al., 2019). Whether and how these fast-timescale representations are

organized together in hippocampal-prefrontal circuits, and how they, especially theta sequences, are

linked to behavioral-timescale mechanisms for decision-making is unknown. To address these ques-

tions, we examined neuronal ensemble activity simultaneously in the hippocampus and PFC of rats

during learning of a spatial working-memory decision task.

Results

Choice-specific neuronal sequences in CA1 and PFC during navigation
decisions
We trained nine rats to learn a spatial working-memory task (Figure 1A). In this delayed alternation

task, animals had to traverse a spatial delay section (i.e. common ‘center stem’; no enforced delay)

of a W-maze on each trial, and the critical memory demand of this task is to distinguish left (L) versus

right (R) choices (Figure 1A): when the animals return inward from the side arm to the center reward

well, they are required to remember their past choice between two possible locations (L vs. R arm;

inbound reference-memory trial, Figure 1A, left); and have to choose the opposite side arm cor-

rectly for reward after running outward through the stem when facing the two upcoming options

(outbound working-memory trial, Figure 1A, right) (Jadhav et al., 2012; Kim and Frank, 2009).

This task is known to require both the hippocampus and PFC for learning (Fernández-Ruiz et al.,

2019; Jadhav et al., 2012; Kim and Frank, 2009; Maharjan et al., 2018), and involves memory-

guided decision-making (Jadhav et al., 2016; Shin et al., 2019; Yu and Frank, 2015). All subjects

learned the task rules over eight training sessions (or epochs; 15–20 mins per sessions) in a single

day, and performed with high levels of accuracy at the end of the training (Figure 1B; final perfor-

mance: 92.5 ± 1.8% for inbound, 80.8 ± 2.8% for outbound, in mean ± SEM).

We used continuous and simultaneous recordings from ensembles of dorsal CA1 hippocampal

and PFC neurons as rats learned this task (Figure 1C and Figure 1—figure supplement 1; mean ±

SEM = 43.9 ± 7.6 CA1 place cells, 29.8 ± 5.6 PFC cells per session). As a result of spatially specific fir-

ing, sequences of CA1 and PFC cells successively activated on the timescale of seconds as the rat

ran through a trajectory (i.e. behavioral sequences), as previously reported by several groups

(Frank et al., 2000; Fujisawa et al., 2008; Ito et al., 2015; Kinsky et al., 2020; Shin et al., 2019;

Stout and Griffin, 2020; Wood et al., 2000). Further, these sequences were reactivated on the

timescale of hundreds of milliseconds during SWRs at the reward well (i.e., replay sequences;

Figure 1C), confirming our previous findings (Shin et al., 2019). Notably, within each cycle of theta

oscillations during navigation, which corresponds to expression of fast CA1 theta sequences

(Dragoi and Buzsáki, 2006; Foster and Wilson, 2007; Gupta et al., 2012; Skaggs et al., 1996), we

found that PFC cells were organized into sequences as well and could occur concurrently with the

hippocampal sequences (Figure 1C). Given these observations, we further quantified these sequen-

ces and investigated their roles in decision making.
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First, we characterized how CA1 and PFC neurons encode choices on the behavioral timescale.

We found that at the single-cell level, many CA1 and PFC cells exhibited strong preferential firing

during navigation on L- versus R- side trajectory (trajectory-selective cells; mean ± SEM = 38.4 ±

1.2% in CA1, 23.5 ± 1.3% in PFC for inbound, 35.0 ± 0.7% in CA1, 20.9 ± 0.6% in PFC for outbound;
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Figure 1. Choice-specific sequences in CA1 and PFC during memory-guided navigation decisions. (A) Diagrams of two possible past (inbound; left)

and future (outbound; right) scenarios during a W-maze spatial alternation task. In this task, rats have to remember their past choice between two

possible locations (Left vs. Right arms; left), and then choose the opposite arm correctly (right; see Materials and methods). CP: choice point. (B)

Behavioral performance of all nine rats that learned the inbound (IN; green) and outbound (OUT; blue) components of the task over eight sessions

within a single day. Dashed lines: individual animals. Thick lines with error bars: means with SEMs. Horizontal dashed lines: chance-level of 0.5. Prob.:

probability. (C) Simultaneously recorded ensembles of CA1 and PFC cells, forming slow behavioral sequences spanning the entire trajectory (~8 s), fast

replay sequences (~260 ms; brown shading), and fast theta sequences (~100–200 ms; blue shadings). Each row represents a cell ordered and color-

coded by spatial-map center on the Center-to-Left (C–to–L) trajectory shown top right. Gray lines: actual position. Dashed vertical line: reward well exit.

Black, brown, and dark blue lines: broadband, ripple-band, and theta-band filtered LFPs from one CA1 tetrode, respectively. (D–I) Choice-predictive

representations of behavioral sequences in CA1 and PFC. (D and E) Four trajectory-selective example cells during (D) outbound and (E) inbound

navigation (shadings: SEMs; black arrowheaded line indicates animal’s running direction). (F and G) Example choice-specific behavioral sequences. For

each plot pair, the top illustrates a raster of trajectory-selective cell assemblies ordered by spatial-map centers on the preferred trajectory; the bottom

shows population decoding of animal’s choice and locations at the behavioral timescale (bin = 120 ms; note that summed probability of each column

across two trajectory types is 1). Green and yellow arrowheads indicate the example cells shown in (D) and (E). Color bar: posterior probability. Green

lines: actual position. Blue and red arrowheads: the CP. Note that the rasters only show trajectory-selective cells, whereas the population decoding was

performed using all cells recorded in a given region. (H and I) Behavioral sequences in (H) CA1 and (I) PFC predicted current choices. Left: decoding

accuracy of current choice over locations (n = 9 rats�8 sessions); Right: decoding accuracy of current choice on the center stem across sessions. Note

that the decoding performance is significantly better than chance (50%) over locations and sessions (all p’s < 1e-4, rank-sum tests). Error bars: SEMs.

OUT: outbound; IN: inbound.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Decoding accuracy at the behavioral timescale.

Figure supplement 1. Recording locations and behavioral-sequence representations of locations over learning.
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Figure 1D and E), consistent with prior reports (Frank et al., 2000; Fujisawa et al., 2008; Ito et al.,

2015; Kinsky et al., 2020; Shin et al., 2019; Stout and Griffin, 2020; Wood et al., 2000). These

trajectory-selective cells, when ordered by the peak firing on the preferred trajectory, form unique

sequences for each choice type spanning the entire trial length at the behavioral timescale, including

the common center stem prior to the choice point (CP) and the side arms after the CP (Figure 1F

and G).

To directly assess the cell-assembly representation of the animals’ choices, we used a memoryless

Bayesian decoding algorithm (see Materials and methods; decoding bin = 120 ms) (Shin et al.,

2019). We found that behavioral sequences in CA1 and PFC consistently predicted the animals’ cur-

rent location and choice well above chance level across all positions of a trial (Fujisawa et al., 2008;

Ito et al., 2015; Kinsky et al., 2020; Shin et al., 2019; Stout and Griffin, 2020; Wood et al.,

2000), even on the common center stem (Figure 1H and I and Figure 1—figure supplement 1).

Notably, the decoding accuracy on the center stem significantly increased in CA1 (p=0.0003

and <1e-4 for outbound and inbound, respectively), and was stable in PFC across sessions

(p’s > 0.05 for outbound and inbound, Kruskal-Wallis test with Dunn’s post hoc; Figure 1H and I,

right), in agreement with our previous findings of an increased proportion of CA1 ‘splitter cells’ (cen-

ter-stem trajectory-selective cells) and a stable proportion of PFC ‘splitter cells’ over learning

(Shin et al., 2019). In addition, the larger proportions of inbound splitter cells (Shin et al., 2019)

also contributed to better decoding for inbound choices compared to that for outbound (Figure 1H

and I). Nonetheless, behavioral sequences of CA1 and PFC cells represented unique choice types

throughout the course of learning.

Therefore, these results suggest that choice information progresses through heterogeneous neu-

ronal sequences in CA1 and PFC at the behavioral timescale as rats run along each trajectory. Impor-

tantly, these choice representations also provide distinguishable templates for the Bayesian decoder

to identify and determine the content of fast theta sequences.

Fast theta sequences in CA1 and PFC
Theta oscillations are prominent in CA1 during navigation, and CA1 cell assemblies are organized

into theta sequences within single oscillation cycles. While it is not known whether ordered sequen-

ces of PFC cells occur during hippocampal theta oscillations, previous studies have shown that PFC

cells phase-lock and phase-precess (i.e. spikes of a cell occur at progressively earlier theta phases as

an animal move through its spatial field) to hippocampal theta oscillations (Jadhav et al., 2016;

Jones and Wilson, 2005a; Siapas et al., 2005; Sigurdsson et al., 2010); further, theta-frequency

synchrony and coherent spatial coding between the hippocampus and PFC is prominent during

memory-guided navigation (Benchenane et al., 2010; Gordon, 2011; Hasz and Redish, 2020;

Jones and Wilson, 2005b; Sigurdsson et al., 2010; Zielinski et al., 2019).

