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Abstract

The recent technological advancement in digital pathology has enabled 3D tissue-based 

investigation of human diseases at extremely high resolutions. Discovering and verifying spatial 

patterns among massive 3D micro-anatomic biological objects such as blood vessels and cells 

derived from 3D pathology image volumes plays a pivotal role in understanding diseases. 

However, the exponential increase of available 3D data and the complex structures of biological 

objects make it extremely difficult to support spatial queries due to high I/O, communication and 

computational cost for 3D spatial queries. In this demonstration, we present our scalable in-

memory based spatial query system iSPEED for large-scale 3D data with complex structures. Low 

latency is managed by storing in memory with progressive compression including successive 

levels of detail on object level. On the other hand, low computational cost is achieved by pre-

generation of global spatial indexes in memory and additional on-demand generation of indexing 

at run-time. Furthermore, iSPEED applies structural indexing on complex structured objects in 

multiple query types to gain performance advantage. During query processing, the memory 

footprint of iSPEED is minimal due to its indexing structure and progressive decompression on-

demand. We demonstrate iSPEED query capability with three representative queries: 3D spatial 

joins, nearest neighbor and spatial proximity estimation on multiple datasets using a web based 

RESTful interface. Users can furthermore explore the input data structure, manage and adjust 

query pipeline parameters on the interface.
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1. INTRODUCTION

3D spatial data has presence in a wide range of industrial applications, for instance, urban 

planning, 3D mapping and navigation, terrain modeling, environmental assessments. 

Managing and analyzing large amount of 3D spatial data to derive values and guide decision 

making have become essential to business success and scientific discoveries. The emergence 

of 3D spatial data is driven by not only applications but also scientific applications that are 

becoming increasingly data- and compute-intensive.

1 In the past decade, digital pathology has grown to high popularity in advancing biomedical 

research. The very first step in quantitative 3D pathology imaging is to extract micro-

anatomic objects such as blood vessels, cells and nuclei, together with their associated 

features using 3D registration, segmentation and reconstruction [5, 6]. The following step is 

to explore spatial relationships among a massive number of such 3D objects, to discover 

spatial patterns and their correlations with disease progression. For instance, in brain tumor 

studies, we would like to measure the distances from cells to their nearest neighboring tumor 

vessels. As another example, we would like to use a containment query to identify only cells 

of interest contained in a blood vessel or within certain distance from the vessel. Therefore 

to support efficient spatial queries and analytics on the 3D objects, we need to address four 

major challenges: 1) the “big data” challenge due to explosion of 3D data, 2) the complex 

3D object representation, and 3) the high geometric computation complexity.

Explosion of 3D Data.

Current digital microscopy scanners generate images with extremely high resolution. While 

a typical 2D microscopy image may contain 100,000 × 100,000 pixels, with a million micro-

anatomic objects. A typical 3D tissue volume may generate hundreds of slices, and contain 

tens of millions of 3D biological objects, with each object represented with hundreds to 

thousands of mesh facets. A typical study may involve hundreds of patients and contain 

hundreds of tissue volumes. This unprecedented scale of 3D objects poses significant 

challenges on data processing, leading to tremendous I/O, communication, and 

computational cost.

Complex Structures.

3D objects frequently come with complex structures. For example, blood vessels are 

reconstructed to capture the 3D structural variations such as bifurcations where one main 

vessel grows into two or more branches at multiple points. While minimal bounding boxes 

(MBBs) have been successfully used in traditional spatial indexing, MBBs are not effective 

to represent such complex 3D objects for distance based spatial queries.

Multiple Object Resolution Levels.

In practice, 3D objects are commonly represented with multiple resolutions with different 

Level of Detail (LOD). In digital pathology, one frequently wants to quickly visualize rough 

3D shapes of blood vessels to explore spatial relationships, and another user may want to 

1The work was conducted while Dr. Liang was at Stony Brook. Her current affiliation is Google Inc.
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explore 3D structure details for fine calculation of vessel features. LOD in higher resolution 

provides more accurate results for spatial computations, but could significantly increase data 

volume and computation cost. Thus, a 3D spatial querying system has to balance between 

accuracy and computational cost.

High Computation Complexity.

3D spatial queries involve computationally intensive geometric operations for quantitative 

measurements and identifications of topology relationships. For spatial joins on large 

datasets, MBBs are most often useful only to identify potential intersection of convex 

objects. However, for actual spatial refinement, and especially queries requiring quantitative 

spatial measurements, such as computation of intersected volumes of objects with LOD at 

high resolution, geometric computation clearly dominate the majority of query cost.

