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Abstract: Classical risk factors of atherosclerosis in the general population show paradoxical effects
in chronic kidney disease (CKD) patients. Thus, low low-density lipoprotein (LDL) cholesterol
levels have been associated with worse cardiovascular outcomes. Magnesium (Mg) is a divalent
cation whose homeostasis is altered in CKD. Furthermore, Mg levels have been associated with
cardiovascular health. The present study aims to understand the relationships of Mg and lipid
parameters with atherosclerosis in CKD. In this analysis, 1754 participants from the Observatorio
Nacional de Atherosclerosis en Nefrologia (NEFRONA) cohort were included. Carotid intima media
thickness (cIMT) was determined in six arterial territories, and associated factors were investigated
by linear regression. cIMT correlated positively with being male, Caucasian, a smoker, diabetic,
hypertensive, dyslipidemic and with increased age, BMI, and triglyceride levels, and negatively with
levels of HDL cholesterol. First-order interactions in linear regression analysis showed that Mg was
an effect modifier on the influence of lipidic parameters. Thus, cIMT predicted values were higher
when triglycerides or LDL levels were high and Mg levels were low. On the contrary, when Mg
levels were high, this effect disappeared. In conclusion, Mg acts as an effect modifier between lipidic
parameters and atherosclerotic cardiovascular disease. Therefore, Mg levels, together with lipidic
parameters, should be taken into account when assessing atherosclerotic risk.
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1. Introduction

According to the Cardiovascular Disease Statistics from the European Society of Cardiology,
in 2015 there were 11 million new cases of cardiovascular disease (CVD) reported in Europe, and the
majority of countries showed an increase in cases from 1990 [1]. Its prevalence was reported to be
83.5 million people, of which 35.7 million people showed peripheral vascular disease [1]. Moreover,
CVD also led to 64 million disability-adjusted life years in the European population [1].

Among risk factors associated with CVD, plasma lipids play a key role in the initiation and
progression of atheromatous disease [2]. Epidemiological studies show that increased concentrations
of low-density lipoprotein cholesterol (LDL-C) are associated with an increased risk of cardiovascular
events [3,4], while the contrary effect has been demonstrated for high-density lipoprotein cholesterol [5]
(HDL-C). Triglyceride levels are inversely associated with HDL-C levels [6] and, despite not
showing atherogenic properties per se, are considered to be an important biomarker of CVD, due to
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their association with atherogenic remnant lipoproteins containing apo CIII [7]. Triglycerides have
important implications for chronic kidney disease (CKD) patients, a population that presents a high
incidence of atherosclerotic events [8]. Additionally, traditional lipid profiles are not associated with
increased cardiovascular risk in this population. CKD patients present low levels of HDL-C and
hypertriglyceridemia [9], but levels of LDL-C or total cholesterol are not usually modified, or are even
low in advanced stages [10]. Some works point to the importance of LDL-C particle size [11] or the
levels of oxidized LDL-C [12]. Nevertheless, the link between altered lipid metabolism and the higher
presence of atheromasias in CKD patients is not clear.

Currently, to prevent cardiovascular events in high risk populations, most efforts have been
directed towards lowering plasma LDL-C and triglycerides, by means of pharmacological treatment [13],
dietary intervention [14,15], or diet supplements [16–18]. Among diet supplements, magnesium (Mg)
was one of the first to be used for lowering serum lipids. During the 1980s, it was demonstrated
that Mg deficiency was associated with hypertension and vascular calcifications, while increasing its
dietary intake prevented atheroma in experimental animals with normal renal function [19], and in
experimental uremia [20]. Later on, during the 1990s, different studies in patients showed that lower
Mg plasma concentrations were associated with atherosclerosis [21], and that Mg supplementation
lowered plasma cholesterol, LDL, and triglyceride concentrations [22,23]. Recent studies also found an
inverse correlation between Mg levels, carotid intima–media thickness (cIMT) [24,25] and peripheral
artery disease [26,27], while many epidemiological studies and clinical trials reported Mg as a key
player in cardiovascular health [28–31], even in hemodialysis patients [32]. However, randomized
clinical trials with Mg supplementation have yielded conflicting results [33,34]. CKD patients often
present an altered Mg balance. Thus, the decrease in glomerular filtration rate (GFR) can induce Mg
retention, whereas in other cases tubular dysfunction and diuretic use can induce hypomagnesemia.
Therefore, the altered Mg levels, alongside the specific dyslipidemia found in those patients, make them
a very interesting group to investigate the possible interactions of both variables in atherosclerosis.

