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Removal of Cr(VI) by biochar 
derived via co‑pyrolysis of oily 
sludge and corn stalks
Lei Han1,2, Jinling Li1,2*, Tiantian Zhang1, Chengtun Qu1,2,3, Tao Yu1,2, Bo Yang1,2 & 
Zhiguo Shao3

The co-pyrolysis of oily sludge with biomass to prepare carbon materials is not only an effective 
way to mitigate oily sludge pollution, but it is also a method of obtaining carbon materials. In this 
study, a carbon material (OS-CS AC) was obtained by the direct co-pyrolysis of oily sludge (OS) and 
corn stalks (CS) and then applied to Cr(VI) removal. According to the hydroxy and carboxy masking 
experiments and the characterization of OS-CS AC by FT-IR, SEM, XPS, XRD, and N2 physical 
adsorption–desorption, Cr(VI) can be adsorbed efficiently through pore filling, the surface oxygen-
containing functional groups can promote the reduction of Cr(VI) to Cr(III) through electron donors, 
and the greater the electrostatic attraction between the electron-donating functional groups of 
OS-CS AC and the Cr(VI) is, the stronger the ability to remove Cr(VI). In addition, the removal process 
was discussed, and the results indicated that the McKay kinetic model, Langmuir isotherm model 
and Van’t Hoff thermodynamic model were the most suitable models for removal. The main factors 
affecting the removal of Cr(VI) were discussed, and the removal of Cr(VI) reached 99.14%, which gives 
a comprehensive utilization way of oily sludge and corn stalks.

With the acceleration of industrial development, the overuse of landfills, and the stacking of domestic garbage, 
large amounts of heavy metals enter rivers and lakes through sewage systems1. These heavy metals have been 
reported to bioaccumulate and express biotoxic characteristics2 since they are easily transported through the 
biological chain, endanger human health and the ecosystem, and cause large-scale pollution3. Chromium (Cr) is 
a significant industrial material used for production in many industries, such as leather tanning, paint processing, 
electroplating, textile printing, and battery fabrication4. These industries produce large amounts of Cr-containing 
wastewater. Without proper disposal, these toxic substances severely harm ecosystems and give rise to numer-
ous diseases5. Therefore, Cr has been listed as a priority pollutant in many countries. Cr(III) and Cr(VI), which 
have different mobilities and carcinogenicities, are the dominant forms of Cr in aqueous solutions6. Owing to 
its strong solubility, mobility, and toxicity, Cr(VI) has extremely teratogenic and carcinogenic effects on humans 
and animals7. Therefore, it is essential to control the concentration of Cr(VI) in wastewater to protect ecosystems 
and human health.

In recent years, many technologies (e.g., ion exchange, photocatalysis, membrane, adsorption, and chemical 
reduction) have been developed to remove Cr(VI) from wastewater8. Among these technologies, adsorption is 
more attractive for Cr(VI) removal because of its high efficiency and simple operation9. However, the unclear 
removal mechanism and the high cost of modification limit its application in large-scale production. To solve 
these problems, some research has reported that the mechanism of Cr(VI) removal includes electrostatic attrac-
tion, reduction of Cr(VI) and adsorption of Cr(VI)10,11. Zhu et al. used a haematite nanoparticle-modified 
biochar-clay granular composite to explore the relationship between the change in zeta potential and Cr(VI) 
removal ability at different pH values and revealed the influence of electrostatic attraction on the adsorption 
process12. Chen et al. used modified biochar to study the relationship between the pHpzc (point of zero charge) 
and the ability to remove Cr(VI) at different pH values and revealed the influence of electrostatic attraction on 
the adsorption process13. Both of these results show that the ability to remove Cr(VI) increased with increasing 
electrostatic attraction, even at different pH values. However, the reduction ability and adsorption ability of car-
bon materials for Cr(VI) removal may change when the pH differs, further influencing electrostatic attraction. 
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Therefore, it is necessary to explore the influence of electrostatic attraction on the Cr(VI) removal ability without 
the effect of pH.