In order to statistically identify theta sequences in CA1 and PFC, the firing pattern within each

candidate hippocampal theta cycle (�5 cells active in a given brain region) during active running

were analyzed using the Bayesian decoding approach (decoding bin = 20 ms), and the sequential

structure of the Bayesian reconstructed positions was evaluated by shuffling procedures (see

Materials and methods). Using this method, clear theta sequences were found in CA1 during

inbound and outbound navigation across all sessions (Figure 2A–C), Intriguingly, significant theta

sequences were also detected in PFC (Figure 2D–F). The prevalence of theta sequences in PFC was

similar to that in CA1 (Figure 2G), although as expected, higher trajectory scores (suggesting more

reliable timing of sequences) were observed in CA1 compared to PFC (Figure 2H). Furthermore, the

trajectory scores and slopes (sequence speed) in both regions increased over learning (Figure 2H

and I). Finally, consistent with previous studies in CA1 (Gupta et al., 2012; Wikenheiser and Redish,

2015; Zheng et al., 2016), the majority of CA1 (~70%) and PFC (~60%) theta sequences successively

represented past, present, and future locations within each theta cycle (i.e. forward sequences;

Figure 2J and Figure 2—figure supplement 1A–C), at a velocity approximately 4–15 times faster

than an animal’s true running speed (Figure 2I). These properties of CA1 and PFC theta sequences

were replicated with a 10 cell threshold and different shuffling procedures (Figure 2—figure supple-

ment 1), suggesting that the observation of theta sequences in CA1 and PFC was not a trivial result

of our decoding methodology.

To test whether theta phase precession can account for the occurrence of theta sequences, we

performed a phase-jitter analysis (Foster and Wilson, 2007), in which we randomly chose a phase of
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Figure 2. Theta sequences in CA1 and PFC over learning. (A and B) Four examples of theta sequences in CA1 for (A) outbound and (B) inbound

trajectories. Left: spikes ordered and color coded by spatial-map center on the decoded trajectory (see Right) over a theta cycle. Broadband (black) and

theta-band filtered (green) LFPs from CA1 reference tetrode shown below. Middle: corresponding linearized spatial firing rate maps (blue colormap for

L-side trajectory, red colormap for R-side trajectory). Right: Bayesian decoding with p-values based on shuffled data denoted (see

Materials and methods). Yellow lines: the best linear fit on the decoded trajectory. Cyan lines and arrowheads: actual position. Note that summed

probability of each column across two trajectory types is 1. (C) Example CA1 theta sequences across eight sessions (or epochs, E1 to E8). Each column

of plots represents a theta-sequence event. Sequence score (r) on the decoded trajectory denoted. (D and E) Four examples of theta sequences in PFC

Figure 2 continued on next page

Tang, Shin, et al. eLife 2021;10:e66227. DOI: https://doi.org/10.7554/eLife.66227 5 of 27

Research article Neuroscience

https://doi.org/10.7554/eLife.66227


a spike from the distribution of possible phases of that cell in the position bin and shift the spike

time accordingly for each candidate event. We found that sequence scores of actual events were sig-

nificantly greater than those of shuffles in both CA1 and PFC (Figure 2—figure supplement 2), and

thus theta phase precession does not account for the full extent of observed theta sequences in

CA1 and PFC.

Look-ahead of theta sequences during outbound versus inbound
navigation
Prior work has shown that hippocampal forward theta sequences encode paths ahead of the animal,

potentially providing a ‘look-ahead’ prediction of upcoming locations (Dragoi and Buzsáki, 2006;

Foster and Wilson, 2007; Gupta et al., 2012; Lisman and Redish, 2009; Maurer and McNaugh-

ton, 2007; Skaggs et al., 1996; Wikenheiser and Redish, 2015). To investigate how these theta

sequences related to animals’ memory state and upcoming behavior, we examined the Bayesian

reconstructed positions of forward-shifted candidate theta sequences in different theta-phase bins

during reference-memory-guided inbound versus working-memory-guided outbound navigation. We

found that the positions behind the actual location of the animal were decoded with higher probabil-

ity during inbound than outbound navigation in both CA1 and PFC, (Figure 3A–D), implying that

inbound sequences started farther behind and outbound sequences sweep father ahead of the cur-

rent animal position. To further confirm this result, we directly compared the start and end positions

of each significant theta sequence, and indeed, forward sequences in both CA1 and PFC started far-

ther behind the actual position of the animal during inbound navigation, whereas they ended farther

ahead of the animal during outbound navigation (Figure 3E and F). A possibility that could bias this

look-ahead difference is that the choice point may represent a salient behavioral state, acting as an

attractor state ‘pulling’ representations toward it. This hypothesis would predict a stronger effect

when an animal approaches the choice point compared to the reward well. However, we obtained

similar results in these two situations (Figure 3—figure supplement 1), indicating the difference in

theta-sequence look-ahead is not a simple result of the attractor behavioral states of the choice

point or reward well.

We then investigated potential neuronal mechanisms underlying this shift in ahead-sequence

length. On a single-cell level, previous theoretical and experimental evidence has suggested that the

initial tail of asymmetric spatial fields allows cells with fields ahead of an animal’s position to fire dur-

ing earlier theta cycles, which results in ‘look-ahead’ of theta sequences (Burgess and O’Keefe,

2011; Mehta et al., 2002; Mehta et al., 2000; Skaggs et al., 1996; Wikenheiser and Redish,

2015). We therefore examined the relationship between firing field asymmetry and the shift in

ahead-sequence length during outbound and inbound navigation (Figure 4A–D). We found that

while the asymmetry developed with experience, as reported previously in CA1 (Figure 4A–

C; Mehta et al., 2000), working-memory-guided outbound navigation was associated with fields

with a more extended initial tail compared to inbound travel for both CA1 and PFC (Figure 4A–C).

This effect was also stronger for trajectory-selective than non-selective cells in both regions

(Figure 4D).

Figure 2 continued

for (D) outbound and (E) inbound trajectories. Data are presented as in (A) and (B). LFPs are from CA1 reference tetrode. (F) Example PFC theta

sequences across eight sessions. Data are presented as in (C). (G) Percent of significant theta sequences out of all candidate sequences didn’t change

significantly over sessions (Session 1 vs. 8: p’s > 0.99 for CA1 and PFC, Friedman tests with Dunn’s post hoc). Data are presented as mean and SEM.

Black line: PFC; Orange line: CA1. (H) Theta sequence scores (r) improved over sessions (****p’s < 1e-4 for CA1 and PFC, Kruskal-Wallis tests with

Dunn’s post hoc). Data are presented as median and SEM. (I) Theta sequence slopes increased over sessions (*p=0.0427 for CA1, and ****p<1e-4 for

PFC, Kruskal-Wallis tests with Dunn’s post hoc). Dashed gray lines: mean ± SEMs of animals’ running speed (small error bars may not be discernable).

Data are presented as median and SEM. (J) Percent of forward theta sequences didn’t change significantly over sessions (p=0.56 and 0.41 for CA1 and

PFC, Friedman tests). Data are presented as mean and SEM.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Percent of significant theta sequences, sequence score, sequence slope, and percent of forward theta sequences.

Figure supplement 1. Detection of theta sequences in CA1 and PFC is statistically robust.

Figure supplement 2. Theta phase precession does not account for the full extent of observed theta sequences in CA1 and PFC.
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Further, a prominent model suggests that phase precession of individual neurons may give rise to

the look-ahead forward sweep of theta sequences in CA1 (Dragoi and Buzsáki, 2006;

Skaggs et al., 1996). We therefore examined if the shift in ahead-sequence length was a conse-

quence of change in phase precession speed during inbound versus outbound navigation. Consis-

tent with previous studies (Jones and Wilson, 2005a; Skaggs et al., 1996), we found CA1 and PFC

cells phase-precessing to hippocampal theta oscillations (Figure 4E and F). However, similar slopes

of theta phase precession were observed for inbound and outbound navigation in both regions

(Figure 4G and H), which therefore cannot simply explain the difference in inbound and outbound

look-ahead of theta sequences.

Together, these results suggest that beyond the pure sensory features of the environment, mem-

ory demands influenced the look-ahead properties of theta sequences in both CA1 and PFC, and

the increased look-ahead distance during working-memory-guided outbound navigation allows the

animal to represent future locations earlier in the trajectory, which can aid in decision-making.

Theta sequences support vicarious memory recall
How do CA1 and PFC theta sequences relate to the animals’ upcoming choices when multiple

options are available, and do they encode current goal throughout navigation similar to the behav-

ioral sequences (Figure 1)? Prior work has reported that hippocampal population activity at the

theta timescale can represent alternatives, which potentially supports deliberation (Johnson and

Redish, 2007; Kay et al., 2020), and such a population code is linked to single-cell cycle skipping,

in which cells fire on alternate theta cycles (Kay et al., 2020). Therefore, we first examined single-

cell firing at the theta timescale in CA1 and PFC. Consistent with previous studies (Dragoi and Buz-

sáki, 2006; Kay et al., 2020), we observed normal theta rhythmic (i.e. non-skipping; firing on adja-

cent cycles) and cycle skipping (i.e. firing on every other cycle) cells in CA1 (Figure 5A and B).

Intriguingly, we found that a large proportion of theta-modulated cells in PFC also fired in regular
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Figure 3. Look-ahead of CA1 and PFC theta sequences differs during outbound versus inbound navigation. (A and B) Theta sequences representing

past, current, and future locations on outbound (OUT) and inbound (IN) trajectories in (A) CA1 and (B) PFC. Each plot shows the averaged Bayesian

reconstruction of all forward candidate theta sequences (sequence score r > 0), replicated over two theta cycles for visualization, relative to current

position (y = 0; y > 0: ahead, or future location; y < 0: behind, or past location). Color bar: posterior probability. Arrowheaded line: animal’s running

direction. (C and D) Distance index in (C) CA1 and (D) PFC across eight sessions (E1–E8), compared the posterior probabilities on future versus past

locations (<0, biased to past; >0, biased to future). 1st half of theta phases (light circles): -p to 0; 2nd half of theta phases (dark circles): 0 to p. Error

bars: 95% CIs. (E and F) Distributions for start and end of reconstructed trajectories relative to actual position (x = 0) of all significant forward theta

sequences in (E) CA1 and (F) PFC. Top: Histograms show the distributions across all eight sessions (dashed vertical lines: median values). Bottom:

Averaged trajectory start (light circles) and end (dark circles) positions in individual sessions. ****p<1e-4, **p=0.007, Kolmogorov-Smirnov test.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Start and end of reconstructed trajectories of all significant theta sequences.