Despite the fact that some data showed that Mg levels can affect cIMT and that, according to
some studies, it could also affect plasma lipid concentrations, no studies have analyzed the possible
interactions of both variables in atherosclerosis. In the present study, we aim to study the impact of
Mg on cIMT, and how Mg interacts with plasma lipids and other known CVD risk factors in a CKD
population form the Observatorio Nacional de Atherosclerosis en Nefrologia (NEFRONA) cohort.

2. Materials and Methods

2.1. Study Design

The NEFRONA study was designed to assess the utility of noninvasive vascular imaging techniques
and plasma biomarkers to predict cardiovascular events and mortality in CKD patients [35,36]. Briefly,
CKD and non-CKD volunteers aged 18 to 75 years were recruited throughout Spanish primary care
centers and renal units from 2009 to 2012. Patients with a history of CVD, remarkable carotid stenosis,
active infections (tuberculosis and human immunodeficiency virus), pregnancy, less than twelve month
of life expectancy, and with any organ transplantation or carotid artery surgery were excluded from
the study. Of the NEFRONA study, 1754 subjects had available serum samples to measure Mg levels.
Out of those, 40 presented with missing data on CKD status or cIMT values. Thus, 1754 volunteers
were used in the present study. In total, 1542 presented with CKD (629 Stage 3; 528 Stages 4–5;
385 dialysis), and 212 were non-CKD controls (glomerular filtration rate > 60 mL/min/1.73 m2).
The ethics committee of each hospital approved the protocol of the study, and all volunteers were
included after signing an informed consent. The research followed the principles of the Declaration
of Helsinki. Non-CKD controls were included as per the protocol of the NEFRONA study and as a
reference with normal Mg and lower cIMT values.
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2.2. Clinical Data and Mg Determination

A nurse and two specifically trained technicians collected the following data: gender, age, body
mass index, systolic and diastolic blood pressure (SBP and DBP), pulse pressure, and smoking status.
Information about presence of diabetes, hypertension, and dyslipidemia was obtained from clinical
records. Fasting blood samples were also collected by the same team and were stored at −80 ◦C in
the Biobank of the RedInRen in the University of Alcala de Henares (Madrid). Biochemical analysis
was performed as described previously [37]. The determination of Mg in serum samples was
performed using the Mg reagent from Beckman Coulter (Brea, CA USA; Ref. OSR6189), following the
manufacturer’s instructions.

2.3. Atherosclerosis Assessment

Atherosclerosis assessment was performed as previously described [38]. Briefly, carotid ultrasound
measurements were performed in three territories of both carotid arteries (bifurcation, internal,
and common carotid arteries). Plaques were defined according to the Mannheim Carotid Intima–Media
Thickness (cIMT) Consensus and the American Society of Echocardiography as a cIMT lumen
protrusion ≥ 1.5 mm [39,40]. More extended protocols and data about plaque prevalence in the entire
NEFRONA cohort have been published previously [37]. In the present analysis, we used the average
cIMT of the territories that did not show atheroma plaque.

2.4. Statistical Analysis

Absolute frequencies (and percentage) or mean (and standard deviation) were used to describe
qualitative and quantitative variables, respectively. Pearson correlation coefficients were calculated
to analyze the relationships between cIMT and Mg levels with other clinical variables. Multivariate
regression linear models were used to assess the association of clinical variables with cIMT. To specifically
assess the joint association of Mg with the rest of the explanatory variables on cIMT, all possible
first-order interactions were considered in the model, and a backwards stepwise algorithm was used to
select the significant ones. A graph showing the predicted values of cIMT when the rest of the variables
of the model are set to zero, and showing the interactions of continuous values of lipid parameters
and Mg levels was drawn. All analyses were performed using R, setting the threshold of significance
at 0.05.