Oily sludge is an inevitable byproduct of the petrochemical industry during the production, collection, 
and transportation of petrochemicals. In China, more than one million tons of oily sludge are produced every 
year14. Currently, the main disposal methods for oily sludge include stacking, landfilling, and incineration15. 
However, these methods have been moderately limited or prohibited because of the risks of heavy metal pollu-
tion, especially Cr pollution16. Some studies have shown that pollutants such as heavy metals in oily sludge can 
be transformed to a more stable state via pyrolysis17. Thus, converting oily sludge to carbon materials through 
pyrolysis could be an interesting alternative to treating oily sludge, considering that it eliminates heavy metal 
pollution and converts oily sludge into a usable resource18. However, the adsorption capacities of the prepared 
activated carbon have not been satisfactory in applications because of the oily sludge, which has a relatively low 
carbon content and high ash content19. In recent years, many researchers have prepared adsorption materials by 
co-pyrolyzing sludge with biomass such as cotton stalks20 and bagasse21 and have explored the potential applica-
tion prospects of the obtained carbon materials. The abovementioned studies showed that the addition of biomass 
to oily sludge during pyrolysis could improve the properties of the adsorption materials.

China is one of the world’s largest corn producers. In recent decades, the unsuitable disposal of corn stalks 
(e.g., burning and landfilling) has caused inevitable environmental problems. However, because of their high fixed 
carbon content, low ash content, and extensive sources, corn stalks have high use value22. Previous studies have 
shown that the addition of corn stalk could increase the surface area and pore structure of carbon materials23, 
which can improve the adsorption active sites and adsorption capacity of carbon materials for heavy metals. 
However, to the best of our knowledge, there has been no study on the application of oily sludge co-pyrolysis 
with corn stalks to prepare carbon materials for Cr removal, and no possible removal mechanism has been 
proposed. Therefore, the co-pyrolysis of oily sludge and corn stalks to prepare carbon materials may accomplish 
their synergistic utilization.

In this study, carbon materials (OS-CS AC) were prepared by co-pyrolysis using oily sludge (OS) and corn 
stalks (CS) as raw materials and applied to remove Cr(VI) from wastewater. The effect of electrostatic attraction 
between the electron-donating functional groups of OS-CS AC and Cr(VI) on the removal of Cr(VI) was explored 
by carboxyl and hydroxyl masking experiments24,25 and batch experiments at different pH values. The effect 
of OS-CS AC on the ability to remove Cr(VI) and the removal mechanism was explored by manipulating the 
removal conditions, OS-CS AC pore structure, surface chemical properties and applying adsorption isotherms, 
dynamics, and thermodynamics. The objectives of this study were to (1) investigate the ability of OS-CS AC 
to remove Cr(VI) and Cr(Total) under different removal conditions; (2) determine the effect of the OS-CS AC 
pore structure and surface chemistry on the removal of Cr(VI); (3) reveal that the removal of Cr(VI) by OS-CS 
AC is a spontaneous, endothermic, and chemisorption-based process; and (4) explore the role of electrostatic 
interactions in the removal of Cr(VI) and the mechanism of Cr(VI) removal by OS-CS AC.

Materials and methods
Precursors and reagents.  The oily sludge was collected from the reduced tailings of the Tiebiancheng oil 
sludge station in Changqing, China. It was first dried for 24 h (105 ± 2 ℃) and then subsequently ground and 
sieved (1.7 mm). The corn stalks were collected from a cornfield in Yan’an City, Shaanxi Province, China and 
pretreated using a similar method, ground and sieved (0.17 mm). Sodium hydroxide (NaOH), hydrochloric acid 
(HCl), phosphoric acid (H2PO4), sulfuric acid (H2SO4), potassium dichromate (K2Cr2O7), potassium perman-
ganate (KMnO4), diphenylcarbazide, and acetone (CH3COCH3) were purchased from Xi’an Chemical Reagent 
Factory (Xi’an, China). All chemical agents used in this study were of analytical grade and were used without 
further purification. The ultrapure water used in the experiments was purchased from Shaanxi Hankang Envi-
ronmental Protection Technology Company (Xi’an, China).

Preparation of OS‑CS AC.  In a N2 atmosphere, a mixture of oily sludge and corn stalks in a mass ratio 
of 1:1 was heated to 650 °C in a pyrolysis furnace and held at this temperature for 1.5 h; the heating rate was 
10 °C min−1. After the temperature was naturally cooled to room temperature, the obtained raw OS-CS AC was 
ground to 0.17 mm.