Figure supplement 1. Look-ahead of theta sequences was similar during approach to choice point and approach to reward well.
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Figure 4. Comparisons of spatial-field asymmetry and theta phase precession during outbound versus inbound navigation in CA1 and PFC. (A and B)

Spatial-field asymmetry during Session 1 (top) and Sessions 7–8 (bottom) in (A) CA1 and (B) PFC. Blue: outbound fields (OUT); Green: inbound fields

(IN). Left: Averaged firing rate relative to field center (x = 0) across all cells in the given sessions (error bars: SEMs). Right: Distributions of spatial-field

asymmetry index (colored vertical lines: mean values). See also single-field examples in (E) and (F). (C) Spatial-field asymmetry index across sessions

(****p<1e-4, ***p<0.001, **p<0.01, *p<0.05, n.s. p>0.05, signed-rank tests compared to 0). Lines are derived from polynomial fits. (D) Trajectory-

selective cells exhibit highly asymmetric fields on the preferred (Pref) trajectory compared to the non-preferred trajectory (Non-pref). Non-select: non-

selective cells. P-values for each condition derived from signed-rank tests compared to 0; p-values across conditions derived from rank-sum tests

(****p<1e-4, ***p<0.001, **p<0.01, *p<0.05, n.s. p>0.05). (E and F) Single-cell examples of theta phase precession in (E) CA1 and (F) PFC for outbound

(blue) and inbound (green) trajectories. For each example, linearized firing fields are shown on the top (trajectory type denoted above); spike theta

phases against positions (i.e. phase precession) within individual spatial fields (indicated by an orange bar on the firing-field plot) are shown on the

bottom (phases are plotted twice for better visibility; red lines represent linear-circular regression lines; linear-circular correlation coefficient r and its

p-value denoted). AI: spatial-field asymmetry index. (G) Distributions of phase precession slopes for outbound and inbound fields. Top: outbound;

bottom: inbound. Vertical lines: median values. (H) Phase precession slopes were similar during outbound versus inbound navigation in CA1 and PFC

(n.s., p’s > 0.99, Kruskal-Wallis test with Dunn’s post hoc), and biased toward negative values (****p<1e-4, **p=0.0012, signed-rank tests compared to

0). This bias is stronger in CA1 than PFC (p’s < 1e-4, Kruskal-Wallis test with Dunn’s post hoc). Only fields with significant phase precession (see

Materials and methods) are shown (mean ± SEM = 46.0 ± 2.8% in CA1, 11.2 ± 1.7% in PFC for inbound, and 48.8 ± 3.3% in CA1, 10.3 ± 1.2% in PFC for

outbound). Error bars: SEMs.

The online version of this article includes the following source data for figure 4:

Source data 1. Asymmetry index and phase-precession slope.
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alternation during hippocampal theta oscillations (i.e. cycle skipping; Inbound: 53.4%, 95 out of 178;

outbound: 49.7%, 91 out of 183; Figure 5C and D).

Given the single-cell property of cycle-skipping identified above in both regions, we next exam-

ined how populations of CA1 and PFC cells encoded choices during theta sequences. Indeed, we

found that CA1 theta sequences can encode alternatives (Figure 6A), as previously reported

(Johnson and Redish, 2007; Kay et al., 2020). However, when we examined the representations of

choices by theta sequences along each trajectory, we found these representations were distinct in

CA1 and PFC during decision-making periods prior to the choice point (CP). Before the CP (corre-

sponding to periods on the center stem for outbound navigation; Figure 6B), CA1 theta sequences

serially encoded both alternative trajectories (Figure 6C and G and Figure 6—figure supplements
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Figure 5. Theta cycle skipping in CA1 and PFC. (A) Spike rasters of example cells during CA1 theta oscillations.

Top: a non-skipping (firing on adjacent cycles) CA1 cell; Middle: a cycle-skipping (firing on every other cycles) CA1

cell; Bottom: a cycle-skipping PFC cell. Black and green lines: broadband and theta-filtered LFPs from CA1

reference tetrode, respectively. (B) Auto-correlograms (ACGs) of three example single cells in CA1 (left) and PFC

(right). Each plot is of data from a single type of maze travel (outbound or inbound; travel type denoted). For each

plot, cycle skipping index (CSI) is denoted on the upper left corner (CSI < 0: firing on adjacent cycles; CSI > 0:

cycle skipping), and cell number with maze travel type (IN or OUT) matched to (A) is denoted on the upper right

corner. Red line: low-passed (1–10 Hz) ACG to measure CSI (see Materials and methods). Note that cells on the

bottom two rows exhibit cycle skipping, with CSI > 0. (C) ACGs of all theta-modulated cells in CA1 (left) and PFC

(right) ordered by their CSIs (high to low from top to bottom). Red arrowheads indicate division between cells with

CSI > 0 (above) vs. <0 (below). Each row represents a single cell with one type of maze pass (outbound or

inbound). Only cells with theta-modulated ACGs are shown (see Materials and methods). Note that the proportion

of theta-cycle skipping cells in CA1 is consistent with that reported in previous studies (Kay et al., 2020). (D) CSI

of theta-modulated cells didn’t differ significantly on outbound versus inbound trajectories for each region (n.s.,

p’s > 0.99 for CA1 and PFC), but was larger in PFC than CA1 (****p<1e-4, Kruskal-Wallis tests with Dunn’s post

hoc). Data are presented as mean and SEMs.

The online version of this article includes the following source data for figure 5:

Source data 1. Cycle skipping index.
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Figure 6. Theta-sequence representations of behavioral choices in CA1 and PFC. (A) Single-event examples of CA1 theta sequences encoding

alternative. Two detailed example sequences are shown in (Ai) and (Aii) (presented as in Figure 2A). Three more examples with decoding plots only are

shown in (Aiii) (presented as in Figure 2C). (B) Diagram showing two task segments of a behavioral trial (or trajectory): before choice point (gray

shading), and after choice point (green shadings). (C–F) Four decoding examples for before and after choice point during outbound navigation in (C

and D) CA1 and (E and F) PFC. Left: Animal’s behavior. Green line: the trajectory pass shown on the middle; Blue/red arrowheaded line: currently taken

trajectory. Green circles: locations where theta-sequence events occurred (numbered corresponding to middle). Middle: Decoding plots. Data are

presented as in Figure 1F and G (bin = 120 ms), except that whenever a theta sequence was detected, the decoding was performed on the theta

timescale (bin = 30 ms) and color-coded by trajectory type for clarity (red or blue: R-side or L-side trajectory; bars above show decoded identity and

timing of each event). Note that at both timescales, summed probability of each column across two trajectory types is 1. Yellow shading: example event

with detailed view shown on the right. Prob.: probability. (G) Percent of theta sequences representing actual or alternative choice before and after

choice point (CP) in CA1 (left) and PFC (right) (****p<1e-4, n.s. p>0.05, session-by-session rank-sum paired tests). Error bars: SEMs. (H) Trial-by-trial

theta-sequence prediction of choice (****p<0.0001, n.s., p>0.05, trial-label permutation tests). Red horizontal lines: chance levels (i.e. 95% CIs of

shuffled data) calculated by permutation tests. CP: choice point. (I) Theta-sequence prediction persists over sessions. Early: Sessions 1–3; Middle:

Sessions 4–5; Late: Sessions 6–8. Data are presented as in (H). Only correct trials are shown in (H) and (I). CP: choice point. (J–L) Coherent CA1-PFC

theta sequences biased to actual choice. (J and K) Two examples of coherent CA1-PFC theta sequences. (L) Percent of coordinated CA1-PFC theta

sequences coherently representing actual vs. alternative choices (for each condition from left to right: p=0.0312, 0.94, 0.0312, 0.48, signed-rank test

Figure 6 continued on next page
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1–2; Video 1). In contrast, PFC theta sequences preferentially encoded the animal’s current choice

(Figure 6E and G and Figure 6—figure supplements 1–2). After the choice was made (i.e., after

CP; Figure 6B), as expected, both CA1 and PFC theta sequences preferentially encoded the ani-

mal’s current choice as the animal’s ran down the track toward reward (Figure 6D, F and G and Fig-

ure 6—figure supplements 1–2). Note that after CP, CA1 theta sequences representing the

alternative choice only constituted a minority of the total sequences, reminiscent of the previous

findings of a small proportion of hippocampal theta sequences representing the alternative running

direction on a linear track (Feng et al., 2015; Wang et al., 2020), and encoding locations far away

from an animal’s current position (Gupta et al., 2012; Wikenheiser and Redish, 2015).

The choice representations of theta sequences were robust across sessions (Figure 6G), enabling

trial-by-trial prediction of decisions, in which upcoming choice was decoded by PFC theta sequences

well above chance before the CP, whereas CA1 theta sequences encoded actual and alternative

available paths equivalently before the CP (Figure 6H and I). Similar results were found for inbound

trials (Figure 6—figure supplements 1–2; Video 2). Note that these results cannot be accounted

for by similar spatial-map templates for L versus

R choices on the center stem, because spatial-

map activity can decode L versus R choices well

above chance within the center stem in both

CA1 and PFC, and this decoding accuracy was in

fact higher for CA1 than PFC (Figure 1H and I).