To tackle the above challenges, we introduce iSPEED, an efficient and scalable in-memory 

based spatial query processing system for large scale 3D data. To achieve low latency, 

iSPEEED stores data in memory in a highly compressed form using an effective progressive 

compression approach that compresses each 3D object individually with successive levels of 

detail. To minimize search space and computation cost, iSPEED provides global spatial 

indexing in memory through partitioning at subspace level and partitioned cuboid level. 

iSPEED provides an in-memory 3D spatial query engine INTENSE, which can be invoked 

on-demand for running many instances in parallel.

At run time, iSPEED dynamically decompresses only required 3D objects at the specified 

level of detail, and generates necessary spatial indexes in-memory to accelerate query 

processing, such as on-demand object-level indexing and structural indexing on complex 

structured objects. Multiple spatial queries are supported, including spatial joins, nearest 

neighbor, and spatial proximity estimation. iSPEED further allows user to model 3D objects 

with multiple levels of detail for spatial queries and provides options to select parameters for 

faster queries or higher accuracy to meet application specific requirements.

Lastly, iSPEED provides a user friendly interface allowing customization of parameters and 

visualization of intermediate results. In Section 2.2 we describe our indexing approach and 

in Section 3 we discuss the in-memory spatial query engine. Finally, we describe the 

demonstration settings in Sec. 4

2. BACKGROUND AND OVERVIEW

Pathology Image Properties.

3D image analysis of whole slide image volumes produces large amount of quantifications 

such as 3D spatial objects and features [5]. In a typical 3D analytical pathology imaging 

pipeline, selected biopsies are sectioned into thin slices and mounted on physical glasses. 

These slides are then scanned into digital images to form 3D image volumes. With the image 

volume, micro-anatomic objects of interest such as blood vessels and nuclei are 

reconstructed in 3D models, as shown in Fig. 1. Finally, the 3D objects as well as their 

extracted features are managed and queried by a spatial data management system.
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Common biological objects obtained from pathology images include nuclei or cells, fats, 

blood vessels and ducts. While nuclei have relatively simple shapes, blood vessels and ducts 

could have complex structures such as bifurcations. The spatial relationships and distribution 

patterns among these objects play a critical role for understanding of tumor micro-

environment and investigations of disease progression [2].

One major objective of iSPEED (in-memory spatial query system for three dimensional 

spatial data) is to reduce I/O and communication cost, exploit indexing techniques for 

complex objects to accelerate queries, and provide high scalability to run on large computer 

clusters or computing clouds. The architecture overview of iSPEED is shown in Fig. 2. 3D 

data is first staged in a distributed file system and pre-processed for compression and 

indexing. After effective compression, each individually compressed 3D geometric object 

will be stored in memory, and a master object index will be generated to track the MBB and 

in-memory location of each object. Pre-processing will also provide spatial data partitioning 

to generate partitioned cuboids which form the unit of parallel query tasks. Partitioning 

creates two level global spatial indexes: partitioned cuboid index to represent the MBB of all 

cuboids, and subspace index to group neighboring cuboids into large subspaces to form a 

higher level spatial index.

iSPEED provides an on-demand in-memory three dimensional spatial query engine 

INTENSE to run query tasks. INTENSE can be invoked on-demand to run many instances 

in parallel. For each query task, the IDs and MBBs of the 3D objects contained in the 

partitioned cuboid will be identified with the master object index, and INTENSE will create 

an in-memory index such as R*-tree for query processing. Only at the refinement or spatial 

measurement step, the original geometries will be needed for geometric computations such 

as computing if two polyhedrons intersect or intersecting volume. INTENSE will read the 

compressed 3D objects from the memory and decompress the objects based on specified 

level of detail to feed them to the query engine.

2.1 Compression and In-Memory Storage

They key advantage factor in iSPEED is the usage of progressive compression approach to 

compress each 3D object individually. This is performed before actual queries, while 

extracting the MBB of each object and create a master object index to record the MBB and 

the location of each object. This serves as an additional layer of index for objects. This one 

time process guarantees the speed up of all subsequent queries.