Batch experiments.  A series of batch experiments was conducted to investigate the effects of the initial pH 
of the solution, OS-CS AC dose, contact time, and temperature on Cr(VI) removal with OS-CS AC. To further 
study the role of pH in the removal of Cr(VI), the zero charge point of OS-CS AC was determined using the 
gravimetric method26, and a blank control experiment27 was used to determine the reason for the change in pH 
during the removal process. In the experiments, a thermostatic shaker (GTCS-2011, Changzhou Zhengrong 
Instrument Co., Ltd., Changzhou, China) was used to control the desired temperature. A pH meter (PHS-25 pH 
meter, China) was used to adjust the pH of the solution. A UV–visible spectrophotometer (Thermo Fisher UV 
2350 spectrophotometer, China) was used to measure the absorbance of the filtrate at 540 nm. The shaking rate 
was maintained at 150 rpm throughout the experiments, and the OS-CS AC dose was 10 g L−1. The simulated 
Cr(VI) wastewater concentration was 50 mg L−1.

Batch experiments28: OS-CS AC was added to an Erlenmeyer flask filled with 50 mL of Cr(VI) simulated 
wastewater. The pH of Cr(VI) simulated wastewater was adjusted with 0.1 M HCl and 0.1 M NaOH and measured 
using a digital pH meter. Then, the Erlenmeyer flasks were agitated in an incubator shaker at the desired rpm 
and temperature. The solution was passed through a 0.45 μm water filtration membrane with a suction filter 
device. The Cr(VI) concentration in the residual filtrate after making contact with 1,5-diphenylcarbazide in an 
acidic environment was determined on a UV-visible spectrophotometer at 540 nm. In addition, the Cr(III) in 
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the filtrate was oxidized to Cr(VI) with 1 M potassium permanganate. After the oxidation of potassium perman-
ganate, the filtrate made contact with 1,5-diphenylcarbazide, and then the total Cr was measured on a 540 nm 
UV-Vis spectrophotometer. The experiments were repeated independently three times, and the results were 
reproducible with 5% error. The concentration, Cr(VI) and Cr (total) removal and percentage were determined 
using the following Eqs. (1–3):

where Qe (mg g−1) is the amount of Cr(VI) or total Cr removal, C0 and Ce (mg L−1) are the initial and e-time 
concentrations of Cr(VI) and total Cr, respectively, V (L) is the volume of the solution, m (g) is the weight of 
OS-CS AC, and η (%) is the removal percentage.

Adsorption isotherms, kinetics, and thermodynamic models.  Thermodynamics.  Three thermo-
dynamic parameters, ΔG, ΔH, and ΔS, were used to describe the thermodynamics of Cr(VI) removal. ΔG was 
calculated using Eqs. (4–5), while ΔH and ΔS were obtained by plotting ΔG vs. T (Eq. (6))29:

where R is the universal gas constant (8.314 J mol−1 K−1), T (K) is the removal temperature, Kc is the distribution 
coefficient, m (g) is the mass of OS-CS AC, and V (L) is the volume of the Cr(VI) solution.

Kinetics.  To investigate the Cr(VI) removal kinetics, pseudo-first-order kinetics (Lagergren equation) and 
pseudo-second-order kinetics (McKay equation) were adopted in this study. The nonlinear formulas of these 
kinetic models are shown below30,31:

Lagergren equation

McKay equation

where k1 (min−1) and k2 (min−1) are the rate constants of the Lagergren and McKay models, respectively, Qe 
(mg/g) is the saturated removal capacity, and Qt (mg/g) is the removal capacity at time t.

Isotherms.  The Langmuir and Freundlich isotherm equations were used to examine the isothermal removal of 
Cr(VI). The nonlinear formulas of these two equations are as follows32:

Langmuir isotherm

Freundlich isotherm

where kL (L mg−1) and kF are the rate constants of the Langmuir and Freundlich isotherm models, respectively, Qe 
(mg/g) is the equilibrium adsorption capacity, and Ce (mg L−1) is the Cr(VI) concentration when the equilibrium 
adsorption capacity is reached.

