scientific reports

OPEN

Deep vein thrombosis in response to stress induced by earthquakes in Japan: a meta-analysis of possible exacerbating factors

Yutaro Furukawa^{1,2}, Takaomi Kobayashi^{2,3,4,5,6⊠}, Shogo Narumi¹, Mayuko Koba¹, Hiroyuki Koami¹ & Yuichiro Sakamoto¹

The principal goal of this study was to assess factors associated with deep vein thrombosis (DVT) in the aftermath of earthquakes in Japan. We searched PubMed, Google Scholar, Web of Science, and Cochrane Library for articles published in English or Japanese regarding indicators for DVT associated with Japanese earthquakes. We calculated pooled odds ratios (OR) or mean differences (MD) with 95% confidence intervals (Cls) for patients with DVT (the DVT group) as compared with the non-DVT group for potential predictors. Ultimately, 7 articles were included in the analysis, comprising 6,637 subjects (DVT, 895; and non-DVT, 5,742). The following factors proved statistically significant: female gender (OR = 1.48, 95% Cl; 1.20–1.81, p = 0.0002), greater age (MD = 4.44, 95% Cl; 1.62–7.25, p = 0.002), hypertension (OR = 1.44, 95% Cl; 1.18–1.75, p = 0.0003), heart disease (OR = 1.45, 95% Cl; 1.07–1.97, p = 0.02), previous history of DVT (OR = 9.23, 95% Cl; 2.94–28.91, p = 0.0001), sleeping pill use (OR = 1.81, 95% Cl; 1.37–2.38, p = 0.0001), lower leg varix (OR = 1.63, 95% Cl; 1.17–2.28, p = 0.004), and soleal vein dilatation ≥ 8 mm (OR = 2.13, 95% Cl; 1.32–3.42, p = 0.002). Our findings furnish insights that can aid in making informed choices about healthcare and policy in the context of earthquake-induced stress.

Keywords Deep vein thrombosis, Pulmonary thromboembolism, Japan, Meta-analysis, Earthquake

Deep vein thrombosis (DVT) has attracted global public attention as a disease exacerbated by disasters^{1–14}. Importantly, an elevated risk of DVT has been reported among earthquake evacuees: 9.1-27.1% among earthquake evacuees globally, 10.3-27.1% among Japanese evacuees, and 6.0-20.0% among non-Japanese^{1–7,14}, 0.8-22.3% among patients with trauma (1.8% in patients with burns and 0.8-22.3% in patients with hip fractures)^{15–17}, and 1.3-9.3% among the general population from a Danish national cohort (1.9-9.3% in women and 1.3-8.1% in men)¹⁸. The incidence of DVT often rises after earthquakes due to a combination of immobility, stress, dehydration, and disrupted healthcare access^{1–7}. Survivors frequently endure prolonged immobility in shelters or cars, which increases blood stasis and the risk of clot formation. Stress and trauma from the disaster can alter blood coagulation, while dehydration thickens the blood, further elevating the risk of DVT. Older adults and those with pre-existing health conditions are particularly vulnerable. The lack of timely medical care in the aftermath exacerbates these risks, underscoring the need for targeted disaster preparedness and response measures. Among DVT cases, 33.5% occur concomitantly with pulmonary thromboembolism^{19,20}, and as many as 9.7% of these result in sudden death within a month²¹. In other words, DVT can have serious consequences shortly after earthquakes. Therefore, early detection and prevention of DVT are imperative, especially among earthquake evacuees.

When assessing predictors of DVT in earthquake scenarios, it is imperative to approach Japanese and other populations separately due to considerations related to geography, demographic composition, and genetic factors. There are three primary reasons for this distinction. First, Japan is a seismic hotspot, frequently experiencing earthquakes, like the 2011 Great East Japan earthquake and the 2016 Kumamoto earthquake^{22–24}. Forecasts

¹Department of Emergency and Critical Care Medicine Faculty of Medicine, Saga University, Saga, Japan. ²Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan. ³Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849- 8501, Japan. ⁴Department of Orthopaedic Surgery, Taku City Hospital, Saga, Japan. ⁵Department of Clinical Research, Amagi Chuo Hospital, Fukuoka, Japan. ⁶Department of Liberal Arts, Faculty of healthcare and welfare, Saitama Prefectural University, Saitama, Japan. [⊠]email: takaomi_920@yahoo.co.jp predict that the Tokyo metropolitan area is at risk of a significant earthquake in the near future, prompting formulation of countermeasures²². Second, since 2005, Japan has had the world's most aged population. This trend is projected to intensify in the future. Estimates project that the percentage of individuals aged 65 and over will surge to 30.8% by 2030, 34.8% by 2040, and eventually reaching 37.1% by 2050^{25,26}. Third, genetic factors linked to DVT differ between Japanese and other ethnic groups²⁷. Japanese have a relatively lower risk of DVT than African Americans because of genetics²⁸, including PROS1²⁹⁻³³, PROC²⁹⁻³³, SERPINC1²⁹⁻³³, prothrombin G20210A³⁴⁻³⁶, and a protein S mutation, K196E^{37,38}. Furthermore, Japanese are reported to have a relatively lower risk of DVT compared to Caucasians²⁸, primarily due to genetic differences such as Factor V Leiden³⁴⁻³⁶, a mutation that increases DVT risk and is more common in Caucasians.

Several investigations have explored markers for DVT in the aftermath of Japanese earthquakes^{1–13}. Nevertheless, a consensus on this urgent matter has not yet been achieved. Therefore, the goal of this study was to assess factors associated with DVT in the aftermath of Japanese earthquakes.

Methods

Search strategy

The meta-analysis protocol for this study has been registered with the International Prospective Register of Systematic Reviews (PROSPERO registration no. CRD42023458641). The meta-analysis was conducted in accordance with guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)³⁹.

Our search examined PubMed, Google Scholar, Web of Science, and the Cochrane Library to identify pertinent, peer-reviewed original articles published in either English or Japanese, focusing on factors associated with DVT in the context of a Japanese earthquake. Searches were performed on August 30, 2023. Search terms included: (deep vein thrombosis [Title/Abstract]) AND (earthquake [Title/Abstract]). All journals published as of August 30, 2023 were included in the search. In addition, we explored unpublished or gray literature as part of our meta-analysis. We further screened the reference lists of studies identified via the database search. During the curation process, we excluded articles that did not perform comparative analyses of forecasting indicators between individuals with and without DVT following a Japanese earthquake (i.e., lack of evaluable data), articles categorized as review articles, case reports (n < 9), commentaries, editorials, insights articles, and proceedings. To ensure rigor, two researchers (YF and TK) independently executed database searches, reviewed articles, and resolved any differences through discussions.

Data extraction

Data extraction encompassed retrieval of the following variables: primary author, year of publication, study design, seismic event, characteristics of subjects (comprising sample size, age distribution, and gender distribution), DVT diagnosis, DVT incidence rate, and factors associated with DVT. We focused on retrieval of factors shared by two or more articles, with specific attention given to variables such as female gender (categorical variable), age (numerical variable, years), smoking (categorical variable), drinking (categorical variable), exercise habits (categorical variable), hypertension (categorical variable), diabetes (categorical variable), dyslipidemia (categorical variable), heart disease (categorical variable), cancer (categorical variable), insomnia (categorical variable), previous history of DVT (categorical variable), hospitalization or surgery < 3 months (categorical variable), sleeping pill use (categorical variable), anti-coagulant or platelet agent (categorical variable), trauma (categorical variable), systolic blood pressure (numerical variable), numerical variable), lower leg varix (categorical variable), lower leg edema (categorical variable), lower leg pain (categorical variable), lower leg skin flare (categorical variable), overnight stay in a car (categorical variable), temporary housing resident (categorical variable), walking time shortened (categorical variable), reduced urination (categorical variable), and soleal vein dilatation ≥ 8 mm (categorical variable). Two researchers (YF and TK) conducted data extraction independently and resolved any differences through discussion.