3. Results

3.1. Clinical Characteristics

The study comprised 1754 volunteers with a mean age of 58.6 ± 12.7 years. Significant differences
were found between CKD stages in all the parameters of the study, except in the percentage of smokers,
which was not significantly different between CKD stages. Interestingly, Mg levels increased as renal
function decreased, whereas cIMT levels showed the opposite tendency. LDL levels also showed a
significant tendency to decrease as renal function impairment worsened (Table 1).
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Table 1. Clinical characteristics of the cohort.

Variable All n = 1754
(100%)

Control
n = 212
(12.1%)

CKD 2–3
n = 629
(35.9%)

CKD 4–5
n = 528
(30.1%)

Dialysis
n = 385
(21.9%)

p-Value
(CKD

Groups)

p-Value
(Trend CKD

Groups)

Sex (Male) 1040 (59.3%) 100 (47.2%) 425 (67.6%) 299 (56.6%) 216 (56.1%) <0.001 0.512

Race (Caucasian) 1704 (97.1%) 209 (98.6%) 620 (98.6%) 514 (97.3%) 361 (93.8%) <0.001 <0.001

Age, years 58.6 (12.7) 51.7 (12.4) 62.15 (11.2) 58.8 (12.5) 56.4 (13.6) <0.001 0.001

Smoker (Yes) 977 (55.7%) 123 (58%) 363 (57.7%) 279 (52.8%) 212 (55.1%) 0.347 0.211

Diabetes (Yes) 373 (21.3%) 0 (0%) 170 (27%) 127 (24.1%) 76 (19.7%) <0.001 0.003

Hypertension (Yes) 1498 (85.4%) 67 (31.6) 569 (90.5%) 507 (96%) 355 (92.8%) <0.001 <0.001

Dyslipidemia (Yes) 1170 (66.7%) 52 (24.5) 467 (74.2%) 399 (75.6%) 252 (65.5%) <0.001 <0.001

BMI (kg/m2) 28.3 (5.21) 27.7 (4.5) 29.2 (4.7) 28.5 (5.5) 26.9 (5.6) <0.001 0.026

SBP (mmHg) 138 (20.4) 131 (17.9) 138 (18.7) 141 (18.9) 138 (24.8) 0.004 <0.001

DBP (mmHg) 79.8 (10.9) 79 (10.2) 79.6 (9.7) 81 (10.2) 79 (13.5) <0.001 0.792

Pulse pressure (mmHg) 58.7 (16.7) 52.1 (12.6) 58.8 (15.4) 60.3 (16.8) 59.9 (19.4) <0.001 <0.001

Total Cholesterol (mg/dL) 180 (39.9) 203 (32.3) 184 (37.5) 177 (38.5) 164 (42.2) <0.001 <0.001

HDL Cholesterol (mg/dL) 50.1 (14.9) 52.9 (13.8) 50.8 (14.8) 50.1 (15.1) 46.9 (15.1) <0.001 <0.001

LDL Cholesterol (mg/dL) 104 (34.0) 127 (30.2) 107 (31.6) 100 (33.0) 91.9 (34.5) <0.001 <0.001

Triglycerides (mg/dL) 141 (84.6) 116 (71.7) 145 (83.5) 143 (88.6) 146 (85.5) <0.001 <0.001

Glucose (mg/dL) 107 (42.1) 96 (12.4) 110 (38.4) 107 (45.1) 108 (52.5) <0.001 0.003

Calcium (mmol/L) 2.33 (0.152) 2.34 (0.094) 2.37 (0.119) 2.34 (0.144) 2.24 (0.197) <0.001 <0.001

Phosphorus (mmol/L) 1.259 (0.332) 1.09 (0.158) 1.06 (0.18) 1.292 (0.245) 1.55 (0.442) <0.001 <0.001

Sodium (mmol/L) 141 (2.93) 141 (2.25) 141 (2.65) 141 (2.80) 139 (3,22) <0.001 <0.001

Potassium (mmol/L) 4.79 (0.60) 4.4 (0.39) 4.7 (0.50) 4.9 (0.54) 4.9 (0.80) <0.001 <0.001