Characterization.  The specific surface area and pore distribution of OS-CS AC were characterized by BET 
analysis (ASAP-2020-HD88, American Mike Instrument Company), and the data were analysed using Ori-
gin2018 software. The crystal structures of the OS-CS AC were characterized using an X-ray polycrystalline 
diffractometer (D8 Advance, Bruker Instruments, Germany), and the data were collected in the angle range 
of 10–80 (2θ). Scanning electron microscopy (SEM) (EM-30 Plus, Kusem Instrument Company) was used to 
detect the microstructure and pore distribution of the OS-CS AC. X-ray photoelectron spectroscopy (XPS; 
EscaLab 250Xi, China) was performed to determine the adsorption of Cr(VI) and Cr(III) on the surface of 
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OS-CS AC, and the data were analysed using Avantage2018 software. An elemental analyser (EAI, German 
Elemental Analysis System Company) was used to detect the basic properties of OS and CS. The functional 
groups on the OS-CS AC surface were characterized using a Fourier transform infrared spectrometer (FTIR; 
Nicolet 5700, Thermo Electron Corporation) and Boehm titration33.

Hydroxy and carboxy masking experiments.  The method of masking the carboxyl and hydroxyl func-
tional groups on the surface of OS-CS AC was performed as follows:

OS-CS AC (0.5 g) was added to an Erlenmeyer flask containing absolute ethanol (100 mL) and formaldehyde 
(100 ml) and immersed for 12 h. Then, the OS-CS AC was filtered, washed repeatedly with ultrapure water to 
remove excess absolute ethanol or formaldehyde, and dried.

The functional group masking reaction equations are as follows:

After the reaction, the carboxyl group (–COOH) was converted into an ester group (–COOC–), and the 
hydroxyl group (R–OH) was converted into an ether group (C–O–C). These –COOH, R–OH, –COOC–, and 
C–O–C groups can remove Cr(VI) through complexation or ion exchange34,35. Therefore, the difference in the 
ability of OS-CS AC to remove Cr before and after the masking of carboxyl and hydroxyl groups is mainly caused 
by the difference in the surface charge ability of OS-CS AC, which determines the role of electrostatic interac-
tions in the removal of Cr(VI).

Desorption‑regeneration studies.  The OS-CS AC recovered after adsorption equilibrium was reached 
in the batch experiments was rinsed with distilled water to remove the residual Cr(VI) solution and then dried. 
The dried OS-CS AC material was placed in a stripping solution contained in a 250 mL Erlenmeyer flask. The 
solution was 100 mL distilled water adjusted to pH 2 using 0.1 M HCl. The flask was then placed in a ther-
mostatic oscillator for the batch experiments until adsorption equilibrium was reached. The OS-CS AC was 
recovered, dried and placed in a flask containing 100 mL of a 50 mg/L initial solution of Cr(VI) for the next 
equilibrium adsorption experiment. This cycle was repeated 3 times. The regeneration performance of OS-CS 
AC was evaluated by the desorption rate.

where R is the desorption rate of the OS-CS AC, %; Qt is the adsorption amount of the composite material after 
the t-th regeneration, mg/g; and Q0 is the adsorption amount of the carbon material before regeneration, mg/g.

Results and discussion
Factors influencing Cr(VI) removal from simulated wastewater.  pH.  Generally, the pH of the 
solution can directly determine the surface properties of carbon materials and thus affect many chemical 
reactions36. The effect of pH on the surface charge of OS-CS AC is shown in Fig. 1a. With the increase in the 
quality of OS-CS AC, the pH of the solution stabilized at 8.5; this pH was denoted as the zero charge point 
(pHpzc) of OS-CS AC. The net charge on the OS-CS AC surface was positive when the adsorbate solution was 
acidic (pH < pHpzc). which suggests that under acidic conditions (pH 1–6), the surface chargeability of OS-CS 
AC is opposite to that of Cr(VI) (CrO4

2−, Cr2O7
2−, HCr2O7

−), and the electrostatic attraction effect contributes to 
improving the affinity between the OS-CS AC surface and Cr(VI).