Risk of bias assessment

As studies eligible for inclusion lacked randomization, we conducted a quality assessment using the Newcastle-Ottawa Scale, adapted for cross-sectional studies^{40,41}. Assessment considered the following issues: (1) selection, which evaluated the representativeness of the sample, sample size, treatment of non-respondents, and accuracy of exposure ascertainment; (2) comparability, which assessed the degree to which confounding factors were controlled in the analysis; and (3) outcome, encompassing both evaluation of the outcome itself and appropriate use of statistical tests. The maximum possible score was 10 points: 5 points for selection, 2 points for comparability, and 3 points for outcome assessment. These cumulative scores categorized studies as: 0–4 (unsatisfactory), 5–6 (satisfactory), 7–8 (good), and 9–10 (high), respectively. Throughout this evaluation process, YF and TK independently assessed the studies using the Newcastle-Ottawa Scale and any disparities were resolved through discussions.

Risk of reporting bias assessment

The potential for reporting bias was also evaluated based on whether included studies had financial conflicts of interest. Furthermore, we visually assessed the risk of reporting bias using a funnel plot, with gender as a representative variable. YF and TK independently appraised bias and any disparities were resolved through discussions.

Grading the quality of evidence

The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) method was used to assess the quality of evidence for each outcome of the meta-analysis⁴²⁻⁴⁸. Levels of quality of evidence

recommended by the GRADE Working Group were defined as high, moderate, low, and very low. Judgments were based on the risk of bias, inconsistency, indirectness, imprecision, and publication bias.

Statistical analyses

For the meta-analysis, we employed Review Manager Software version 5.3 (The Cochrane Collaboration, Oxford, United Kingdom).

Pooled prevalence was calculated using the inverse variance method, as previously reported⁴⁹. A random effects model was used for meta-analysis due to high heterogeneity between studies ($I^2 > 95\%$, p < 0.05) and depicted using a forest plot. Prior to meta-analysis, the standard error (SE) for each prevalence estimate was calculated using the formula SE = $\sqrt{p(1-p)/n}$ where p = the proportion of individuals diagnosed with DVT and n = total sample size for the study.

Categorical variables were entered with counts of events and counts of subjects, whereas numerical variables were entered with mean values and standard deviations and counts of subjects. To gauge heterogeneity levels, we utilized both the X^2 test and I^2 statistics, categorizing them as insignificant ($I^2 0\%$ to <25%), low ($I^2 25\%$ to <50%), or significant ($I^2 50-100\%$). In instances where significant heterogeneity was observed ($I^2 > 50\%$ and p < 0.10), we used a random-effects model for the analysis. Otherwise, the fixed-effects model was applied. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to evaluate binary variables, and mean differences (MDs) with 95% CIs were used for continuous variables. A *p*-value of < 0.05 was considered significant. Statistical analyses were conducted by one researcher (TK).

Sensitivity analysis

Following evaluation using the Newcastle-Ottawa Scale, a sensitivity analysis was performed exclusively on good or very good quality studies.

Results

Search results

A graphical representation of this selection process is provided in Fig. 1. In total, 18 articles were identified via PubMed, 9 articles were procured from Google Scholar, 12 were obtained from Web of Science, and 2 were acquired from the Cochrane Library. Among these, 7 duplicates were excluded. After initial screening by title and abstract, 34 articles were considered, leading to exclusion of 21 articles that were deemed irrelevant. Subsequently, 13 full text articles were evaluated, resulting in exclusion of another 6 articles due to lack of evaluable data⁸⁻¹³. Ultimately, 7 articles were included in the analysis, encompassing 6,637 subjects, 895 with DVT and 5,742 without (Table 1).

All of the included articles reported cross-sectional studies. Onishi et al.¹ assessed 207 evacuees in shelters (female, 159 individuals; mean age, 68.1 years) living in Kumamoto Prefecture after the 2016 Kumamoto earthquake (April 27 2016 and May 3-4 2016) and found a DVT prevalence of 11.1% (23/207 individuals). Onishi et al.² assessed 290 evacuees (female, 226 individuals; mean age, 71.9 years) living in Miyagi Prefecture 44 months after the 2011 Great East Japan earthquake and reported a DVT prevalence of 10.3% (30/290 individuals). Onishi et al.³ investigated 181 evacuees (female, 141 individuals; mean age, 73.9 years) living in Kumamoto Prefecture over a period of 19 months after the 2016 Kumamoto earthquake (May 3-4 2016, December 24-25 2016, and November 3-4 2017), finding a DVT prevalence of 14.9% (27/181 individuals). Ueda et al.⁴ assessed 701 hospitalized patients (female, 474 individuals; mean age, 67.7 years) one month after the Great East Japan earthquake and found a DVT prevalence of 27.1% (190/701 individuals). Sato et al.⁵ also assessed 1673 evacuees (female, 1225 individuals; mean age, 70.4 years) one month after the Kumamoto earthquake and reported a DVT prevalence of 10.6% (178/1673 individuals). Shibata et al.⁶ assessed 269 evacuees living in Miyagi Prefecture (female, 174 individuals; 70.6 years) one month after the 2011 Great East Japan earthquake and found a DVT incidence of 24.2% (65/269 individuals). Shibata et al.⁷ assessed 3316 evacuees living in Iwate Prefecture (female, 2633 individuals; 71.0 years) one month after the 2011 Great East Japan earthquake and found a DVT incidence of 11.5% (382/3316 individuals).

Risk of bias

In Table 2, Newcastle-Ottawa Scale scores for selected cross-sectional studies are presented. Scores varied between 5 and 8 (Supplementary Table S1–S7); thus, the quality of the meta-analysis was acceptable.

Risk of reporting bias

Two articles^{2,7} reported financial conflicts of interest, suggesting a potential for reporting bias. However, the funnel plot for the female gender variable (Fig. 2) displayed values within the acceptable range and positioned close to the no-effect line. Accordingly, the degree of reporting bias was considered acceptable.

Grading the quality of evidence

Table 3 shows the GRADE evidence profiles. The GRADE level of evidence is high for cancer and hospitalization or surgery < 3 months; moderate for female gender, anti-coagulant or platelet agent, systolic blood pressure, and diastolic blood pressure; low for age, smoking habit, drinking habit, heart disease, previous history of DVT, sleeping pill use, and lower leg varix; and very low for exercise habits, hypertension, diabetes, dyslipidemia, insomnia, trauma, lower leg edema, lower leg pain, lower leg skin flare, overnight stay in a car, temporary housing resident, walking time shortened, reduced urination, and soleal vein dilatation ≥ 8 mm.

Fig. 1. PRISMA flowchart describing article selection. *PRISMA*, preferred reporting items for systematic reviews and meta-analyses.

		Subject	-		Earthquake		DVT				
Study	Study design	Number (male/female)	Mean age (years)	Setting	Name	Post- earthquake period (months)	Site	Diagnosis	Incidence		
Onishi et al., 2017 ¹	Cross-sectional	207 (48/159)	68.1	Evacuees in shelters	2016 Kumamoto	NA	Calf	US	11.1% (23/207)		
Onishi et al., 2020 ²	Cross-sectional	290 (64/226)	71.9	Evacuees in temporary housings	2011 Great East Japan	44	Calf	US	10.3% (30/290)		
Onishi et al., 2022 ³	Cross-sectional	181 (40/141)	73.9	Evacuees in shelters and temporary housings	2016 Kumamoto	3-19	Calf	US	14.9% (27/181)		
Ueda et al., 2014 ⁴	Cross-sectional	701 (227/474)	67.7	Hospitalized patients with PTE	2011 Great East Japan	1	Calf	US	27.1% (190/701)		
Sato et al., 2019 ⁵	Cross-sectional	1673 (448/1225)	70.4	Evacuees in shelters	2016 Kumamoto	1	Calf	US	10.6% (178/1673)		
Shibata et al., 2014 ⁶	Cross-sectional	269 (95/174)	70.6	Evacuees in shelters	2011 Great East Japan	1	Calf	US	24.2% (65/269)		
Shibata et al., 2017 ⁷	Cross-sectional	3316 (683/2633)	71.0	Evacuees in shelters	2011 Great East Japan	1	Calf	US	11.5% (382/3316)		

Table 1. Characteristics of selected studies. *DVT*, deep vein thrombosis; *PTE*, pulmonary thromboembolism;*NA*, not available; *US*, ultrasonography.