Furthermore, similar effects were found after

controlling for different shuffling procedures

(Figure 6—figure supplement 2A) and examin-

ing the last theta sequence on the center stem

(Figure 6—figure supplement 2D).

Next, we asked if PFC theta sequences

encoded choices that were coherent with CA1

sequences within single theta cycles. We

detected PFC theta sequences simultaneously

with CA1 theta sequences for a subset of theta

Figure 6 continued

compared to 50%; for comparisons between two conditions from left to right, p=0.0312 and 0.0469, rank-sum tests). OUT: outbound; IN: inbound.

Alter.: alternative choice. Error bars: SEMs.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Choice representation of theta sequences, and number of coordinated theta sequences for each session.

Figure supplement 1. Additional examples of theta-sequence representations of behavioral choices.

Figure supplement 2. Theta-sequence coding for behavioral choices during inbound navigation and additional controls.

Video 1. Slow-motion video of behavioral-timescale

and theta-sequence decoding in CA1 when the rat is

running a Center-to-Right outbound trajectory. The

video plays 7.5 times slower than real time. To better

visualize fast theta sequences, when a significant theta

sequence is detected, the video plays 15 times slower.

Audio represents spiking of all example units shown on

the raster (top left; each spike was correspondingly

sped up 7.5 times around spike detection for better

perception). Bottom left: Decoding plot. For each theta

sequence, reconstruction of only the decoded

trajectory was shown for clarity. Right: Behavioral video.

Green circle: true position. White circle with a pair of

arrowheads: estimated position decoded at the

behavioral timescale (arrowhead colors indicate

trajectory type, blue for L-side trajectory, red for R-side

trajectory; solid arrowheads: decoded trajectory type.

hollow ones: the alternative). Note that the raster only

shows cells that participated in theta sequences for

better visualization, whereas the decoding was

performed using all place cells recorded.

https://elifesciences.org/articles/66227#video1

Video 2. Slow-motion video of behavioral-timescale

and theta-sequence decoding in CA1 when the rat is

running a Right-to-Center inbound trajectory. The

video is presented as in Video 1.

https://elifesciences.org/articles/66227#video2
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cycles (Figure 6J and K; mean ± SEM = 10.53 ± 1.42%, and 11.17 ± 1.52% out of significant sequen-

ces for outbound and inbound, respectively; p=0.78 comparing outbound vs. inbound proportions,

rank-sum test). Among these synchronous sequence events, when CA1 theta sequences represented

the actual choice, PFC sequences were also significantly biased to the actual choice, whereas this

coherent CA1-PFC representation was not observed when CA1 theta sequences represented the

alternative choice (Figure 6L). Note that this result cannot be simply accounted for by the fact that

the majority of PFC theta sequences depict the actual choice, assuming independence of CA1 and

PFC theta sequences (see Materials and methods).

Taken together, these results suggest that CA1-PFC theta sequences occurred in tandem with,

but distinct from, behavioral sequences for choice representations, and that CA1-PFC theta sequen-

ces underlie a novel mechanism that supports vicarious memory recall on a fast timescale for deliber-

ative decision-making.

CA1 and PFC sequences during incorrect trials
While we found a clear relationship between CA1 and PFC sequences at both behavioral and theta

timescales for upcoming decisions, it remained unclear if these contributed to correct versus errone-

ous decisions. We therefore analyzed neural activity during correct versus incorrect trials, with incor-

rect trials corresponding to erroneous outbound navigation to the same side arm as the past

inbound visit (Figure 7A). We found that sequential firing that occurred at the behavioral timescale

during incorrect trials was similar to that during correct trials (Figure 7B), and the decoding accuracy

for the chosen side was comparable for correct and incorrect trials (Figure 7C; inbound trials for the

incorrect condition were considered as the one right before an incorrect outbound trial). Further-

more, CA1 and PFC theta-sequence prediction of upcoming choice was also similar for correct and

incorrect trials (Figure 7D).

Correct versus incorrect trials did not differ in running speed and theta power (Figure 7—figure

supplement 1A–B). CA1-PFC theta coherence and the strength of single-cell phase-locking to theta

oscillations during navigation, which have been proposed to support spatial working memory

(Benchenane et al., 2010; Gordon, 2011; Jones and Wilson, 2005b; Sigurdsson et al., 2010),

were also similar between correct versus incorrect trials (Figure 7—figure supplement 1C–L). There-

fore, both theta-linked phenomena at the two timescales likely represented maintenance mecha-

nisms for working memory and decision-making, making it plausible that incorrect destinations were

chosen prior to embarking on trajectories from the center well.

We therefore examined replay sequences during SWRs in the inter-trial periods prior to trajectory

onset (Figure 1C). Previously, we have reported that CA1 replay sequences, similar to its theta

sequences reported here, underlie deliberation between actual and alternative choices, whereas

CA1-PFC reactivation represents actual choice for current trials (Shin et al., 2019). Here, we con-

firmed these observations (Figure 7E and Figure 7—figure supplement 2; Video 3). Importantly,

using CA1-PFC reactivation strength for actual versus alternative choices preceding the correct and

incorrect trials (see Materials and methods), we could predict correct and incorrect responses signifi-

cantly better than chance (Figure 7F), indicating impaired CA1-PFC reactivation prior to incorrect

outbound navigation. These results suggest that CA1-PFC replay sequences during awake SWRs

prime initial navigation decisions, which are further maintained by theta-sequence and trajectory-

selective mechanisms during retention periods on a trial-by-trial basis, underlying successful perfor-

mance in the working memory task.

Discussion
In this work, we discovered theta sequences, theta cycle skipping and theta-sequence prediction of

behavioral choices in PFC. These prefrontal phenomena follow a succession of results on hippocam-

pal sequences, but our study points to different yet complementary roles of prefrontal and hippo-

campal sequences at multiple timescales. By dissecting fast cognitive-timescale sequences from slow

behavioral-timescale sequences in a spatial working-memory and navigation task, these findings thus

provide a unified framework that integrates hippocampal and prefrontal mechanisms of multi-time-

scale cell-assembly dynamics for memory-guided decision-making.

First, during delay periods of the spatial navigation task on the center stem, choice information

was maintained by behavioral-timescale sequences in CA1 and PFC on correct as well as incorrect
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trials. These sequences are contextually modulated by current journeys, and can enable choice-

related information processing on a behavioral timescale for planning actions (Harvey et al., 2012;

Ito et al., 2015). In addition, we determined the existence of compressed-timescale theta sequences
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Figure 7. Choice representations of replay sequences, but not behavioral and theta sequences, were altered in CA1 and PFC during incorrect trials. (A)

Illustration of a set of correct (top) and incorrect (bottom) trials. For incorrect trial, the actual choice is the unrewarded side. (B and C) Behavioral

sequences encoded current choice during incorrect trials. (B) Rasters and population decoding during an incorrect outbound trial. Data are taken from

the same session and animal and presented as in Figure 1F. (C) Choice decoding accuracy during incorrect trials is not significantly different from that

during correct trials in CA1 (n.s., p>0.99 for outbound,=0.67 for inbound) and PFC (n.s., p>0.99 for outbound,=0.11 for inbound; Friedman tests with

Dunn’s post hoc). Corr.: correct trials; Incorr.: incorrect trials. Inbound trials for the incorrect condition were taken from the one right before an incorrect

outbound trial (i.e. ‘Past’ trial of the diagram shown in A). (D) Choice representations of theta sequences were similar during incorrect and correct (see

Figure 6H) trials. Black bars are for PFC theta sequences, orange bars are for CA1. CP: choice point. (E) Example forward CA1-PFC replay sequences

representing actual future choice (see also Figure 1C for this event with example cells, and ripples from a different tetrode). (Ei) Ordered raster plot

during a SWR event (black line: ripple-band filtered LFPs from one CA1 tetrode). (Eii) Corresponding spatial firing rate maps. (Eiii) Actual (immediate

future) trajectory (orange circle: current position when replay sequences occurred). (Eiv) Reactivation strength (trajectory schematics on the bottom).

Blue horizontal lines: 95% CIs computed from shuffled data. Red bar: the decoded trajectory. See Figure 7—figure supplement 2C for an example of

reverse CA1-PFC replay sequences. (F) CA1-PFC replay strength predicts correct and incorrect responses. Left: Prediction using replay strength of CA1-

PFC forward events. Right: Prediction using replay strength of CA1-PFC reverse events. ROC curves were computed for the SVM classifiers (p-value

from trial-label shuffling denoted; see Materials and methods). Shadings: SDs.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Decoding accuracy at the behavioral timescale for correct versus incorrect trials.

Figure supplement 1. Speed, theta power, coherence, and phase-locking during correct versus incorrect outbound trials.

Figure supplement 2. CA1-PFC reactivation strength during correct versus incorrect trials.
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in PFC, similar to previously described CA1 theta

sequences (Dragoi and Buzsáki, 2006;

Foster and Wilson, 2007; Kay et al., 2020;

Skaggs et al., 1996). These transient theta

sequences in CA1 and PFC were nested within

behavioral-timescale sequences during naviga-

tion. However, in contrast to trajectory-depen-

dent firing sequences at the behavioral-timescale,

theta sequences retain representations of choice

options to support vicarious memory recall and

deliberative decision-making, and function in a

complementary manner with fast replay sequen-

ces involved in decision priming prior to onset of

navigation, highlighting novel roles of these com-

pressed sequences in guiding ongoing choice

behavior. Notably, the mechanism of using inter-

nally generated sequences to simulate future sce-

narios has been used as a key feature that

improves performance of model-based learning

computations (Daw and Dayan, 2014;

Mattar and Daw, 2018; Pezzulo et al., 2019;

Pezzulo et al., 2014).