Figure 1b shows the pH change of the solutions when OS-CS AC was added to simulated wastewater and 
ultrapure water under acidic conditions (pH 1–6). After 2 h of reaction, the pH of the ultrapure water was less 
than that of the simulated wastewater, indicating that the OS-CS AC consumes a large number of H+ ions dur-
ing Cr(VI) removal. This phenomenon indicates that some Cr(VI) is reduced to Cr(III) during removal. The 
reduction process can be expressed as follows:

Figure 1c shows the effect of OS-CS AC on the removal of Cr(VI) and Cr(Total) under acidic pH (1–6) condi-
tions. As the pH decreased, the removal capacity of Cr(VI) increased, and the rate of Cr(VI) removal by OS-CS 
AC increased from 18.79% at pH 6 to 79.86% at pH 2 and then to 99.14% at pH 1. The increase in the Cr(VI) 
removal rate may be attributed to (1) the increase in the net positive charge on the surface of OS-CS AC at lower 
pH, resulting in a stronger electrostatic attraction between the surface of OS-CS AC and Cr(VI)37, or (2) Cr(VI) 
has a better ability to be reduced to Cr(III) at lower pH.

From the Cr (total) removal capacity (Fig. 1c), the removal rate of Cr(VI) was always greater than that of Cr 
(total) during the entire process. This result indicated that the adsorption of Cr(VI) was accompanied by the 
reduction of Cr(VI) to Cr(III) throughout the removal process. When the pH was increased from 2.0 to 6.0, the 
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rate of total Cr removal decreased. This result may be due to the weakening of the Cr(VI) reduction and adsorp-
tion capacity. In addition, the removal of Cr (total) and Cr(VI) were different between pH 1–2. When the pH 
was increased from 1 to 2, the rate of total Cr removal increased, whereas the removal rate of Cr(VI) decreased. 
This phenomenon may have occurred because (i) according to Eq. (1), when the pH was 1–2, the reducing abil-
ity of Cr(VI) played a major role, and with increasing pH, the reducing ability gradually weakened, resulting in 
a decrease in the ability to remove Cr(VI); (ii) the cationic charge of Cr(III) was not favourable for binding to 
the protonated reactive groups of OS-CS AC. With the increase in pH from 1 to 2, the protonation of oxygen-
containing functional groups on the surface of OS-CS AC weakened, leading to an increase in the capacity for 
total Cr removal, and the results were consistent with Mo’s study38.

Combining the removal capacity of Cr(VI) and Cr(Total), to explore the effects of the reduction and adsorp-
tion of Cr(VI) on the removal, pH 2 was chosen as the follow-up experimental condition.

OS‑CS AC dose.  The influence of OS-CS AC dose on the removal of Cr(VI) and total Cr removal is shown 
in Fig. 2a. As the dose of OS-CS AC increased from 4 to 20 g L−1, the capacity for Cr(VI) and total Cr removal 
decreased from 6.23 mg g−1 and 5.12 mg g−1 to 2.37 mg g−1 and 2.36 mg g−1, respectively. This decrease may have 
occurred because more OS-CS AC provides more specific surface area and pore structure and enhances the 
available sites39. Moreover, with the amount of added OS-CS AC changing from 4 to 20 g L−1, the amounts of 
removed Cr(VI) and total Cr gradually became almost the same because enough OS-CS AC provides sufficient 
electrons for Cr(VI) reduction and sufficient adsorption sites for Cr(III) and Cr(VI).

Figure 1.   The effect of pH on the surface charge of OS-CS AC (a), The effect of OS-CS AC to pH of simulated 
wastewater and ultrapure water (b), The effect of pH to removal rate of Cr(VI) and Cr(Total) (c).
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Concentration of Cr(VI).  The effect of the initial concentration of Cr(VI) simulated wastewater on the removal 
of Cr(VI) and total Cr is shown in Fig. 2b. As the concentration of Cr(VI) was increased, the removal of Cr(VI) 
and total Cr also increased. This result can be attributed to the fact that by increasing the initial concentration of 
Cr(VI) simulated wastewater, the effective collisions between OS-CS AC and Cr(VI) increase, which can result 
in a higher removal capacity of OS-CS AC at higher concentrations of simulated Cr(VI) wastewater40.