Scientific Reports | (2024) 14:27195

Study	Selection	Comparability	Outcome	Total score
Onishi et al., 2017 ¹	***	**	***	8 (Good)
Onishi et al., 2020 ¹	***	**	***	8 (Good)
Onishi et al., 2022 ¹	**	**	***	7 (Good)
Ueda et al., 2014 ¹	***		**	5 (Satisfactory)
Sato et al., 2019 ¹	****	**	***	9 (Very good)
Shibata et al., 2014 ¹	***		***	6 (Satisfactory)
Shibata et al., 2017 ¹	***		***	6 (Satisfactory)

 Table 2. Quality assessment of the eligible studies based on the Newcastle–Ottawa Scale for cross-sectional studies.

Fig. 2. All data points for female gender fall within predefined limits.

Meta-analysis results

Results of the meta-analysis (Fig. 3) showed an overall pooled prevalence of DVT of 15.67 (95% CI, 11.68 to 19.66).

Significant heterogeneity was observed in age (I^2 =88%, p<0.00001), exercise habits (I^2 =62%, p=0.05), insomnia (I^2 =83%, p=0.02), trauma (I^2 =80%, p=0.07), lower leg edema (I^2 =80%, p<0.07), temporary housing resident (I^2 =96%, p<0.00001), and reduced urination (I^2 =81%, p=0.001). Consequently, a random-effects model was employed to analyze these factors. However, for other factors, no significant heterogeneity was observed, and a fixed-effects model was utilized.

Statistical significance was observed for the following factors: female gender (pooled OR=1.48, 95% CI; 1.20–1.81, p=0.0002), older age (pooled MD=4.44, 95% CI; 1.62–7.25, p=0.002), presence of hypertension (pooled OR=1.44, 95% CI; 1.18–1.75, p=0.0003), heart disease (pooled OR=1.45, 95% CI; 1.07–1.97, p=0.02), previous history of DVT (pooled OR=9.23, 95% CI; 2.94–28.91, p=0.0001), sleeping pill use (pooled OR=1.81, 95% CI; 1.37–2.38, p=0.0001), lower leg varix (pooled OR=1.63, 95% CI; 1.17–2.28, p=0.004), and soleal vein dilatation ≥ 8 mm (pooled OR=2.13, 95% CI; 1.32–3.42, p=0.002). However, no statistical significance was observed in other factors (Figs. 4, 5, 6, 7 and 8).

Outcome	Quality
Female gender	Moderate $(\oplus \oplus \oplus \bigcirc)$
Age	$Low (\oplus \oplus \bigcirc \bigcirc)$
Smoking habit	$Low (\oplus \oplus \bigcirc \bigcirc)$
Drinking habit	$Low (\oplus \oplus \bigcirc \bigcirc)$
Exercise habits	Very low $(\oplus \bigcirc \bigcirc \bigcirc)$
Hypertension	Very low $(\oplus \bigcirc \bigcirc \bigcirc)$
Diabetes	Very low $(\oplus \bigcirc \bigcirc \bigcirc \bigcirc)$
Dyslipidemia	Very low $(\oplus \bigcirc \bigcirc \bigcirc)$
Heart disease	$Low (\oplus \oplus \bigcirc \bigcirc)$
Cancer	$\operatorname{High}\left(\oplus \oplus \oplus \oplus\right)$
Insomnia	Very low $(\oplus \bigcirc \bigcirc \bigcirc)$
Previous history of DVT	$Low (\oplus \oplus \bigcirc \bigcirc)$
Hospitalization or surgery <3 months	$\operatorname{High}(\oplus \oplus \oplus \oplus)$
Sleeping pill use	$Low (\oplus \oplus \bigcirc \bigcirc)$
Anti-coagulant or platelet agent	Moderate $(\oplus \oplus \oplus \bigcirc)$
Trauma	Very low $(\oplus \bigcirc \bigcirc \bigcirc \bigcirc)$
Systolic blood pressure	Moderate $(\oplus \oplus \oplus \bigcirc)$
Diastolic blood pressure	Moderate $(\oplus \oplus \oplus \bigcirc)$
Lower leg varix	$Low (\oplus \oplus \bigcirc \bigcirc)$
Lower leg edema	Very low $(\oplus \bigcirc \bigcirc \bigcirc)$
Lower leg pain	Very low $(\oplus \bigcirc \bigcirc \bigcirc)$
Lower leg skin flare	Very low $(\oplus \bigcirc \bigcirc \bigcirc \bigcirc)$
Overnight stay in a car	Very low $(\oplus \bigcirc \bigcirc \bigcirc)$
Temporary housing resident	Very low $(\oplus \bigcirc \bigcirc \bigcirc)$
Walking time shortened	Very low $(\oplus \bigcirc \bigcirc \bigcirc \bigcirc)$
Reduced urination	Very low $(\oplus \bigcirc \bigcirc \bigcirc)$
Soleal vein dilatation ≥8 mm	Very low $(\oplus \bigcirc \bigcirc \bigcirc)$

 Table 3. GRADE evidence profile.

				Prevalence rate	Preva	lence rate	
Study or Subgroup	Prevalence rate	SE	Weight	IV, Random, 95% CI	IV, Ranc	lom, 95% Cl	
Onishi et al., 2017	11.1	0.021	14.3%	11.10 [11.06, 11.14]			
Onishi et al., 2020	10.3	0.018	14.3%	10.30 [10.26, 10.34]			
Onishi et al., 2022	14.9	0.026	14.3%	14.90 [14.85, 14.95]			
Sato et al., 2019	10.6	0.008	14.3%	10.60 [10.58, 10.62]			
Shibata et al., 2014	24.2	0.026	14.3%	24.20 [24.15, 24.25]			
Shibata et al., 2017	11.5	0.006	14.3%	11.50 [11.49, 11.51]			
Ueda et al., 2014	27.1	0.017	14.3%	27.10 [27.07, 27.13]			
Total (95% CI)			100.0%	15.67 [11.68, 19.66]		•	
Heterogeneity: Tau ² =	29.05; Chi ² = 10	51882.9	96, df = 6	$(P < 0.00001); I^2 = 100\%$	F0 25		
Test for overall effect:	Z = 7.69 (P < 0.0)	0001)			-50 -25	0 25	50

Fig. 3. Pooled prevalence of DVT was 15.67 (95% CI, 11.68 to 19.66). *DVT*, deep vein thrombosis; *SE*, standard error; *CI*, confidence interval.

Sensitivity analysis

Following an evaluation using the Newcastle-Ottawa Scale, a sensitivity analysis was performed, focusing on good¹⁻³ and very good studies⁵. To be more precise, 4 articles^{1-3,5} were included in the sensitivity analysis, comprising 2,351 subjects, of whom 258 had DVT and 2,093 did not. Results of the sensitivity analysis were similar to those from the main analysis, except for dyslipidemia (Table 4). This sensitivity analysis confirms the robustness of our findings.

Discussion

We first synthesized evidence concerning factors associated with DVT in the context of Japanese earthquakes. Notably, significant factors associated with DVT included female gender, advanced age, hypertension, heart disease, prior history of DVT, use of sleeping pills, lower leg varix, and soleal vein dilatation ≥ 8 mm. No statistically significant associations were observed for the remaining factors.

In our meta-analysis, the overall pooled prevalence of DVT was 15.67 (95% CI, 11.68 to 19.66). Sahebi et al.¹⁴ reported that the overall pooled prevalence of DVT was 11.43 (95% CI, 9.06 to 13.79) in Japanese general population and 2.51 (95% CI, 0.40 to 4.63) in patient survivors living in Pakistan, China, or Nepal. Reasons for differences in DVT prevalence among Asian countries require further investigation.