At the level of single theta cycles, we found

that prior to the decision-making point in the nav-

igation task, CA1 theta sequences report both

actual and alternative choices, and are unable to

predict chosen destination till after the decision

has been made. On the other hand, we found

robust PFC theta sequences that maintain predic-

tion of upcoming choice prior to the decision

point. Thus, theta sequences underlie a cognitive

timescale mechanism that also maintains choice information, with the key distinction that this fast

timescale mechanism can support vicarious memory recall of different choices, which was not seen

at the behavioral timescale. These findings build on previous results that demonstrated theta-time-

scale activity patterns in the hippocampus representing future locations by recruiting cells encoding

positions after the choice point (i.e. non-splitters; Johnson and Redish, 2007; Kay et al., 2020;

Papale et al., 2016), and show that trajectory-specific coding of splitter cells at the behavioral time-

scale is preserved in fast theta sequences for representing future choices prior to the choice point as

well. This process may be important in the event that animals have to change decisions or adapt to

change in contingencies (Buzsáki et al., 2014; Rich and Wallis, 2016; Yu and Frank, 2015). In

agreement with this idea, a recent study has shown that theta timescale mechanisms in CA1 can not

only represent possible future paths, but also possible directions of motion on a moment-to-moment

basis (Kay et al., 2020). Representation of past locations within theta cycles has also been recently

reported (Wang et al., 2020). Complementing these results, previous studies have shown that theta

oscillation cycles comprise cognitive computation units, corresponding to segregation of cell assem-

blies that represent different spatial experiences (Brandon et al., 2013; Geisler et al., 2007;

Gupta et al., 2012; Jezek et al., 2011) and alternatives (Johnson and Redish, 2007; Kay et al.,

2020; Papale et al., 2016). The results shown here establish that the representation of alternatives

in the hippocampus interacts with prefrontal theta sequences in a content-specific manner, which

can be used to guide actual choices.

The exact mechanism underlying these interactions, however, remains unclear. It has been shown

that cortical neurons are sensitive to temporally organized inputs from the hippocampus

(Branco et al., 2010; Siapas et al., 2005; Sigurdsson et al., 2010), and pharmacological disruption

of prefrontal activity results in impaired theta sequences in the hippocampus (Schmidt et al., 2019),

as well as impaired performance in the W-track task (Maharjan et al., 2018). Behavioral-state-

dependent prefrontal-hippocampal interactions during theta oscillations can potentially also be

Video 3. Video of CA1 replay sequences representing

possible future choices. The video is displayed in real

time, but two times slower during immobility at the

reward well to better visualize fast replay sequences.

Top left: Raster of example CA1 cells ordered and

color coded by place field center on the actual future

trajectory (C-to-L). Bottom left: Raster of the same CA1

population shown on top left, but ordered and color

coded by place field center on the alternative future

trajectory (C-to-R). Right: Behavioral video. Green

circle: true position. Large arrowhead: estimated

location at the behavioral timescale. Due to the long

immobility period at the reward well (9.58 s), only 1 s

around each replay event detected was shown. When a

replay sequence is detected, the decoded trajectory is

represented by an arrowheaded line (colored

according to the trajectory type, blue for L-side

trajectory, red for R-side trajectory).

https://elifesciences.org/articles/66227#video3
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mediated through connections with entorhinal cortex (Fernández-Ruiz et al., 2017), nucleus

reuniens (Ito et al., 2015), or other regions (Eichenbaum, 2017) that contribute to theta generation

and memory retrieval. The specific roles of these circuits will need to be further elucidated in future

investigations.

Notably, theta-associated mechanisms at both behavioral and theta timescales during active navi-

gation supported retention during working memory periods, but did not predict errors in decisions.

Rather, we found that compressed SWR replay sequences during inter-trial periods prior to the

onset of trajectories prime the decision without apparent external cue triggers, which is maintained

from the onset of the trajectory via behavioral and theta sequences. Previous studies have shown

that SWR-reactivation in the hippocampus is less coordinated prior to incorrect versus correct trials

(Shin et al., 2019; Singer et al., 2013), and disrupting awake SWRs leads to increase in errors in the

spatial working memory task (Fernández-Ruiz et al., 2019; Jadhav et al., 2012). In addition, we

have previously shown a relationship between reverse and forward CA1-PFC replay with past and

future trajectories, respectively (Shin et al., 2019). Consistent with all these prior results, our current

findings provide definitive evidence that coherent CA1-PFC replay of future trajectories prior to navi-

gation onset primes the chosen destination in this memory-guided decision-making task, and errors

in CA1-PFC replay predict incorrect decisions.

It is important to note that the expression of behavioral- and compressed-timescale sequences

representing different trajectories are inextricably linked. Choice-specific representations of both

theta and replay sequences depend on choice encoding through trajectory preferred firing of behav-

ioral sequences. Furthermore, trajectory-selective neurons showed an extended tail of their spatial

fields, which is inherently a behavioral-timescale characteristic, and likely contributes to trajectory-

modulated look-ahead of theta sequences. Finally, there is evidence that degradation of theta

sequences results in impaired sequential activation during sleep replay in the hippocampus

(Drieu et al., 2018). Thus, it is the interactions among these multi-timescale activity patterns that

potentially govern decision-making. The network mechanisms that enable expression of sequences

at distinct timescales in multiple circuits remain a key question for future investigation.

Overall, our results provide a critical extension to classic models, which emphasize behavioral-

timescale activity patterns typically spanning entire retention intervals, by establishing a role of dis-

crete, fast timescale ensemble activity patterns in decision-making processes. Such a mechanism is

broadly supported by recent findings of rapid shifts in activity patterns during decision-making

(Bernacchia et al., 2011; Durstewitz et al., 2010; Karlsson et al., 2012; Latimer et al., 2015;

Rich and Wallis, 2016; Sadacca et al., 2016), including discrete gamma oscillatory bursts in PFC

underlying working memory (Lundqvist et al., 2016; Miller et al., 2018), which occur at a similar

timescale to compressed theta and replay sequences. Together, these results suggest the possibility

of transient LFP oscillations as informative signatures of fast evolving cell assemblies that bear on

decision-making processes, and the cooperative behavioral- and cognitive-timescale mechanisms

described here may reflect a general organizing principle of neural dynamics underlying decision-

making.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Strain, strain
background
(Long Evans rats; male)

Long Evans Charles River Cat#: Crl:LE 006
RRID: RGD_2308852

Chemical
compound, drug

Cresyl Violet Acros Organics Cat#: AC229630050

Chemical
compound, drug

Formaldehyde Fisher Cat#: 50-00-0,67561,
7732-18-5

Chemical
compound, drug

Isoflurane Patterson Veterinary Cat#: 07-806-3204

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Chemical
compound, drug

Ketamine Patterson Veterinary Cat#: 07-803-6637

Chemical
compound, drug

Xylazine Patterson Veterinary Cat#: 07-808-1947

Chemical
compound, drug

Atropine Patterson Veterinary Cat#: 07-869-6061

Chemical
compound, drug

Bupivacaine Patterson Veterinary Cat#: 07-890-4881

Chemical
compound, drug

Beuthanasia-D Patterson Veterinary Cat#: 07-807-3963

Software, algorithm MATLAB 2017a Mathworks, MA RRID: SCR_001622, V2017a

Software, algorithm Trodes SpikeGadgets https://spikegadgets.com/trodes/, V1.9

Software, algorithm Matclust Mattias P. Karlsson https://www.mathworks.com/
matlabcentral/fileexchange/
39663-matclust, V1.7

Software, algorithm Libsvm Chang and Lin, 2011 RRID:SCR_010243
https://www.csie.ntu.edu.tw/
~cjlin/libsvm/, V3.12

Software, algorithm Chronux Partha Mitra RRID:SCR_00554
http://chronux.org/, V2.12

Software, algorithm measure_phaseprec
Toolbox

Kempter et al., 2012;
Sanders et al., 2019

https://github.com/HoniSanders/
measure_phaseprec

Software, algorithm Prism 8 GraphPad Software RRID: SCR_002798, V8.0

Subjects
Nine adult male Long-Evans rats (450–550 g, 4–6 months) were used in this study. All procedures

were approved by the Institutional Animal Care and Use Committee at the Brandeis University and

conformed to US National Institutes of Health guidelines. Data from six subjects have been reported

in an earlier study (Shin et al., 2019).

Animal pre-training
Animals were habituated to daily handling for several weeks before training. After habituation, ani-

mals were food deprived to 85–90% of their ad libitum weight, and pre-trained to run on a linear

track (~1 m long) for rewards (sweetened evaporated milk), and habituated to an high-walled, opa-

que sleep box (~30 � 30 cm) as described previously (Jadhav et al., 2012; Jadhav et al., 2016;

Tang et al., 2017). After the pre-training, animals were surgically implanted with a multi-tetrode

drive.