3D Mesh Compression.—iSPEED uses a 3D mesh compression approach to 

progressively compress and decompress individual objects [7, 4]. The steps include 

decimation of mesh LOD, removing vertices and adding new edges, modifying entropy and 

maintain compressed symbol lists. Since the data compression algorithm is not lossless, high 

compression rate could incur potential structure distortion. We observed that on average the 

error rate is about 0.21% for join query. As spatial data is generated from image analysis 

algorithms which themselves come with errors [10], and spatial queries involve massive 

number of 3D objects for statistical purpose, such precision loss is negligible in practice.
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In-memory Data Storage.—High effective compression enables data storage in memory, 

and the compression ratio depends on the structure complexity of the mesh object. Our 

experiments indicate that the size of the base mesh L0 is less than 1% of the total file size of 

the raw data, and the size of the whole compressed file with multiple LODs is only about 3% 

of the raw file size. For a typical 3D volume in digital pathology of 1TB in size, the final 

size after compression will be about 30GB, which could well fit into the memory of a 

compute cluster node.

While each 3D object is compressed individually, a master object index is created to track 

the MBB and the in-memory location of each object. Each record in the master object index 

is in the format of ⟨object_id, dataset_id, object_class, MBB, offset, length⟩, where 

object_id is a unique ID for each object within the dataset with dataset_id; object_class 
indicates object class such as cell or different vessel types; offset and length indicate the byte 

offset and length of the object in the memory respectively.

2.2 Spatial Partitioning and Global Indexing

To achieve scalability, we provide spatial partition level parallelism by spatial partitioning. 

We have performed extensive studies on spatial partitioning for 2D space [9]. Similarly, for 

3D space, by partitioning the input data into partitioned cuboids, we can take the objects 

contained in each cuboid to form the processing unit for basic parallelism. In digital 

pathology, as the distributions of biological objects are relatively homogenous compared to 

geospatial data, we take multiple partitioning approaches, including fixed grid, oc-tree, sort-

tile-recursive, which is most suitable for such distributions based on our experiences. The 

partitions can be used to form two levels of global spatial indexes: partitioned cuboid 

indexing based on the partitioned cuboids, and subspace indexing based on aggregation of 

neighboring cuboids.

iSPEED uses R*-tree for the two-level global spatial indexing. Besides the partitioned 

cuboid and subspace indexes, object-level spatial index is created for objects contained in 

each cuboid, and structural index is created for individual complex objects (Section 3). All 

indexes have insignificant size and are maintained in memory at pre-processing phase 

(partitioned cuboid and subspace indexes) or on-demand (object-level and structural 

indexes). The master object index is non-spatial and keeps the MBB and in-memory location 

of each 3D object (compressed 3D geometry).

3. IN-MEMORY SPATIAL QUERY ENGINE

INTENSE (in-memory three dimensional spatial query engine) is a standalone in-memory 

based query engine for iSPEED. INTENSE is generic and can be extended (Fig. 2). It 

leverages multiple types of indexing structures(pre-generated in memory or on-demand) to 

accelerate spatial queries. First, INTENSE offers parallelism with decoupled spatial query 

processing on individual partitions to support multiple querying pipelines with optimal 

spatial access methods, and provides result normalization to handle boundary crossing 

objects. This is critical in distributed system, as there always exists boundary issues affecting 

query results. Second, INTENSE performs on-demand in-memory indexing for object-level 
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index (many objects contained in a partitioned cuboid; R*-Tree provides a relative good 

performance) and structural index (individual complex object such as a blood vessel).

3.1 Indexing levels

Object-level indexing.—Object-level spatial indexing provides access support objects in 

each partitioned cuboid to support indexed based spatial queries. For instance, joining 

objects from two cuboids can be supported through R-Tree based indexing. We apply an on-

demand based indexing approach by creating suitable indexes for the current query at 

runtime. This provides much flexibility and reduces storage, with very small overhead. Our 

extensive profiling shows that, for data and computation intensive spatial queries such as 

spatial join, the overhead for index building on modern hardware is very small.

Structural Indexing.—Traditional approaches for distance based queries simplify spatial 

objects with points or MBBs. However, these simplifications are not applicable to complex 

structured 3D objects such as vessels. INTENSE provides two in-memory on-demand 

structural indexing to accelerate spatial queries on complex structures: topological skeleton 

based indexing, and hierarchical Axis-Aligned Bounding Box (AABB) tree based indexing. 

They are discussed in details in our previous work. [3, 4]

In spatial proximity estimation query, the accurate distance between objects (e.g., cell and 

vessel) needs to be computed accurately. Rather than iterating on every primitive of a vessel 

structure that is computationally expensive, iSPEED uses a hierarchy on the AABB tree of 

its primitives (facets) to minimize the traversal search space on the complex structured 

vessel [8].