Female gender

	DVT, present		DVT, absent			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M-H, Fixed, 95% Cl
Onishi et al., 2017	20	23	139	184	2.4%	2.16 [0.61, 7.60]	
Onishi et al., 2020	24	30	202	260	5.1%	1.15 [0.45, 2.94]	
Onishi et al., 2022	24	27	117	154	2.4%	2.53 [0.72, 8.88]	
Sato et al., 2019	141	178	1084	1495	29.1%	1.44 [0.99, 2.11]	
Shibata et al., 2014	43	65	131	204	13.0%	1.09 [0.60, 1.96]	
Shibata et al., 2017	325	382	2308	2934	48.1%	1.55 [1.15, 2.08]	
Total (95% CI)		705		5231	100.0%	1.48 [1.20, 1.81]	◆
Total events	577		3981				
Heterogeneity: $Chi^2 = 2.46$, $df = 5$ (P = 0.78); $I^2 = 0\%$							
Test for overall effect: $Z = 3.73$ (P = 0.0002)							Favours [DVT, absent] Favours [DVT, present]

Age

	DVT, present DVT, absent				ent		Mean Difference	Mean Difference		
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	IV, Random, 95% CI	
Onishi et al., 2017	79.9	7.5	23	66.6	16.3	184	15.1%	13.30 [9.43, 17.17]		
Onishi et al., 2020	72	8.3	30	71.8	7.8	260	16.7%	0.20 [-2.92, 3.32]		
Onishi et al., 2022	76.8	12.5	27	73.3	11.4	154	12.5%	3.50 [-1.55, 8.55]		
Sato et al., 2019	76.1	9.9	178	69.7	14.2	1495	19.7%	6.40 [4.78, 8.02]	-	
Shibata et al., 2014	70.6	13.6	65	70.6	12.4	204	15.4%	0.00 [-3.72, 3.72]		
Shibata et al., 2017	74	8.4	382	70.6	9.8	2934	20.6%	3.40 [2.49, 4.31]	-	
Total (95% CI)			705			5231	100.0%	4.44 [1.62, 7.25]	◆	
Heterogeneity: Tau ² = 9.77; Chi ² = 42.46, df = 5 (P < 0.00001); I ² = 88%										
T		0.0 (0							-20 -10 0 10 20	

Test for overall effect: Z = 3.09 (P = 0.002)

Smoking habit

Drinking habit

Exercise habits

	DVT, pre	DVT, present DVT, absent			Odds Ratio	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
Onishi et al., 2020	19	30	179	260	12.8%	0.78 [0.36, 1.72]	.]
Sato et al., 2019	84	178	709	1495	32.0%	0.99 [0.73, 1.35]	5] — –
Shibata et al., 2014	20	65	77	204	18.3%	0.73 [0.40, 1.33]	3]
Shibata et al., 2017	257	382	1718	2934	36.8%	1.46 [1.16, 1.82]	2]
Total (95% CI)		655		4893	100.0%	1.05 [0.75, 1.46]	
Total events	380		2683				
Heterogeneity: Tau ² =	= 0.07; Chi	$i^2 = 8.0$	0, df = 3	(P = 0.0)	()5); $I^2 = 62$	2%	
Test for overall effect:	: Z = 0.27	(P = 0.1	79)				Favours [DVT, absent] Favours [DVT, present]

Fig. 4. Female gender and advanced age demonstrated significant associations with DVT following Japanese earthquakes (female gender [pooled OR = 1.48, p = 0.0002], older age [pooled MD = 4.44, p = 0.002]). DVT, deep vein thrombosis; OR, odds ratio; MD, mean difference.

Female gender and advanced age were significant factors associated with DVT. Comparable outcomes were noted in prior studies involving trauma patients¹⁷. The mechanism remains unclear^{1-3,5-7}, although potential explanations encompass reduced activity due to aging and pregnancy. This information could help to explain the incidence of DVT following earthquakes in Japan.

Favours [DVT, absent] Favours [DVT, present]

Hypertension

	DVT, present		DVT, absent			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M–H, Fixed, 95% Cl
Onishi et al., 2017	12	23	88	184	5.5%	1.19 [0.50, 2.83]	
Onishi et al., 2020	20	30	138	260	5.6%	1.77 [0.80, 3.92]	
Onishi et al., 2022	17	27	85	154	5.5%	1.38 [0.59, 3.21]	
Sato et al., 2019	110	178	748	1495	35.6%	1.62 [1.17, 2.22]	
Shibata et al., 2014	38	65	104	204	12.2%	1.35 [0.77, 2.38]	
Ueda et al., 2014	108	191	257	510	35.6%	1.28 [0.92, 1.79]	
Total (95% CI)		514		2807	100.0%	1.44 [1.18, 1.75]	◆
Total events	305		1420				
Heterogeneity: Chi ² =	1.46, df =	= 5 (P =	0.92); I ²	= 0%			
Test for overall effect: $Z = 3.64$ (P = 0.0003)							Favours [DVT, absent] Favours [DVT, present]

Diabetes

	DVT, present DVT, absent					Odds Ratio	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M–H, Fixed, 95% Cl	
Onishi et al., 2017	1	23	27	184	5.1%	0.26 [0.03, 2.04]	· · · · · · · · · · · · · · · · · · ·	
Onishi et al., 2020	5	30	36	260	5.5%	1.24 [0.45, 3.46]		
Onishi et al., 2022	1	27	27	154	6.9%	0.18 [0.02, 1.39]	· · · · · · · · · · · · · · · · · · ·	
Sato et al., 2019	26	178	237	1495	38.4%	0.91 [0.59, 1.41]		
Shibata et al., 2014	14	65	41	204	13.9%	1.09 [0.55, 2.16]		
Ueda et al., 2014	31	191	74	510	30.1%	1.14 [0.72, 1.80]	」 <mark>- ■</mark>	
Total (95% CI)		514		2807	100.0%	0.94 [0.72, 1.23]	↓	
Total events	78		442					
Heterogeneity: Chi ² =	5.18, df :	= 5 (P =	0.39); l ²	= 3%			7	
Test for overall effect	: Z = 0.46	(P= 0 .	65)				Favours [DVT, absent] Favours [DVT, present]	0

Dyslipidemia

Heart disease

	DVT, present		t DVT, absent			Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	I M–H, Fixed, 95% CI
Onishi et al., 2017	9	23	32	184	6.8%	3.05 [1.22, 7.66]	ı — — — — — — — — — — — — — — — — — — —
Onishi et al., 2020	10	30	71	260	15.5%	1.33 [0.59, 2.98]]
Onishi et al., 2022	7	27	40	154	14.0%	1.00 [0.39, 2.54]]
Sato et al., 2019	38	178	241	1495	63.7%	1.41 [0.96, 2.07]]
Total (95% CI)		258		2093	100.0%	1.45 [1.07, 1.97]	1 🔶
Total events	64		384				
Heterogeneity: Chi ² =	3.19, df =	= 3 (P =	0.36); I ²	= 6%			
Test for overall effect:	Z = 2.41	(P = 0.0	02)				Favours [DVT, absent] Favours [DVT, present]

Cancer

	DVT, present		DVT, absent		Odds Ratio			Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixed, 95% CI	
Onishi et al., 2017	1	23	17	184	17.5%	0.45 [0.06, 3.52]			
Sato et al., 2019	7	178	58	1495	57.4%	1.01 [0.46, 2.26]			
Shibata et al., 2017	7	382	23	2934	25.2%	2.36 [1.01, 5.54]			
Total (95% CI)		583		4613	100.0%	1.25 [0.72, 2.18]			
Total events	15		98						
Heterogeneity: Chi ² =	3.35, df =	= 2 (P =	0.19); I ²	= 40%			0.05		-20
Test for overall effect	: Z = 0.80	(P = 0.4)	42)				0.03	Favours [DVT, absent] Favours [DVT, present]	20

Fig. 5. Hypertension, dyslipidemia, and heart disease demonstrated significant associations with DVT following Japanese earthquakes (presence of hypertension [pooled OR = 1.44, p = 0.0003], dyslipidemia [pooled OR = 1.23, p = 0.05], heart disease [pooled OR = 1.45, p = 0.02]). *DVT*, deep vein thrombosis; *OR*, odds ratio.