Surgical implantation
Surgical implantation procedures were as previously described (Jadhav et al., 2012; Jadhav et al.,

2016; Shin et al., 2019; Tang et al., 2017). Eight animals were implanted with a multi-tetrode drive

containing 32 independently moveable tetrodes targeting right dorsal hippocampal region CA1

(�3.6 mm AP and 2.2 mm ML) and right PFC (+3.0 mm AP and 0.7 mm ML) (16 tetrodes in CA1 and

16 in PFC for four animals; 13 in CA1 and 19 in PFC for three animals; 15 in CA1 and 17 in PFC for

one animal). One animal was implanted with a multi-tetrode drive containing 64 independently

moveable tetrodes targeting the bilateral CA1 of dorsal hippocampus (�3.6 mm AP and ±2.2 mm

ML; Figure 1—figure supplement 1A, left) and PFC (+3.0 mm AP and ±0.7 mm ML; Figure 1—fig-

ure supplement 1B, left) (30 tetrodes in CA1 and 34 tetrodes in PFC). On the days following sur-

gery, hippocampal tetrodes were gradually advanced to the desired depths with characteristic EEG

patterns (sharp wave polarity, theta modulation) and neural firing patterns as previously described

(Jadhav et al., 2012; Jadhav et al., 2016; Shin et al., 2019; Tang et al., 2017). One tetrode in cor-

pus callosum served as hippocampal reference (CA1 REF), and another tetrode in overlying cortical
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regions with no spiking signal served as prefrontal reference (PFC REF). The reference tetrodes

reported voltage relative to a ground (GND) screw installed in skull overlying cerebellum. Electrodes

were not moved at least 4 hr before and during the recording day.

Behavioral task
Following recovery from surgical implantation (~7–8 days), animals were food-deprived and again

pre-trained on a linear track for at least 2 days before the W-track sessions started. During the

recording day, animals were introduced to the novel W-track (Figure 1A;~80 � 80 cm with ~7 cm

wide tracks) for the first time, and learned the task rules over eight behavioral sessions (or epochs,

denoted as E1-E8; Figure 1B). Each behavioral session lasted 15–20 min and was interleaved with

20–30 min rest sessions in the sleep box (total recording duration ffi 6 hr within a single day)

(Shin et al., 2019). On the W-maze, animals were rewarded for performing a hippocampus- (Fernán-

dez-Ruiz et al., 2019; Jadhav et al., 2012; Kim and Frank, 2009) and prefrontal-dependent

(Maharjan et al., 2018) continuous alternation task: returning to the center well after visits to either

side well (left or right well; inbound trajectories), and choosing the opposite side well from the previ-

ously visited side well when starting from the center well (outbound trajectories). Rewards were

automatically delivered in the reward wells (left well: L; right well: R; center well: C) triggered by

crossing of an infrared beam by the animal’s nose. Therefore, animals performed four types of trajec-

tories during correct behavioral sequences in this task: center-to-left (C-to-L), left-to-center (L-to-C),

center-to-right (C-to-R), and right-to-center (R-to-C). Among these trajectory types, C-to-L and

C-to-R are outbound trajectories, while L-to-C and R-to-C are inbound trajectories. When animals

were on the center stem, the two inbound trajectories thus represented possible past paths (one

actual, and one alternative; Figure 1A, left), and the two outbound trajectories represented possible

future paths (Figure 1A, right). The learning curves were estimated using a state-space model

(Figure 1B; Jadhav et al., 2012; Shin et al., 2019; Smith et al., 2004).

Behavioral analysis
Locomotor periods, or theta states, were defined as periods with running speed >5 cm/s, whereas

immobility was defined as periods with speed �4 cm/s. The animal’s arrival and departure at a

reward well was detected by an infrared beam triggered at the well. The well entry was further

refined as the first time point when the speed fell below 4 cm/s before the arrival trigger, whereas

the well exit was defined as the first time point when the speed rose above 4 cm/s after the depar-

ture trigger (Shin et al., 2019). The time spent at a reward well (i.e. immobility period at well) was

defined as the period between well entry and exit. Only SWRs occurring during immobility periods

at reward wells were analyzed in this study (see also SWR detection). The center stem of the

W-maze was defined as the set of linear positions (see Spatial firing rate maps and linearization)

between the center well and the center junction (i.e., choice point, CP). For a given behavioral trajec-

tory, the before-CP period was defined as the time spent at the center stem, and the after-CP

period was defined as the time spent at locations between 10 cm away from the center stem and

the side well (Figure 6 and Figure 6—figure supplements 1–2). Therefore, for outbound trajecto-

ries, before-CP periods began when animals exited the center well and ended when animals reached

the choice point (Figure 6), and for inbound trajectories, before-CP periods began when animals

entered the choice point from the side arm and ended when animals entered the center well (Fig-

ure 6—figure supplements 1–2).

Neural recordings
Data were collected using a SpikeGadgets data acquisition system (SpikeGadgets LLC) (Shin et al.,

2019; Tang et al., 2017). Spike data were sampled at 30 kHz and bandpass filtered between 600 Hz

and 6 kHz. LFPs were sampled at 1.5 kHz and bandpass filtered between 0.5 Hz and 400 Hz. The ani-

mal’s position and running speed were recorded with an overhead color CCD camera (30 fps) and

tracked by color LEDs affixed to the headstage. Single units were identified by manual clustering

based on peak and trough amplitude, principal components, and spike width using custom software

(MatClust, M. P. Karlsson) as previously described (Jadhav et al., 2016; Shin et al., 2019;

Tang et al., 2017). Only well isolated neurons with stable spiking waveforms were included

(Shin et al., 2019).

Tang, Shin, et al. eLife 2021;10:e66227. DOI: https://doi.org/10.7554/eLife.66227 17 of 27

Research article Neuroscience

https://doi.org/10.7554/eLife.66227


Histology
Following the conclusion of the experiments, micro-lesions were made through each electrode tip to

mark recording locations (Shin et al., 2019). After 12–24 hr, animals were euthanized (Beuthanasia)

and intracardially perfused with 4% formaldehyde using approved procedures. Brains were fixed for

24 hr, cryoprotected (30% sucrose in 4% formaldehyde), and stored at 4˚C. The recording sites were

determined from post hoc Nissl-stained coronal brain sections based on The Rat Brain in Stereotaxic

Coordinates (Paxinos and Watson, 2004; Figure 1—figure supplement 1A–B).

Cell inclusion
Units included in analyses fired at least 100 spikes in a given session. Putative interneurons were

identified and excluded based on spike width and firing rate criterion as previously described

(Jadhav et al., 2012; Jadhav et al., 2016). Peak rate for each unit was defined as the maximum rate

across all spatial bins in the linearized spatial map (see Spatial firing rate maps and linearization). A

peak rate �3 Hz was required for a cell to be considered as a place cell.

Spatial firing rate maps and linearization
Spatial firing rate maps (or rate maps) were calculated only during locomotor periods (> 5 cm/s; all

SWR times excluded) at positions with sufficient occupancy (> 20 ms). To construct the 1D linearized

spatial firing rate maps on different trajectory types, animal’s linear positions were first estimated by

projecting its actual 2D positions onto pre-defined idealized paths along the track, and further classi-

fied as belonging to one of the four trajectory types (Shin et al., 2019; Tang et al., 2017). The line-

arized spatial firing rate maps were then calculated using spike counts and occupancies in 2-cm bins

of the linearized positions and smoothened with a Gaussian curve (4-cm SD). We found all linearized

positions along each trajectory type were sufficiently covered by the spatial firing rate maps of CA1,

as well as PFC, populations (Shin et al., 2019).

Trajectory selective index
To measure the trajectory selectivity of single cells, a trajectory selectivity index (SI) was calculated

by comparing the mean firing rates on the Left- (or L-) vs. Right- (or R-) side trajectories for outbound

(C-to-L vs. C-to-R) and inbound (L-to-C vs. R-to-C), respectively:

SI ¼
FRL �FRR

FRL þFRR

;

where FRL is the mean firing rate on the L-side trajectory, and FRR is for the R-side trajectory. Only

cells that had a peak firing rate �3 Hz detected on either the L- or R-side trajectory were considered,

and the rate maps in different sessions were analyzed separately. A cell with |SI| > 0.4 in CA1, or |

SI| > 0.2 in PFC was classified as trajectory-selective cells (|SI| = 0.384 ± 0.004 and 0.154 ± 0.003 for

all CA1 and PFC cells, respectively; mean ± SEM) (Kay et al., 2020). The trajectory type (L vs. R) with

highest firing rate was designated as the cell’s preferred (Pref) trajectory, and the other type desig-

nated as the non-preferred (Non-pref) trajectory.

SWR detection
Sharp-wave ripples (SWRs) were detected during immobility periods (� 4 cm/s) as described previ-

ously (Jadhav et al., 2012; Jadhav et al., 2016; Shin et al., 2019; Tang et al., 2017). In brief, LFPs

from CA1 tetrodes relative to the CA1 reference tetrode were filtered into the ripple band (150-250

Hz), and the envelope of the ripple-filtered LFPs was determined using a Hilbert transform. SWRs

were initially detected as contiguous periods when the envelope stayed above 3 SD of the mean on

at least one tetrode, and further refined as times around the initially detected events during which

the envelope exceeded the mean. For replay and reactivation analysis, only SWRs with a duration �

50 ms were included as in previous studies (Pfeiffer and Foster, 2013; Shin et al., 2019).

Theta phases and theta cycles
Peaks and troughs of theta oscillations, as well as theta phases, were identified on the band-passed

(6-12 Hz) LFPs from the CA1 reference tetrode (CA1 REF) (Jadhav et al., 2016; Lubenov and Sia-

pas, 2009). To precisely define a theta cycle for theta sequence detection, theta phase locking of
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each cell in CA1 was calculated across locomotor periods (> 5 cm/s) in each session using the meth-

ods developed in previous reports (Jadhav et al., 2016; Siapas et al., 2005). A phase histogram

was then calculated by averaging across all phase-locked CA1 cells (Rayleigh tests at p < 0.05) in

each session, and the phase with minimum cell firing was used to separate theta cycles in the given

session (approximately valley-to-valley of hippocampal REF theta, or peak-to-peak of hippocampal

fissure theta) (Gupta et al., 2012).