Magnesium (mmol/L) 0.83 (0.15) 0.82 (0.08) 0.80 (0.12) 0.84 (0.14) 0.88 (0.22) <0.001 <0.001

cIMT 0.73 (0.14) 0.70 (0.13) 0.75 (0.14) 0.71 (0.14) 0.72 (0.14) <0.001 0.569

Absolute frequency (percentage) and mean (standard deviation) are shown for qualitative and quantitative variables,
respectively. Abbreviations: Body Mass Index (BMI), Systolic Blood Pressure (SBP), Diastolic Blood Pressure
(DBP), Carotid Intima–Media Thickness (cIMT), Chronic Kidney Disease (CKD). LDL—low-density lipoprotein;
HDL—high density lipoprotein.

3.2. Correlations of Clinical Variables with cIMT and Mg Levels

Results for the correlation matrix of cIMT and Mg levels with the clinical variables of the study are
shown in Table 2. cIMT correlated positively with being male, Caucasian, smoker, diabetic, hypertensive,
dyslipidemic and with increased age, BMI, and triglyceride levels. Furthermore, it correlated negatively
with levels of HDL cholesterol. Interestingly, no significant correlation was found with total or LDL
cholesterol levels. Mg levels positively correlated with the presence of hypertension, and negatively
with being Caucasian, diabetic, and with level of BMI. The correlation matrix of the variables with
cIMT was calculated for the controls (Supplementary Table S1) as a sensitivity analysis. Some of the
significant correlations were lost (due to the lower sample size), but most of the coefficients were similar.

Table 2. Bivariate correlation coefficients between cIMT and Magnesium levels with other variables.

cIMT Magnesium

Variable r p-Value r p-Value

Sex (Male) 0.223 <0.001 −0.003 0.906

Race (Caucasian) 0.083 0.001 −0.079 0.001

Age, years 0.528 <0.001 −0.035 0.141

Smoker 0.105 <0.001 −0.018 0.445

Diabetes 0.157 <0.001 −0.070 0.003

Hypertension 0.137 <0.001 0.053 0.028

Dyslipidemia 0.094 <0.001 0.015 0.536

BMI 0.158 <0.001 −0.053 0.027
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Table 2. Cont.

cIMT Magnesium

Variable r p-Value r p-Value

Total Cholesterol 0.021 0.392 −0.043 0.075

HDL Cholesterol −0.071 0.007 0.001 0.967

LDL Cholesterol 0.007 0.781 −0.009 0.724

Triglycerides 0.082 0.001 0.009 0.709

Magnesium −0.003 0.914 - -

cIMT - - −0.003 0.914

Pearson’s correlation coefficients (r) and p-value are shown for each variable. Abbreviations: Body Mass Index
(BMI), Carotid Intima–Media Thickness (cIMT).

3.3. Association of Clinical Variables with cIMT

The results from the multivariate main effects model, which included all the variables studied,
showed that age, being male or a smoker, pulse pressure, potassium, and CKD stage were factors
that were significantly associated with cIMT. Mg levels did not reach statistical significance in this
model, underlying the fact that Mg had no association with cIMT when considering its effect in the
multivariate model independently of the rest of variables (Table 3). However, interestingly, the results
from the model including the interactions revealed that Mg levels were significantly associated with
cIMT, when interactions with cholesterol levels (total, LDL-C, and HDL-C) and triglycerides are taken
into account. Sex, age, tobacco, pulse pressure, CKD stage, and potassium levels were significantly
associated with cIMT in this multivariate model (Table 4).

Table 3. Multivariate linear main effects model for cIMT.