Interestingly, hypertension was significantly associated with DVT, in contrast to systolic and diastolic blood pressure. The distinction between short-term hypertension (including white-coat hypertension) and long-term hypertension could be important⁵⁰. In rats, hypertension lasting over 3 weeks increased the counts of granulocytes, monocytes, macrophages, and lymphocytes. It also elevated MMP-2 and MMP-9 levels within the pressurized

Insomnia

Previous history of DVT

	DVT, present DVT, absent					Odds Ratio		Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixed, 95% CI		
Onishi et al., 2017	0	23	1	184	27.1%	2.60 [0.10, 65.75]				_
Shibata et al., 2017	6	382	4	2934	72.9%	11.69 [3.28, 41.61]				
Total (95% CI)		405		3118	100.0%	9.23 [2.94, 28.91]				
Total events	6		5							
Heterogeneity: Chi ² =	0.72, df =	= 1 (P =	0.40); I ²	0.01	01	10	100			
Test for overall effect: $Z = 3.81 (P = 0.0001)$							0.01	Favours [DVT, absent]	Favours [DVT, present]	100

Hospitalization or surgery <3 months

	DVT, present DV		DVT, ab	sent		Odds Ratio		Odds Ratio		
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M-H, Fixe	d, 95% CI	
Onishi et al., 2017	1	23	1	184	1.4%	8.32 [0.50, 137.73]				
Sato et al., 2019	8	178	63	1495	86.2%	1.07 [0.50, 2.27]		_		
Shibata et al., 2017	2	382	8	2934	12.3%	1.93 [0.41, 9.10]			•	
Total (95% CI)		583		4613	100.0%	1.28 [0.67, 2.44]		-		
Total events	11		72							
Heterogeneity: Chi ² =	2.19, df =	= 2 (P =	0.33); I ²	= 9%			0.01	01	10	2
Test for overall effect:	Z = 0.74	(P=0.4	46)				0.01	Favours [DVT, absent]	Favours [DVT,	present]

Sleeping pill use

	-									
	DVT, pre	esent	DVT, ab	sent		Odds Ratio		Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI		M–H, Fixe	ed, 95% CI	
Onishi et al., 2017	7	23	33	184	7.4%	2.00 [0.76, 5.25]		_		-
Onishi et al., 2020	14	30	81	260	12.9%	1.93 [0.90, 4.15]		-	•	
Onishi et al., 2022	11	27	45	154	11.5%	1.67 [0.72, 3.87]			•	
Sato et al., 2019	61	178	338	1495	68.2%	1.78 [1.28, 2.49]				
Total (95% CI)		258		2093	100.0%	1.81 [1.37, 2.38]			•	
Total events	93		497							
Heterogeneity: Chi ² =	0.11, df =	= 3 (P =	0.99); I ²	= 0%				02 05		10
Test for overall effect:	Z = 4.22	(P < 0.0	0001)				0.1	Favours [DVT, absent]	Favours [DVT, preser	nt]

Anti-coagulant or anti-platelet agent

	-		-		-					
	DVT, pr	esent	DVT, ab	osent		Odds Ratio	Odds Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl			
Onishi et al., 2022	5	27	32	154	12.7%	0.87 [0.30, 2.47]				
Sato et al., 2019	31	178	237	1495	68.0%	1.12 [0.74, 1.69]				
Shibata et al., 2014	4	65	26	204	19.3%	0.45 [0.15, 1.34]				
Total (95% CI)		270		1853	100.0%	0.96 [0.67, 1.37]	-			
Total events	40		295							
Heterogeneity: Chi ² =	= 2.44, df =	= 2 (P =	0.30); I ²	= 18%						
Test for overall effect	:: Z = 0.23	(P = 0.	82)				Favours [DVT, absent] Favours [DVT, present]			

Trauma

	DVT, pr	esent	DVT, ab	sent		Odds Ratio	Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% Cl
Onishi et al., 2017	0	23	2	184	15.4%	1.55 [0.07, 33.35]]
Shibata et al., 2014	12	65	9	204	40.5%	4.91 [1.96, 12.26]	
Shibata et al., 2017	11	382	101	2934	44.2%	0.83 [0.44, 1.56]	
Total (95% CI)		470		3322	100.0%	1.88 [0.44, 8.06]	
Total events	23		112				
Heterogeneity: Tau ² = 1.15; Chi ² = 9.83, df = 2 (P = 0.007); $I^2 = 80\%$						80%	
Test for overall effect	: Z = 0.85	(P = 0.4)	40)				Favours [DVT, absent] Favours [DVT, present]

Fig. 6. Previous history of DVT and sleeping pill use demonstrated significant associations with DVT following Japanese earthquakes (previous history of DVT [pooled OR = 9.23, p = 0.0001], sleeping pill use [pooled OR = 1.81, p = 0.0001]). DVT, deep vein thrombosis; OR, odds ratio.

venous valve, inducing valve remodeling (loss and regurgitation)⁵¹⁻⁵⁵, and contributed to the incidence of DVT. Hence, a prolonged history of hypertension rather than acute hypertension after an earthquake, increases the likelihood of DVT immediately after an earthquake.

Heart disease, lower leg varix, and soleal vein dilatation ≥ 8 mm were associated with DVT. While a specific causal relationship between heart disease and DVT remains uncertain due to inconsistencies in provided

100

Systolic blood pressure

Diastolic blood pressure

	DVT, present DVT, absent				Mean Difference	Mean Difference			
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% CI
Onishi et al., 2017	73	14.1	23	78.8	13.1	184	9.6%	-5.80 [-11.87, 0.27]	
Onishi et al., 2020	82.2	14.7	30	80.3	13.5	260	11.6%	1.90 [-3.61, 7.41]	
Sato et al., 2019	79	13.7	178	78.9	12.9	1495	78.8%	0.10 [-2.02, 2.22]	
Total (95% CI)			231			1939	100.0%	-0.26 [-2.14, 1.62]	•
Heterogeneity: Chi ² =	3.91, d	f = 2	(P = 0.1)	14); I ² =					
Test for overall effect:	Z = 0.1	27 (P =	= 0.79)						Favours [DVT, absent] Favours [DVT, present]

Lower leg varix

	DVT, present DVT, absent				Odds Ratio	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	M–H, Fixed, 95% Cl
Onishi et al., 2022	8	27	42	154	18.1%	1.12 [0.46, 2.76]	
Sato et al., 2019	47	178	255	1495	81.9%	1.74 [1.22, 2.50]	
Total (95% CI)		205		1649	100.0%	1.63 [1.17, 2.28]	-
Total events	55		297				
Heterogeneity: Chi ² =	0.80, df =	= 1 (P =	0.37); I ²	= 0%			
Test for overall effect:	Z = 2.87	(P = 0.0	004)	Favours [DVT, absent] Favours [DVT, present]			

Lower leg edema

Lower leg pain

Lower leg skin flare

Fig. 7. Lower leg varix demonstrated a significant association with DVT following Japanese earthquakes (lower leg varix [pooled OR = 1.63, p = 0.004]). *DVT*, deep vein thrombosis; *OR*, odds ratio.

definitions in the literature, it has been reported that reduced venous return resulting from heart disease can lead to blood flow stasis, potentially contributing to development of soleal vein varix^{56,57}. Moreover, previous studies have demonstrated a noteworthy connection between varicose veins and DVT⁵⁷. One possible explanation is that individuals with varicose veins often exhibit elevated levels of inflammatory and prothrombotic markers, potentially contributing to DVT⁵⁷. The soleal vein, located deep in the calf muscle, is particularly susceptible to thrombosis due to its anatomy, increasing the likelihood of blood stasis and clot formation⁵⁸. Soleal vein dilation

Overnight stay in a car

Odds Ratio M-H, Random, 95% CI

Favours [DVT, absent] Favours [DVT, present]