Theta phase precession
Theta phase precession was examined in linearized spatial firing rate maps with a peak rate � 3 Hz,

and multiple fields of a single cell were analyzed separately (e.g. Figure 4E, top right). For each fir-

ing peak of linearized spatial firing rate maps detected (using MATLAB findpeaks function with a 20-

cm minimal peak distance), a spatial field was defined as contiguous positions with rate > 10% of

the peak rate, and at least 8 cm large (Figure 4E and F; Schmidt et al., 2009). For spikes within

each spatial field, phase precession was computed using a circular-linear fit as previously described

(cl_corr function in the measure_phaseprec toolbox; https://github.com/HoniSanders/measure_pha-

seprec) (Kempter et al., 2012; Sanders et al., 2019). The slope, correlation coefficient (r), and its p-

value from the circular-linear regression were reported (Figure 4E-H).

Theta power and coherence
Power spectra and coherograms were computed from the LFPs referenced to GND using multitaper

estimation methods from the Chronux toolbox (http://chronux.org; version 2.12) (Shin et al., 2019).

We obtained the SD and mean for each frequency across a given session, and normalized the power

of that frequency as a z-score (Figure 1—figure supplement 1B). Coherence between a pair of CA1

and PFC tetrodes was calculated during locomotor periods (> 5 cm/s; locations within 15 cm of the

reward well were excluded to prevent contamination from SWR activity). Coherograms averaged

over all available CA1-PFC tetrode pairs with simultaneously recorded LFPs were shown in Fig-

ure 1—figure supplement 1C-D. Theta power and coherence were measured as the mean power

and coherence between 6-12 Hz, respectively.

Spatial field asymmetry
For cells showing significant phase precession (circular-linear regression at p < 0.05), we further ana-

lyzed their spatial field asymmetry (Figure 4A-D). Only fields with the highest peak rate of a single

cell for each trajectory type, and at least 20 cm large, were used. The spatial fields were then binned

into 10% field length relative to field center (Souza and Tort, 2017), and the asymmetry index (AI)

was calculated as:

AI ¼
AR �AL

AR þAL

;

where AR denoted the area under the firing rate profile to the right of the field center (i.e. x > 0 in

Figure 4A and B), while AL represented the same to the left of the field center (i.e. x < 0 in

Figure 4A and B). Therefore, a negative AI corresponds to a spatial field with an extended initial

tail.

Theta cycle skipping
To quantify theta cycle skipping in single cells (Figure 5), we measured a cycle skipping index (CSI)

on their auto-correlograms (ACGs). Data on different trajectory types were analyzed separately, and

thus a single cell could contribute to more than one ACG (Figure 5B–D). For each ACG, data was

restricted to locomotor periods (>5 cm/s) that lasted at least 1.5 s, and with at least total 100 spikes

(Kay et al., 2020). Each ACG was first estimated as a histogram of nonzero lags across the

interval ±400 ms (bin = 10 ms; denoted as ACG_raw) (Brandon et al., 2013; Kay et al., 2020), and

was further corrected for the triangular shape caused by finite duration data (Kay et al., 2020;

Mizuseki et al., 2009):

ACG tð Þ ¼
ACG raw tð Þ

1� jtj
T

;
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where t is the time lag (-T < t < T), and T is the total duration of the spike train used to compute the

ACG. The corrected ACG was then smoothed (Gaussian kernel, SD = 20 ms) and peak-normalized.

To detect the theta-modulated peaks of ACGs, power spectra for ACGs were generated using FFT,

and the relative theta power of an ACG was calculated by dividing its power in the theta band (6-10

Hz) by its total power in the 1-50 Hz range (Deshmukh et al., 2010). An ACG with relative theta

power > 0.15 was considered theta-modulated. For all theta-modulated ACGs, the ACGs were

band-pass filtered between 1 and 10 Hz (Deshmukh et al., 2010), and the amplitudes of the first

and second theta peaks on the filtered ACG were then determined by finding a first peak (p1) near t

= 0 in the 90-200 ms window, and the second peak (p2) near t = 0 in the 200-400 ms window, as

described previously (Kay et al., 2020). The CSI was then determined as:

CSI ¼
p2� p1

max p1;p2ð Þ
;

The CSI ranges between �1 and 1, and higher values indicate more theta cycle skipping.

Sequence analysis
Sequence analysis here focused on three different ensemble sequences: behavioral sequences, theta

sequences, and replay sequences (Figure 1C). To evaluate neural representations at the ensemble

level, Bayesian decoding was implemented as previously described (Davidson et al., 2009;

Shin et al., 2019; Tang et al., 2017; Zhang et al., 1998): a memoryless Bayesian decoder was built

for different trajectory types (for outbound, C-to-L vs. C-to-R; for inbound, L-to-C vs. R-to-C) to esti-

mate the probability of animals’ position given the observed spikes (Bayesian reconstruction; or pos-

terior probability matrix):

P X;Trjspikesð Þ ¼
P spikesjX;Trð ÞP X;Trð Þ

P spikesð Þ
;

where X is the set of all linear positions on the track for different trajectory types (i.e., Tr; Tr 2{L, R},

where L represents the L-side trajectory, R represents the R-side trajectory), and we assumed a uni-

form prior probability over X and Tr. Assuming that all N cells active in a sequence fired indepen-

dently and followed a Poisson process:

P spikesjX;Trð Þ ¼
Y

N

i¼1

P spikesijX;Trð Þ ¼
Y

N

i¼1

t fi X;Trð Þð Þspikesie�t fi X;Trð Þ

spikesi!
;

where t is the duration of the time window (see below), fi(X,Tr) is the expected firing rate of the i-th

cell as a function of sampled location X and trajectory type Tr, and spikesi is the number of spikes of

the i-th cell in a given time window. Therefore, the posterior probability matrix can be derived as

follows:

P X;Trjspikesð Þ ¼C
Y

N

i¼1

fi X;Trð Þspikesi

 !

e
�t

PN

i¼1
fi X;Trð Þ

;

where C is a normalization constant such that
P

2

k¼1

PD
j¼1

P xj; trkjspikes
� �

¼ 1 (xj is the j-th position bin,

D is the total length of the track, and trk is the k-th trajectory type; k = 1 or 2, representing L- or

R-side trajectory, respectively).

Specifically, for behavioral sequences, the Bayesian decoder was used to decode animal’s current

location (x) and choice (tr) (Figure 1F–I and Figure 1—figure supplement 1C–H) as in previous stud-

ies (Shin et al., 2019). Data was restricted to locomotor periods (>5 cm/s; locations within 15 cm of

the reward well were excluded for decoding to prevent contamination from SWR activity), and

binned into 120 ms bins (i.e. t = 120 ms; moving window with 60 ms overlap). For each time bin,

the location and choice (i.e. trajectory type) with maximum decoded probability was compared to

the actual position and choice of the animal in that bin (Figure 1F–I and Figure 1—figure supple-

ment 1C–H). Decoding error of positions in this bin was determined as the linear distance between

estimated position and actual position (Figure 1—figure supplement 1C–H), and the accuracy of

animal’s choices decoded was reported (Figure 1H and I).
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For theta sequences, we first defined candidate events as theta cycles with at least five cells

active in a given brain region (CA1 or PFC). Only theta cycles with running speed >10 cm/s, and a

duration ranging from 100 to 200 ms were used (Feng et al., 2015). A time window of 20 ms (i.e.

t = 20 ms; moving window with 10 ms overlap) was used to examine theta sequence structure at a

fast, compressed timescale.

To calculate the distance index of each candidate event (Figure 3C and D), decoded

probabilities ± 60 cm around the animal’s current location, and ±1/2 cycle around the 0 phase of the

theta cycle (i.e. -p to 0 as 1st half of theta phases, and 0 to p as 2nd half of theta phases), were

divided equally into four quadrants (Feng et al., 2015). The distance index of the 1st half of theta

phases is thus measured by comparing the probabilities in the quadrants ahead (quadrant III, future)

and behind (quadrant II, past) as (III – II)/ (III + II). Similarly, the distance index of the 2nd half of theta

phases is thus measured as (IV – I)/ (IV + I).

To identify sequential structure within a theta cycle, two measures were adapted from previous

theta-sequence studies (Drieu et al., 2018; Farooq and Dragoi, 2019; Feng et al., 2015;

Zheng et al., 2016). In the first method, a weighted correlation (Farooq and Dragoi, 2019;

Feng et al., 2015), r x; tjPmatð Þ, was calculated for the posterior probability matrix of each trajectory

type (Pmat, D � T, D is the total number of spatial bins, and T is the total number of temporal bins).

The weighted means were computed across locations (x) and time (t) as:

EX xjPmatð Þ ¼

PT
i¼1

PD
j¼1

Pmatijxj
PT

i¼1

PD
j¼1

Pmatij
;

ET tjPmatð Þ ¼

PD
j¼1

PT
i¼1

Pmatijti
PD

j¼1

PT
i¼1

Pmatij
;

and the weighted covariance, covar x; tjPmatð Þ, was computed as:

covar x; tjPmatð Þ ¼

PT
i¼1

PD
j¼1

Pmatij xj�EX xjPmatð Þ
� �

ti�ET tjPmatð Þð Þ
PT

i¼1

PD
j¼1

Pmatij
;

where ti is the i-th temporal bin, and xj is the j-th spatial bin of the posterior probability matrix

(Pmat). The weighted correlation was then calculated as:

r x; tjPmatð Þ ¼
covar x; tjPmatð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

covar t; tjPmatð Þcovar x;xjPmatð Þ
p ;

and the weighted correlation was reported as the sequence score (r).