3.2 Sample Join Workflow

Spatial join is one of the most commonly used spatial queries. For digital pathology, spatial 

queries could be used to determine relationships of different types of biological objects such 

as containment relationship. One particular query type is spatial cross-matching, to compare 

or consolidate results of segmented and reconstructed 3D objects from different algorithms.

We illustrate the general workflow of such two-way spatial join. Here we take a filter-and-
refine strategy to reduce the computational cost of spatial predicate on 3D geometries. After 

identifying the objects with the same cuboid_id from two datasets, iSPEED builds a spatial 

index in bulk on one dataset (here dataset2) to generate an object-level index, and here we 

use 3D R*-tree [1]. Following a distributed refinement strategy, for every 3D object in 

dataset1, we first query its MBB on the R*-tree as a rough filtering step to eliminate objects 

pairs with no MBB intersection. For those candidates with MBB intersection, we load their 

compressed data from main memory and perform geometry decompression at specified level 

of detail to obtain polyhedrons. Then we perform spatial refinement step on the polyhedron 

pairs through 3D geometric operations. Other spatial operators such as overlaps and touches 
can also be processed similarly and can be found in our previous works[3].
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3.3 Query Task Parallelization

iSPEED provides a streamlined and parallel querying pipelines for efficiency and scalability. 

With partitioned cuboids, iSPEED can run multiple query tasks through distributed 

computing paradigms such as Hadoop or Spark on commodity clusters. In our 

implementation and demonstration, we use MapReduce for the query task parallelization. 

All other components are written exclusively to support the best performance and eliminate 

redundancy.

4. INTERFACE AND DEMONSTRATION

Interface.

While the engine INTENSE is implemented with C++, using open source libraries, 

including the Computational Geometry Algorithms Library (CGAL), and SpatialIndex 

extended for 3D R*-tree support, the front-end interface that user will be experiencing is 

client based and built purely on JavaScript with OpenGL support for 3D. The visualization is 

rendered on the client side with data pulled from the server via REST API requests. The 

server hosts a database and is also a node in the INTENSE Hadoop Cluster. The server 

forwards 3D processing requests to INTENSE, while it serves static raw geometry from 

HDFS and non-spatial attribute filter with assistance from the database. Non-geometric or 

non-spatial attributes of objects are stored on the server Post-greSQL database. The schema 

is hierarchical containing tables for data sets, images and individual objects. Attributes are 

indexed by column, providing very fast support when querying.

Demo Queries.

In our demo, we provide users with options to browse, explore data visualization or perform 

analytics to obtain query statistics. The data exploration interface contains an interacting 

canvas. Users can view various 3D micro-anatomic at different levels of details to visualize 

the complexity. For analytics users can select an option from a set of pre-defined queries, 

including spatial join and nearest neighbor queries on different datasets. Additional query 

predicate and parameters can be entered, such as LOD value to speed up query processing. 

The results will be returned and displayed to users when the query finishes. Currently we 

provide a limited support to result browsing due to the large volume of data that needs to be 

displayed (Fig. 4); Users have the ability to select a spatial region and explore objects within 

them. A typical query is comparing intersection volume ratio between two sets of machine-

segmented nuclei; another is obtaining an average 3-nearest distance as a metric for density 

of nuclei along blood vessels.

Demonstration Setup.

Three datasets from analytical pathology imaging are used for system performance 

evaluation. The 3D objects including nuclei (cells) and blood vessels are derived from 3D 

image volumes with different number of slides, and have been validated and represented in 

OFF format. We have multiple dataset sizes at 10GB, 40GB, 80GB and 500GB.

The performance of iSPEED is demonstrated on a remote cluster environment. The cluster 

has five nodes with 124 cores (Intel(R) Xeon(R) CPU E5-2650 v3 at 2.30GHz). Each node 
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comes with 5TB hard drive at 7200rmp and 128GB memory. Cluster nodes are connected 

via a 1Gb network. The 3D datasets are uploaded in Hadoop Distributed File System.

Scenarios.

For demonstration, we explore three representative data- and compute- intensive 3D spatial 

queries: spatial joins, nearest neighbor, and spatial proximity estimation. We also provide 

user with the ability to explore and visualize the structural complexity of the original input 

data as in Fig. 3. The canvas like environment allows examination of individual object as 

well as specific image region. More complex query can also be generated and customized 

via the web base interface.
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Figure 1: 
The workflow of 3D pathology imaging with spatial queries.
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Figure 2: 
Architecture of iSPEED.
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Figure 3: 
iSPEED Interface.
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Figure 4: 
iSPEED Interface.
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