All Cohort

Beta SE p-Value

Intercept 0.14 0.18 0.43

Magnesium 0.002 0.02 0.92

Sex, male 0.034 0.007 <0.00001

Race, Caucasian 0.006 0.02 0.74

Age 0.005 0.0003 <0.00001

Current smoker 0.02 0.007 0.01

Diabetes −0.0002 0.01 0.98

Hypertension 0.01 0.01 0.35

Dyslipidemia −0.005 0.007 0.49

BMI 0.0003 0.0007 0.65

Pulse pressure 0.0007 0.0002 0.0004

CKD Stage, 2–3 −0.03 0.013 0.015

CKD Stage, 4–5 −0.06 0.014 0.00006

CKD Stage, dialysis −0.016 0.015 0.31

Total Cholesterol 0.0005 0.0004 0.25

HDL Cholesterol −0.0006 0.0005 0.24

LDL Cholesterol −0.0002 0.0004 0.57

Triglycerides −0.00002 0.00009 0.82

Glucose 0.0001 0.0001 0.25

Calcium −0.001 0.006 0.82

Phosphorus −0.002 0.004 0.59

Sodium 0.0007 0.001 0.53

Potassium 0.014 0.006 0.016

Estimated parameters (beta), standard error (SE) and p-value shown for each variable. Abbreviations: Body Mass
Index (BMI), Chronic Kidney Disease (CKD).
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Table 4. Multivariate linear effects model for cIMT with first-order interactions.

All Cohort

Beta SE p-Value

Intercept 0.35 0.089 0.00007

Sex, male 0.04 0.007 <0.00001

Age (years) 0.006 0.0003 <0.00001

Current smoker 0.018 0.007 0.006

Pulse pressure 0.0007 0.0002 0.0002

CKD stage, 2–3 −0.027 0.01 0.01

CKD stage, 4–5 −0.05 0.01 0.00001

CKD stage, dialysis −0.014 0.01 0.26

Magnesium −0.12 0.099 0.23

Total Cholesterol −0.006 0.003 0.02

HDL Cholesterol 0.006 0.003 0.03

LDL Cholesterol 0.006 0.003 0.04

Triglycerides 0.001 0.0005 0.014

Potassium 0.013 0.006 0.016

Interactions

Magnesium→Total Cholesterol 0.008 0.003 0.011

Magnesium→HDL Cholesterol −0.007 0.003 0.016

Magnesium→LDL Cholesterol −0.007 0.003 0.03

Magnesium→Triglycerides −0.0014 0.0005 0.01

Estimated parameters (beta), standard error (SE) and p-value shown for each significant variable considering interactions.

3.4. Visualization of the Association of the Interaction of Mg and Plasma Lipids with cIMT

To better visualize the interactions between plasma lipids and Mg, we performed an interaction
graph for continuous data. As seen in Figure 1a, cIMT predicted values were higher when triglycerides
levels were high and Mg levels were low. On the contrary, when Mg levels were higher than 1 mmol/L,
the relationship between high triglyceride levels and increased cIMT disappeared. A similar tendency
was seen when LDL-C levels, Mg, and cIMT were plotted (Figure 1b). The interaction between HDL-C
and Mg showed that the protective effect of high HDL-C levels disappears when Mg levels are low
(Figure 1c). Finally, a paradoxical effect of total cholesterol levels is depicted, predicting higher cIMT
when both total cholesterol and Mg are high (Figure 1d).
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4. Discussion

The present study identifies, for the first time, the role of Mg as an effect modifier on the association
of lipid parameters with cIMT in CKD patients. Thus, high LDL and triglyceride levels affect cIMT only
when Mg levels are low. In the same model, high HDL levels associate with lower cIMT only when
Mg levels are high. This result could be behind some of the paradoxical effects of lipid parameters on
atherosclerosis in renal patients, in which Mg levels are often modified by the disease.