In the second method, we measured whether the decoded positions in successive temporal bins

of the posterior probability matrix were tightly arranged along an oblique line as previously reported

(Davidson et al., 2009; Drieu et al., 2018; Feng et al., 2015). Briefly, the best-fit line of a theta

sequence (e.g. yellow lines of the decoding plots in Figure 2A–F) was determined by a fitted line

that yielded maximum posterior probability in an 8 cm vicinity (d). For a given candidate line with a

slope v and an intercept �, the average likelihood R that the decoded position is located within a dis-

tance d of that line is:

R v;�ð Þ ¼
1

n

X

n�1

k¼0

P jpos� vk �Dtj � dð Þ;

where k is the temporal bin of the posterior probability matrix, and Dt is the moving step of the

decoding window (i.e. 10 ms). To determine the best-fit line for each theta sequence, we densely

sampled the parameter space of v and � (v > 1 m/s to exclude stationary events) to find the value

that maximized R (Rmax, i.e. goodness-of-fit).

In order to assess the significance of theta sequences, we circularly shifted the space-bins of the

posterior probability matrix (n = 1000 times) as described previously (Drieu et al., 2018;

Farooq and Dragoi, 2019; Zheng et al., 2016), and calculated the weighted correlation and the

goodness-of-fit from the shuffled data. A sequence was considered significant if it met two criteria:
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first, its sequence score (i.e. weighted correlation) exceeded the 97.5th percentile or was below the

2.5th percentile (for reverse sequences) of the shuffled distributions; and its goodness-of-fit (Rmax)

was higher than the 95th percentile of their shuffles. We considered the significant trajectory type as

the decoded trajectory, and if more than one trajectory type were significant, the trajectory with the

highest sequence score was considered as the decoded trajectory. For plotting purposes only, a

moving window (30 ms, advanced in steps of 5 ms) was used for displaying theta sequences (Fig-

ures 2 and 6 and Figure 2—figure supplement 1 and Figure 6—figure supplement 1).

For synchronous CA1 and PFC theta sequences, we examined if their representations were coher-

ent or independent (Figure 6J-L). If the representations of CA1 and PFC theta sequences (denoted

as SeqCA1 and SeqPFC, respectively) are stochastically independent, then p(SeqPFC = actual| SeqCA1 =

actual) = p(SeqPFC = actual| SeqCA1 = alternative) = p(SeqPFC = actual) = 1 - p(SeqPFC = alternative).

Given that p(SeqPFC = actual) and p(SeqPFC = alternative) are significantly different from the chance

level (50%; p’s < 1e-4, signed-rank tests compared to 50%), stochastic independence would predict

that the distributions of sequences coherently representing actual and alternative (i.e., p(SeqPFC =

actual| SeqCA1 = actual) and p(SeqPFC = alternative | SeqCA1 = alternative)) both significantly differ

from the chance level. However, if they are dependent, different distributions for actual and alterna-

tive should be observed (Figure 6L).

The detection of replay sequences has been described previously (Shin et al., 2019). Briefly, can-

didate replay events were defined as the SWR events during which � 5 place cells fired. Each candi-

date event was then divided into 10 ms non-overlapping bins (i.e. t = 10 ms), and decoded based

on the Bayes’ rule described above. The assessment of significance for replay events was imple-

mented by a Monte Carlo shuffle, in which the R-squared from linear regression on the temporal

bins versus the locations of the posterior probability matrix was compared to the R-squared derived

from the shuffled data (i.e. time shuffle, circularly shuffling temporal bins of the posterior probability

matrix). A candidate event with an R-squared that exceeded the 95th percentile of their shuffles (i.e.

p<0.05) was considered as a replay event.

For SWR events with significant CA1 replay sequences detected, we further measured CA1-PFC

reactivation during these events (Figure 7—figure supplement 2) as described previously

(Shin et al., 2019). We only analyzed the events where � 5 place cells and �5 PFC cells fired. Briefly,

for an event with N CA1 and M PFC cells active, a (N � M) synchronization matrix during RUN

(CRUN) was calculated with each element (Ci,j) representing the Pearson correlation coefficient of the

linearized spatial firing rate maps on a certain trajectory type (see Spatial firing rate maps and linear-

ization) of the i-th CA1 cell and the j-th PFC cell. To measure the population synchronization pattern

during the SWR, the spike trains during the SWR were divided into 10 ms bins and z transformed

(Peyrache et al., 2009; Shin et al., 2019). The (N � M) synchronization matrix during the SWR

(CSWR) was then calculated with each element (Ci,j) representing the correlation of the spike trains of

a CA1-PFC cell pair. Finally, the reactivation strength of this event for each trajectory type was mea-

sured as the correlation coefficient (R) between the population matrices, CRUN and CSWR.

Theta-sequence prediction of behavioral choices
For theta-sequence prediction of behavioral choices (Figure 6H and I and Figure 6—figure supple-

ment 2), trial-by-trial classification analysis was performed using support vector machines (SVMs)

through the libsvm library (version 3.12) (Chang and Lin, 2011). For each region (CA1 or PFC), two

independent SVMs were trained for before-CP and after-CP periods. For each trial, the numbers of

theta sequences representing the actual versus the alternative choice during a given period (before

CP, or after CP) were used as a feature (n = 2) to predict the current choice (k = 2, L or R). All classi-

fiers were C-SVMs with a radial basis function (Gaussian) kernel and trained on correct trials. Hyper-

parameter (C and g; regularization weight and radial basis function width, respectively) selection was

performed using a random search method with leave-one-out cross-validation to prevent overfitting.

The selected hyperparameters were then used to report the leave-one-out cross-validation accuracy.

The percentage of correctly inferred trials was computed across all training/test trial combinations to

give prediction accuracy. The significance of this prediction was determined by comparing to the

distribution of shuffled data by randomly shuffling the trial labels (L or R), and this shuffled dataset

was used to train a classifier in the same way as the actual dataset. A prediction accuracy based on

the actual dataset that was higher than the 95th percentile of its shuffles (p < 0.05) was considered
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as significant. Only trials with at least one theta sequence for actual and alternative choices were

used for prediction.

CA1-PFC reactivation prediction of correct and incorrect responses
For prediction of correct and incorrect responses with CA1-PFC reactivation (Figure 7F), SVMs were

used similar to the theta-sequence prediction analysis (see above). Two independent SVMs were

trained on forward and reverse replay events. For each trial, the averaged CA1-PFC reactivation

strength for the actual versus the alternative trajectory across all reactivation events during immobil-

ity at the reward well prior to the trial was used as a feature (n = 2; Figure 7—figure supplement

2A-B) to predict correct versus incorrect responses (k = 2, correct or incorrect, regardless of which

side arm that the animals choose Singer et al., 2013). The significance of this prediction was deter-

mined by comparing it to the distribution of shuffled data by randomly shuffling the trial labels (cor-

rect or incorrect), and this shuffled dataset was used to train a classifier in the same way as the

actual dataset. Given the unbalanced nature of the dataset (a lot more correct trials than incorrect

trials), we resampled the incorrect trials (with replacement) to match the correct trials and used ROC

analysis to measure the predictive power of the classifiers. The area under each ROC curve (AUC)

was computed, and an AUC based on the actual dataset that was higher than the 95th percentile of

its shuffles (p < 0.05) was considered as significant. Only trials with at least one reactivation event of

the given type (forward or reverse) were used for prediction.

Statistical analysis
Data analysis was performed using custom routines in MATLAB (MathWorks) and GraphPad Prism 8

(GraphPad Software). We used nonparametric and two-tailed tests for statistical comparisons

throughout the paper, unless otherwise noted. We used Kruskal-Wallis or Friedman test for multiple

comparisons, with post hoc analysis performed using a Dunn’s test. p<0.05 was considered the cut-

off for statistical significance. Unless otherwise noted, values and error bars in the text denote means

± SEMs. No statistical methods were used to pre-determine sample sizes, but our sample sizes are

similar to those generally employed in the field.
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Petersen PC, Buzsáki G. 2020. Cooling of medial septum reveals theta phase lag coordination of hippocampal
cell assemblies. Neuron 107:731–744. DOI: https://doi.org/10.1016/j.neuron.2020.05.023

Peyrache A, Khamassi M, Benchenane K, Wiener SI, Battaglia FP. 2009. Replay of rule-learning related neural
patterns in the prefrontal cortex during sleep. Nature Neuroscience 12:919–926. DOI: https://doi.org/10.1038/
nn.2337, PMID: 19483687

Pezzulo G, van der Meer MA, Lansink CS, Pennartz CM. 2014. Internally generated sequences in learning and
executing goal-directed behavior. Trends in Cognitive Sciences 18:647–657. DOI: https://doi.org/10.1016/j.tics.
2014.06.011, PMID: 25156191

Pezzulo G, Donnarumma F, Maisto D, Stoianov I. 2019. Planning at decision time and in the background during
spatial navigation. Current Opinion in Behavioral Sciences 29:69–76. DOI: https://doi.org/10.1016/j.cobeha.
2019.04.009

Pfeiffer BE, Foster DJ. 2013. Hippocampal place-cell sequences depict future paths to remembered goals.
Nature 497:74–79. DOI: https://doi.org/10.1038/nature12112, PMID: 23594744

Rich EL, Wallis JD. 2016. Decoding subjective decisions from orbitofrontal cortex. Nature Neuroscience 19:973–
980. DOI: https://doi.org/10.1038/nn.4320, PMID: 27273768
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