Removal time.  As shown in Fig. 2c, removal time had a relatively significant impact on the removal efficiency 
at the initial time; however, after 30 min, the impact gradually decreased to Cr(VI) removal. When the removal 
time was between 0 and 30 min, the amount of removed Cr(VI) increased rapidly to 3.15 mg g−1, which may be 
due to the large number of vacant adsorption sites on the surface of the OS-CS AC, which were filled by Cr(VI)41. 
From 30 to 180 min, as the removal time was increased, the removal of Cr(VI) gradually slowed and eventually 
remained unchanged. This decrease in removal rate may have occurred because the number of binding sites 
gradually decreased as the removal progressed, slowing the removal rate. In addition, the theoretical removal of 
Cr(VI) calculated by the McKay equation (Eq. (8)) is close to the amount removed at 120 min; therefore, 120 min 
was chosen as the final removal time.

Removal temperature.  Temperature is another significant factor affecting Cr(VI) removal. The effect of tem-
perature on the removal capacity of Cr(VI) and total Cr is shown in Fig. 2d. When the temperature was increased 
from 20 to 40 °C, the capacity for Cr(VI) removal increased from 3.84 to 4.06 mg g−1. In addition, Table 4 shows 
that ΔG decreased as the temperature was increased as the reaction as fit to the Van ’t Hoff thermodynamic 

Figure 2.   The influence of OS-CS AC dosages on Cr(VI) and Cr(Total) removal (a), The influence of the initial 
concentration of Cr(VI) on the removal of Cr (VI) and Cr (Total) (b),The influence of removal time on Cr(VI) 
and Cr(Total) removal (c),The influence of removal temperature on Cr(VI) and Cr(Total) removal (d).
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model, indicating that high temperatures are more conducive to removal. This finding is consistent with previ-
ous studies42.

Textural characterizations of OS‑CS AC.  The well-developed pore structure can provide a good envi-
ronment for the migration of adsorbates to the internal pores and remove pollutants via pore filling43. Since 
Cr(VI) has a large ion size (1.2 × 0.6 × 0.6 nm3), it is necessary to study the influence of the OS-CS AC structure 
on the removal of Cr(VI). The basic properties of OS and CS are shown in Table 1. The high carbon content 
and low ash content of corn stalks give OS-CS AC a high potential for a loose and porous structure, and carbon 
nanotubes may even be formed during the high-temperature pyrolysis process44. This demonstrates that the co-
pyrolysis of oily sludge and corn stalks offers an alternative for adsorbent preparation.

The XRD patterns of the OS-CS AC before and after Cr(VI) removal are shown in Fig. 3. The most significant 
peak of OS-CS AC before and after removal appears at approximately 2θ = 26.20, which indicates that quartz is 
the main crystal structure of OS-CS AC (before and after removal)45.

Figures 4a–d show SEM images of the raw materials and OS-CS AC (before and after removal), respectively. 
Comparing Fig. 4a–c, it can be seen that OS-CS AC has a more developed pore structure, possibly because 
co-pyrolysis destroys the dense structure of the raw materials. In Fig. 4c,d, we can see that after the removal of 
Cr(VI), the surface of OS-CS AC was relatively weak, and some of the pores were blocked. This result indicates 
that Cr(VI) binding sites are located in the block and tube of OS-CS AC and between the pores46.

The specific surface area, pore volume, and pore size of OS-CS AC (before and after removal) are listed in 
Table 2. The surface area and pore volume of OS-CS AC were relatively low after the removal of Cr(VI), with a 
surface area of 21.35 to 19.98 m2/g and an average pore size of 17.98 to 13.28 nm, respectively. In addition, the 
mesopore proportions of OS-CS AC before and after adsorption of Cr(VI) were 98.64% and 92.91%, respectively, 
indicating that the pore size distribution of OS-CS AC was mainly mesopores.

Figure 5a,b show the N2 adsorption–desorption curves of OS-CS AC before and after Cr(VI) removal, respec-
tively. The N2 adsorption–desorption curve of OS-CS AC was closed, and it was classified as a type IV hysteresis 
loop, which also inedicates that the OS-CS AC had a mostly mesoporous structure, and the curves overlapped 
at low relative pressures. Then, with increased relative pressures, hysteresis appeared when the relative pressure 
was 0.45. In addition, after Cr(VI) removal, the OS-CS AC showed hysteresis at the onset of adsorption, which 
may have occurred because some of the pore structure was consumed by pore filling during Cr(VI) removal.