10

50

Temporary housing resident

	DVT, pre	sent	DVT, ab	sent	Odds Ratio						
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI					
Onishi et al., 2020	16	30	133	260	49.0%	1.09 [0.51, 2.33]					
Ueda et al., 2014	32	181	328	510	51.0%	0.12 [0.08, 0.18]					
Total (95% CI)		211		770	100.0%	0.35 [0.04, 3.09]					
Total events	48		461								
Heterogeneity: Tau ² = 2.35; Chi ² = 25.05, df = 1 (P < 0.00001); l ² = 96% Test for overall effect: Z = 0.94 (P = 0.35)											

Walking time shortened

0.02

0'1

Reduced urination

	DVT, pre	, present DVT, absent			Odds Ratio	Odds Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	CI M-H, Random, 95% CI		
Onishi et al., 2017	5	23	41	184	19.5%	0.97 [0.34, 2.77]	7]		
Onishi et al., 2020	9	30	76	260	23.1%	1.04 [0.45, 2.37]	7]		
Sato et al., 2019	47	178	472	1495	30.3%	0.78 [0.55, 1.10]	0]		
Shibata et al., 2014	34	65	54	204	27.1%	3.05 [1.71, 5.43]	3]		
Total (95% CI)		296		2143	100.0%	1.26 [0.60, 2.62]	2]		
Total events	95		643						
Heterogeneity: Tau ² = 0.43; Chi ² = 15.79, df = 3 (P = 0.001); $I^2 = 81\%$						81%		ł	
Test for overall effect:	Z = 0.61	(P = 0.	54)				Favours [DVT, absent] Favours [DVT, present]	2	

Soleal vein dilatation (≥8 mm)

	DVT, pre	esent	DVT, at	DVT, absent		Odds Ratio	Odds Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Fixed, 95% CI	CI M–H, Fixed, 95% CI	
Onishi et al., 2017	14	23	64	184	25.5%	2.92 [1.20, 7.11]	1]	
Onishi et al., 2020	13	30	50	260	26.8%	3.21 [1.46, 7.04]	4]	
Onishi et al., 2022	11	27	59	154	47.7%	1.11 [0.48, 2.55]	5]	
Total (95% CI)		80		598	100.0%	2.13 [1.32, 3.43]	3]	
Total events	38		173					
Heterogeneity: $Chi^2 = 3.90$, $df = 2$ (P = 0.14); $l^2 = 49\%$								7
Test for overall effect	: Z = 3.11	(P = 0.0)	002)				Favours [DVT, absent] Favours [DVT, present]	0

Fig. 8. Soleal vein dilatation (≥ 8 mm) demonstrated a significant association with DVT following Japanese earthquakes (soleal vein dilatation ≥ 8 mm [pooled OR = 2.13, p = 0.002]). *DVT*, deep vein thrombosis; *OR*, odds ratio.

is associated with severe outcomes such as proximal DVT, pulmonary embolism, and recurrent DVT^{59} . However, in our meta-analysis, all included studies were conducted with a cross-sectional design; thus, the longitudinal relationship between DVT and these medical conditions remains unclear. In theory, it is particularly important to be concerned about DVT if both these medical conditions are present, as cross-sectional relationships are significant in our meta-analysis.

			Statistical heterogeneity					
	Studies	Subjects	I ² (%)	<i>p</i> value	Effects model	Pooled OR or MD	95% CI	<i>p</i> value
Female gender	4	2,351	89	< 0.00001	Random	5.85	1.05 to 10.65	0.02
Age	4	2,351	0	0.72	Fixed	1.52	1.09 to 2.10	0.01
Smoking habit	4	2,351	0	0.67	Fixed	0.64	0.40 to 1.03	0.07
Drinking habit	3	2,061	0	0.65	Fixed	0.77	0.51 to 1.19	0.24
Exercise habits	2	1,963	0	0.58	Fixed	0.96	0.72 to 1.28	0.78
Hypertension	4	2,351	0	0.90	Fixed	1.56	1.20 to 2.04	0.001
Diabetes	4	2,351	29	0.24	Fixed	0.79	0.54 to 1.80	0.23
Dyslipidemia	4	2,351	0	0.70	Fixed	1.39	1.06 to 1.83	0.02
Heart disease	4	2,351	6	0.36	Fixed	1.45	1.07 to 1.97	0.02
Cancer	2	1,880	0	0.46	Fixed	0.88	0.42 to 1.86	0.74
Insomnia	2	497	83	0.02	Random	0.19	0.01 to 2.67	0.22
Hospitalization or surgery < 3 months	2	1,880	48	0.17	Fixed	1.19	0.58 to 2.43	0.64
Sleeping pill use	4	2,351	0	0.99	Fixed	1.81	1.37 to 2.38	< 0.0001
Anti-coagulant or platelet agent	2	1,854	0	0.66	Fixed	1.08	0.74 to 1.58	0.70
Systolic blood pressure	3	2,170	0	0.47	Fixed	2.28	-0.58 to 5.14	0.12
Diastolic blood pressure	3	2,170	49	0.14	Fixed	-0.26	-2.14 to 1.62	0.79
Lower leg varix	2	1,854	0	0.37	Fixed	1.63	1.17 to 2.28	0.004
Lower leg edema	3	2,061	80	0.007	Random	1.00	0.34 to 2.91	1.00
Lower leg pain	2	388	0	0.46	Fixed	0.90	0.31 to 2.57	0.84
Lower leg skin flare	2	1,880	0	0.69	Fixed	1.88	0.58 to 6.04	0.29
Overnight stay in a car	2	471	0	0.90	Fixed	0.93	0.50 to 1.75	0.83
Walking time shortened	3	678	0	0.85	Fixed	1.27	0.79 to 2.02	0.32
Reduced urination	3	2,170	0	0.78	Fixed	0.83	0.61 to 1.12	0.22
Soleal vein dilatation $\geq 8 \text{ mm}$	3	678	49	0.14	Fixed	2.13	1.32 to 3.43	0.002
OR, odds ratio; MD, mean difference; C	I. confide	nce interval						

Table 4. Sensitivity analysis based on the Newcastle-Ottawa Scale categorized as good and very good studies in terms of quality.

.....

We found that prior history of DVT was significantly associated with DVT. In the included studies, follow-up after DVT diagnosis was short, and the causal relationship remained unknown. However, it has been thought that organized DVT and fresh DVT are strongly associated, and recurrent DVT (especially, soleal vein⁵⁸) indicates a high risk of pulmonary thromboembolism^{3,59}. Further investigations into causal relationships between organized DVT and new DVT in the context of Japanese earthquakes are warranted. These investigations should include long-term follow-up or utilization of alternative methods, such as viscoelastic devices^{60,61}.

DVT was associated not with insomnia itself, but with the use of sleeping pills. Indeed, it has been reported that sleep deprivation is not connected to cardiovascular risks (including DVT risk), except in cases in which individuals consistently receive very little sleep⁶². Furthermore, utilization of sleeping pills has been linked to development of DVT⁶³. To provide greater precision, associations with DVT have been observed specifically in cases of newly prescribed benzodiazepine receptor agonists and limited to current prescriptions (\leq 90 days). An explanation to consider is that utilization of benzodiazepine receptor agonists could potentially lead to reduced motor activity, particularly during sleep⁶⁴, which in turn may contribute to DVT onset.