Hypertriglyceridemia and high cholesterol levels are related to atherosclerosis [2,41], and current
mathematical models estimate that lipid-lowering therapies could avoid a substantial number of
cardiovascular events [42]. Among the different dietary supplements proposed for lipid-lowering
treatment, Mg has been used not only to prevent cardiovascular events in patients suffering from
chronic kidney disease [43], but also for metabolic syndrome treatment [44] as well as to improve
cardiovascular health in overweight and obese people [45]. In renal patients, however, the relationship
between lipid parameters and atherosclerosis is not so clear. Thus, high LDL cholesterol levels have
sometimes been found to be unrelated to cardiovascular disease in CKD patients. In other cases,
the phenomenon called reverse causality has also been shown in this population, finding an association
of lower LDL levels with higher cardiovascular risk [46]. Although malnutrition has been shown
to partially explain this paradoxical effect, hypomagnesemia, which is associated with malnutrition,
could be part of the exact mechanism [47]. The same different effect on cardiovascular risk has also
been observed with HDL, which seems to lose its association with cardiovascular risk as renal function
declines [48]. This report also shows that the interaction between Mg and triglycerides has an impact
on cIMT. Pioneering work from the ARIC study found a relationship between serum Mg levels and
cIMT that was maintained after adjusting for age, but that disappeared after adjusting for other risk
factors [49]. Indeed, and in agreement with previous literature reports, Mg has been recently identified
as a possible independent risk factor for carotid atherosclerosis [50], and a meta-analysis showed
an inverse relationship between circulating and dietary Mg and cardiovascular risk [30]. As far as
we know, none of the works that identified a relationship between serum Mg levels and cIMT have
considered the impact of Mg–lipid interaction on cIMT.
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One of the possible explanations for our results is that Mg is an important antioxidant, and its
deficiency has been related to an increase in oxidative stress biomarkers [51], and to an increase in
lipid peroxidation [52,53]. High levels of these molecules have been associated with cardiovascular
events [54]. A proposed mechanism of its atherogenic potential includes the recruitment and retention
of macrophages, the secretion of cytokines by macrophages and endothelial cells, the proliferation
of smooth muscle cells, and lymphocyte chemotaxis [55]. Therefore, according to our findings, high
Mg levels could mitigate lipid peroxidation even with high plasma lipid profiles, thereby reducing
its impact on cIMT. Another possible mechanism to explain our results could be the prevention of
the oxidation of LDL by Mg. There is a clear relationship between the levels of oxidized LDL and
atheromatous disease [56], and CKD patients showed increased levels of oxidized LDL [57]. In addition,
it has been reported that oxidized LDL concentrations are higher in subjects with low Mg levels [58,59].
Thus, future studies should aim to correlate Mg levels with oxidized LDL levels and atheromatous
disease in CKD patients. Finally, it is worth mentioning that many studies have proposed an active role
of Mg in retarding vascular calcification of the medial arterial layer. However, this process is not related
to lipid peroxidation, but to the binding of phosphate, decreasing calcium phosphate deposition [60],
and regulating smooth muscle cells transdifferentiation [61].

This study has some limitations. First, its cross-sectional nature impeded us from making
predictions—only associations. Furthermore, and in order to obtain a relatively wide degree of
variation in Mg levels, a population with controls, different stages of CKD, and hemodialysis were
included. This last group is especially sensible for the current analysis due to its susceptibility to
present atherosclerotic disease and a plethora of additional pro-atherogenic factors (such as dialysis
vintage, type of dialysis, etc.) that cannot be included in the whole analysis as possible confounders.
However, CKD stage was included in the logistic model and did not reach statistical significance,
allowing for the extrapolation of our results to our whole population. The second limitation is that we
only measured plasma Mg, whose levels could differ from intracellular Mg [62,63] (which is responsible
for the majority of reactions involving it as coenzyme [31]), and from levels obtained by the twenty-four
hour excretion of magnesium in urine, which could more accurately reflect Mg balance. However, on
the one hand, plasma lipid peroxidation is the possible mechanism by which Mg could be involved in
the modification of cardiovascular events [54], and therefore serum Mg levels could better correlate
with cIMT than tissue levels. On the other hand, Mg excretion in urine should be carefully taken in
CKD patients [64]; consequently, for the current study, plasma Mg is a valid quantification method.
As for the strengths of the current work, we would like to hallmark the relatively large cohort, which
allowed us to adjust the regression models by ten different variables.

In summary, the current study shows an interaction of Mg with lipid parameters that modifies
its effect on cITM. This result could shed some light on the effect of lipid levels on atherosclerosis in
conditions in which Mg levels are modified and highlight that the important effect of this mineral
on cardiovascular physiology could be more complex than initially thought. Although this analysis
suggests around 1 nmol/L as the cutoff point of serum Mg that could influence the deleterious effect of
lipids on atherosclerosis, further specifically designed studies are needed. In conclusion, Mg levels
should be measured together with lipid parameters in order to assess the risk of atherosclerosis,
especially in situations in which alterations in serum Mg are expected.
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