Limitations

Several limitations impact the generalizability of the findings from this study. First, study items with slightly variable definitions among studies were consolidated. For instance, the survey periods for DVT vary among studies, from 5 days to 4 years^{1–7}. In these studies, within the month following an earthquake, the highest incidence of DVT was around 30% on Day 5. Subsequently, the incidence gradually decreases and remains in the range of 10–19% from four months to four years. Moreover, various earthquakes, i.e., the 2011 Great East Japan earthquake^{2,4,6,7} and the 2016 Kumamoto earthquake^{1,3,5}, have been amalgamated into a single result. The 2011 Great East Japan earthquake struck eastern Japan with a magnitude of 9, followed by a tsunami on March 11, 2011^{2,4,6,7}. Subsequent to these occurrences, approximately 470,000 people were estimated to have been evacuated to designated centers^{2,4,6,7}. In contrast, the 2016 Kumamoto earthquake struck Kumamoto Prefecture with a magnitude of 6.5 on April 14, 2016 and a magnitude of 7.3 on April 16, followed by over 3,000 aftershocks^{1,3,5}. In the aftermath of these events, more than 180,000 individuals are estimated to have been evacuated to designated centers or private vehicles^{1,3,5}. The 2011 Great East Japan earthquake transformed public disaster awareness, and prompted changes in disaster response measures following the 2016 Kumamoto earthquake. These changes included establishment of the Health and Medical Coordination Headquarters, followed by the Health, Welfare, and Medical Coordination Headquarters⁶⁵. However, subgroup analyses to investigate potential sources of

variation across studies (heterogeneity) were not performed due to the limited number of studies for each factor. Second, the reliability of our findings is dependent upon that of the included studies. Criteria for inclusion were not standardized across the included studies. This variation was partly reflected in the GRADE evaluations. Decision makers, clinicians, and patients should interpret our results based on the quality of evidence. Third, reporting bias may exist according to financial conflicts of interest in two articles^{2,7}. Although the funnel plot for the female gender variable (Fig. 2) displayed values within the acceptable range and positioned close to the noeffect line, no statistical assessment, e.g., Begg's or Egger's test, was conducted. Fourth, diagnosis of DVT relied solely on lower leg echo scans, potentially missing cases of proximal DVT. Despite this limitation, focusing on calf DVT remains clinically relevant, as it can serve as a precursor to more serious conditions like proximal DVT and pulmonary embolism. Screening for calf DVT is also practical in post-disaster settings, as it can be conducted while patients are seated and with minimal skin exposure. Early detection and management of calf DVT are crucial for preventing complications. Fifth, the two studies conducted by Onichi et al.^{1,3} partially overlapped in terms of the survey period (May 3-4, 2016) and location (Minamiaso Village, Kumamoto Prefecture), which raises the possibility that some subjects may have been included in both studies. This is reflected in the GRADE assessment and should be taken with caution when interpreting our results. Although limitations stemming from the nature of meta-analysis exist, our findings still contribute to informed decision-making regarding healthcare and policy regarding disaster management following earthquakes in Japan.

Conclusions

We synthesized available evidence pertaining to factors associated with DVT following earthquakes in Japan. Importantly, noteworthy factors associated with DVT in this context included female gender, advanced age, hypertension, heart disease, prior history of DVT, use of sleeping pills, lower leg varix, and soleal vein dilatation ≥ 8 mm. While recognizing the constraints in our study, immediate importance of authorities coordinating establishment of prepared shelters and educating evacuees about preventing DVT and PE has been emphasized. Identification of DVT-related factors enables targeted identification of high-risk evacuees at shelters and suggests the potential for effective interventions in preventing DVT in disaster scenarios.

Data availability

All data generated and/or analyzed during the present study are found in the published article.

Received: 26 February 2024; Accepted: 4 November 2024 Published online: 08 November 2024

References

- 1. Onishi, H. et al. Comparison of development of deep vein thrombosis detection rates between groups of people in the general shelters and welfare-type shelters in the Kumamoto earthquake area. J. Natl. Inst. Public. Health 66, 620–629 (2017).
- Onishi, H. et al. Deep-vein thrombosis detection rates and consideration of the living environment in a tsunami disaster area during the disaster reconstruction phase: A cross-sectional study. Acta Angiologica 26, 129–139 (2020).
- Onishi, H. et al. Long-term prevalence of disaster-related deep vein thrombosis in Minamiaso Village after the 2016 Kumamoto earthquakes: A prospective cross-sectional analysis. Disaster Med. Public. Health Prep 16, 2036–2043 (2022).
- 4. Ueda, S., Hanzawa, K. & Shibata, M. One-year overview of deep vein thrombosis prevalence in the ishinomaki area since the great East Japan earthquake. *Ann. Vasc Dis.* **7**, 365–368 (2014).
- 5. Sato, K. et al. Risk factors and prevalence of deep vein thrombosis after the 2016 Kumamoto earthquakes. *Circ. J.* 83, 1342–1348 (2019).
- Shibata, M., Hanzawa, K., Ueda, S. & Yambe, T. Deep venous thrombosis among disaster shelter inhabitants following the March 2011 earthquake and tsunami in Japan: A descriptive study. *Phlebology* 29, 257–266 (2014).
- Shibata, M. et al. The utility of on-site ultrasound screening in population at high risk for deep venous thrombosis in temporary housing after the great East Japan Earthquake. J. Clin. Ultrasound 45, 566–574 (2017).
- 8. Ueda, Š., Hanzawa, K., Shibata, M. & Suzuki, S. High prevalence of deep vein thrombosis in tsunami-flooded shelters established after the great East-Japan earthquake. *Tohoku J. Exp. Med.* **227**, 199–202 (2012).
- 9. Itabashi, R. et al. Incidence of cardioembolic stroke including paradoxical brain embolism in patients with acute ischemic stroke before and after the Great East Japan earthquake. *Cerebrovasc. Dis.* **37**, 431–437 (2014).
- 10. Terakami, T. et al. Deep vein thrombosis in Noto Peninsula earthquake victims. *Rinsho Byori* 57, 411–416 (2009). Japanese.
- 11. Hanzawa, K., Hayashi, J., Fuse, I. & Aizawa, F. Prevalence of calf deep vein thrombosis in residents in rural Japan, and diameter of
- soleus vein indicates a risk of calf DVT in mid Niigata prefecture earthquake. *Phlebolymphology* **14**, 149–150 (2014). Japanese. 12. Matsukawa, M. et al. Efficacy of direct oral anticoagulant into the care of venous thromboembolism related to Kumamoto
- earthquake. Ann. Vasc Dis. 11, 503–510 (2018).
 13. Taguchi, E. et al. Incidence, risk factors, and treatment of venous thromboembolism after a serious disaster: The Kumamoto twin earthquakes. Ann. Vasc Dis. 16, 54–59 (2023).
- Sahebi, A., Nejati-Zarnaqi, B., Vasei, N. & Jahangiri, K. Deep vein thrombosis after earthquake: A systematic review and metaanalysis. Disaster Med. Public. Health Prep 17, e304 (2023).
- 15. Peng, H. et al. Risk assessment of deep venous thrombosis and its influencing factors in burn patients. J. Burn Care Res. 41, 113-120 (2020).
- Whiting, P. S. et al. Risk factors for deep venous thrombosis following orthopaedic trauma surgery: An analysis of 56,000 patients. Arch. Trauma. Res. 5, e32915 (2016).
- 17. Kobayashi, T., Akiyama, T. & Mawatari, M. Predictors of preoperative deep vein thrombosis in hip fractures: A systematic review and meta-analysis. J. Orthop. Sci. 28, 222–232 (2023).
- Arnesen, C. A. L. et al. Estimated lifetime risk of venous thromboembolism in men and women in a Danish nationwide cohort: Impact of competing risk of death. *Eur. J. Epidemiol.* 37, 195–203 (2022).
- Jackowski, C., Grabherr, S. & Schwendener, N. Pulmonary thrombembolism as cause of death on unenhanced postmortem 3T MRI. *Eur. Radiol.* 23, 1266–1270 (2013).
- 20. Li, F. et al. Risk factors associated with the occurrence of silent pulmonary embolism in patients with deep venous thrombosis of the lower limb. *Phlebology* **29**, 442–446 (2014).
- 21. Naess, I. A. et al. Incidence and mortality of venous thrombosis: A population-based study. J. Thromb. Haemost 5, 692-699 (2007).

- 22. Central disaster prevention council member of the Tokyo inland earthquake countermeasure working group. Damage assumptions and countermeasures for an earthquake directly beneath the Tokyo metropolitan area (Final report). December (2013). https://w ww.bousai.go.jp/jishin/syuto/taisaku_wg/pdf/syuto_wg_report.pdf. Japanese.
- 23. Isayama, K. & Ono, N. Preparations for the next crisis based on a concept of SAISEI. Japanese J. Risk Anal. 25, 139-144 (2015).
- Isayama, K., Ono, N. & Shibayama, K. Disaster medicine management steps towards sustainable and resilient society in Japan: Lessons from investigation research of the natural traditional medicine and disaster management in Cuba. Japanese J. Disaster Med. 21, 179-187 (2016). Japanese.
- Department of Economic and Social Affairs, United Nations. The 2022 revision of world population prospects. https://population .un.org/wpp/ [Accessed 5 September 2023].
- National Institute of Population and Social Security Research. Population projections for Japan: 2021 to 2070. https://www.ipss.go .jp/index-e.asp [Accessed 5 September 2023].
- 27. Miyata, T. et al. Prevalence of genetic mutations in protein S, protein C and antithrombin genes in Japanese patients with deep vein thrombosis. *Thromb. Res.* **124**, 14–18 (2009).
- Lee, L. H., Gallus, A., Jindal, R., Wang, C. & Wu, C. C. Incidence of venous thromboembolism in Asian populations: A systematic review. *Thromb. Haemost* 117, 2243–2260 (2017).
- 29. Lane, D. A. et al. Inherited thrombophilia: Part 1. Thromb. Haemost 76, 651-662 (1996).
- 30. Seligsohn, U. & Zivelin, A. Thrombophilia as a multigenic disorder. Thromb. Haemost 78, 297-301 (1997).
- 31. Rosendaal, F. R. Venous thrombosis: A multicausal disease. Lancet 353, 1167-1173 (1999).
- 32. de Frutos, P. G., Fuentes-Prior, P., Hurtado, B. & Sala, N. Molecular basis of protein S deficiency. *Thromb. Haemost* **98**, 543–556 (2007).
- De Stefano, V., Finazzi, G. & Mannucci, P. M. Inherited thrombophilia: Pathogenesis, clinical syndromes, and management. Blood 87, 3531–3544 (1996).
- De Stefano, V., Rossi, E., Paciaroni, K. & Leone, G. Screening for inherited thrombophilia: Indications and therapeutic implications. *Haematologica* 87, 1095–1108 (2002).
- Miyata, T., Kimura, R., Kokubo, Y. & Sakata, T. Genetic risk factors for deep vein thrombosis among Japanese: Importance of protein S K196E mutation. Int. J. Hematol. 83, 217–223 (2006).
- 36. International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299-1320 (2005).
- 37. Kimura, R. et al. Protein S-K196E mutation as a genetic risk factor for deep vein thrombosis in Japanese patients. *Blood* 107, 1737–1738 (2006).
- 38. Kinoshita, S. et al. Protein S and protein C gene mutations in Japanese deep vein thrombosis patients. *Clin. Biochem.* **38**, 908–915 (2005).
- 39. Moher, D., Liberati, A., Tetzlaff, J. & Altman, D. G. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. *PLoS Med.* **6**, e1000097 (2009).
- Stang, A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in metaanalyses. Eur. J. Epidemiol. 25, 603–635 (2010).
- 41. Herzog, R. et al. Are healthcare workers' intentions to vaccinate related to their knowledge, beliefs and attitudes? A systematic review. *BMC Public. Health* **13**, 154 (2013).
- 42. Guyatt, G. H. et al. GRADE: An emerging consensus on rating quality of evidence and strength of recommendations. *BMJ* 336, 924–926 (2008).
- 43. Balshem, H. et al. GRADE guidelines: 3. Rating the quality of evidence. J. Clin. Epidemiol. 64, 401-406 (2011).
- 44. Guyatt, G. H. et al. GRADE guidelines: 4. Rating the quality of evidence-study limitations (risk of bias). J. Clin. Epidemiol. 64, 407-415 (2011).
- 45. Guyatt, G. H. et al. GRADE guidelines: 5. Rating the quality of evidence-publication bias. J. Clin. Epidemiol. 64, 1277-1282 (2011).
- 46. Guyatt, G. H. et al. GRADE guidelines 6. Rating the quality of evidence-imprecision. J. Clin. Epidemiol. 64, 1283-1293 (2011).
- 47. Guyatt, G. H. et al. GRADE guidelines: 7. Rating the quality of evidence-inconsistency. J. Clin. Epidemiol. 64, 1294–1302 (2011).
- 48. Guyatt, G. H. et al. GRADE guidelines: 8. Rating the quality of evidence-indirectness. J. Clin. Epidemiol. 64, 1303-1310 (2011).
- 49. Sumedha, D. & Anita, K. Prevalence of beta thalassemia carriers in India: A systematic review and meta-analysis. J. Community Genet. 14, 527-541 (2023).
- 50. Bergan, J. J. et al. Chronic venous disease. N Engl. J. Med. 355, 488-498 (2006).
- Takase, S., Pascarella, L., Bergan, J. J. & Schmid-Schönbein, G. W. Hypertension-induced venous valve remodeling. J. Vasc Surg. 39, 1329–1334 (2004).
- 52. Takase, S., Pascarella, L., Lerond, L., Bergan, J. J. & Schmid-Schönbein, G. W. Venous hypertension, inflammation and valve remodeling. *Eur. J. Vasc Endovasc Surg.* 28, 484–493 (2004).
- 53. Pascarella, L., Schmid-Schönbein, G. W. & Bergan, J. An animal model of venous hypertension: The role of inflammation in venous valve failure. J. Vasc Surg. 41, 303–311 (2005).
- Takase, S., Lerond, L., Bergan, J. J. & Schmid-Schönbein, G. W. The inflammatory reaction during venous hypertension in the rat. *Microcirculation* 7, 41–52 (2000).
- Takase, S., Lerond, L., Bergan, J. J. & Schmid-Schönbein, G. W. Enhancement of reperfusion injury by elevation of microvascular pressures. Am. J. Physiol. Heart Circ. Physiol. 282, H1387–H1394 (2002).
- Maeda, F. et al. Relevant factors for soleal vein dilatation obtained from screening activities in disaster areas. Japanese J. Med. Tech. 65, 25–31 (2016). Japanese.
- Chang, S. L. et al. Association of varicose veins with incident venous thromboembolism and peripheral artery disease. JAMA 319, 807–817 (2018).
- Kageyama, N. et al. Significance of the soleal vein and its drainage veins in cases of massive pulmonary thromboembolism. Ann. Vasc Dis. 1, 35–39 (2008).
- 59. Ro, A. & Kageyama, N. Clinical significance of the soleal vein and related drainage veins, in calf vein thrombosis in autopsy cases with massive pulmonary thromboembolism. *Ann. Vasc Dis.* **9**, 15–21 (2016).
- 60. Sakamoto, Y., Koami, H. & Miike, T. Monitoring the coagulation status of trauma patients with viscoelastic devices. J. Intensive Care 5, 7 (2017).
- 61. Koami, H. et al. Can rotational thromboelastometry predict septic disseminated intravascular coagulation? *Blood Coagul Fibrinolysis* 26, 778–783 (2015).
- 62. Li, Y. et al. Association between Insomnia symptoms and mortality: A prospective study of U.S. men. *Circulation* **129**, 737–746 (2014).
- Chen, T. Y. et al. Real-world evidence on the use of benzodiazepine receptor agonists and the risk of venous thromboembolism. J. Thromb. Haemost 18, 2878–2888 (2020).
- Denise, P. & Bocca, M. L. Effects of zolpidem 10 mg, zopiclone 7.5 mg and flunitrazepam 1 mg on night-time motor activity. *Eur. Neuropsychopharmacol.* 13, 111–115 (2003).
- Ministry of Health, Labour and Welfare. Guidelines for disaster medical coordinator activities. https://www.mhlw.go.jp/content/1 0800000/000478165.pdf [Accessed 5 September 2023].

Author contributions

YF conceived the study and contributed to data acquisition, drafting, revision, and approval of the final manuscript version. TK conceived the study and contributed to data acquisition, analysis, interpretation, drafting, revision, and approval of the final manuscript version. YF and TK are co-first authors. SN, MK, HK, and YS contributed to critical revision of the article and approved the final version of the manuscript.

Funding

No funding supported this manuscript.

Declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/1 0.1038/s41598-024-78780-x.

Correspondence and requests for materials should be addressed to T.K.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

© The Author(s) 2024