Figures 6a,b show the pore size distribution curves of OS-CS AC before and after Cr(VI) removal, respectively. 
From Fig. 6a,b, it can be concluded that the pore size distribution of OS-CS AC is relatively concentrated, and the 
pore structure is dominated by mesopores between 2 and 20 nm. As shown in Fig. 6a with Fig. 6b, the volume of 
mesopores between 10–20 nm decreased after the removal of Cr(VI), which indicated that the mesopores were 
more beneficial for transferring Cr(VI), and this result is consistent with those of Sun47.

Chemical surface characterizations of OS‑CS AC.  The performance of carbon materials is closely 
related to the pore structure and the chemical properties of the surface48. The surface functional groups of OS-CS 
AC before and after removal were detected by Fourier transform infrared (FTIR) spectroscopy. As shown in 
Fig. 7, there were stretching vibrations corresponding to –OH groups at 3334 cm−1, the vibrations of aromatic 

Table 1.   Basic features of OS and CS.

Raw material Moisture content (%) Volatile content (%) Ash content (%) Fixed carbon (%) N (%) C (%) H (%) S (%) C/N C/H

OS 0.89 24.33 67.93 6.85 0.33 12.31 1.33 1.78 37.36 9.26

CS 0.13 96.37 0.58 2.92 1.03 43.53 4.67 0.21 42.42 9.32

Figure 3.   XRD spectra of OS-CS AC (before and after removal of Cr (VI)).
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C=C and –COOH groups at 1611 cm−1, the stretching vibrations of C=O at 1384 cm−1, and the tensile vibrations 
of the C–O–C bond at 1159 cm−149,50 in the spectrum of OS-CS AC. However, after removal of Cr(VI), the inten-
sity of the C–O–C peak and C=O weakened, and the absorption peak shifted towards a high wavenumber. This 
result shows that the C–O–C bond in OS-CS AC was consumed substantially, possibly because the O atom can 
act as an electron donor and interact with Cr(VI)51. In addition, the –COOH absorption peak shifted to a lower 
wavenumber, and the –OH absorption peak weakened. This result may be due to ionizable –COOH and –OH 
groups52, which can provide H+ to participate in the reduction of Cr(VI) (Eqs. (14–16)).

The surface functional group contents of OS-CS AC before and after the removal of Cr(VI) are listed in 
Table 3. Both acidic and basic functional groups decreased after the removal of Cr(VI). This result indicates that 
the surface functional groups of OS-CS AC participated in the adsorption process. FT-IR spectroscopy analysis 
indicates that OS-CS AC has a higher oxygen-containing functional group content and is more conducive to 
removing Cr(VI).

The XPS spectrum of Cr 2p after the OS-CS AC removal of Cr(VI) is shown in Fig. 8. The peaks near 587 eV 
and 577 eV correspond to Cr(VI), while the peaks near 585 eV and 576 eV are characteristic of Cr(III)53, which 
proves that both Cr(III) and Cr(VI) exist on the surface of OS-CS AC after the removal of Cr(VI).

Figure 4.   SEM images of CS (a), OS (b), OS-CS AC (c), and OS-CS AC after removal of Cr(VI) (d).

Table 2.   Surface area and pore volume of OS-CS AC.

Source
Specific surface area 
(m2/g)

Mesopore average pore 
size (nm)

Total average pore size 
(nm)

Mesopore proportion 
(%)

OS-CS AC 21.35 17.51 17.98 98.64

OS-CS AC (after removal 
of Cr(VI)) 19.98 13.59 13.28 92.91
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Figure 5.   N2 adsorption–desorption curves of (a) OS-CS AC and (b) OS-CS AC after removal of Cr(VI).

Figure 6.   Pore volume curve of (a) OS-CS AC and (b) OS-CS AC after removal of Cr(VI).

Figure 7.   FT-IR spectra of OS-CS AC (before and after removal of Cr (VI)).
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Characterization of electrostatic interactions.  The carboxyl and hydroxyl masking experiments 
(Eqs.  (11–12)) converted the carboxyl and hydroxyl groups into ester and ether groups. Both carboxyl and 
hydroxyl groups can be used as electron donor groups before and after masking54. In the mechanism diagram 
of the masking of the hydroxyl carboxyl group (Fig. 9), the ability to remove Cr(VI) before and after the mask-
ing of the carboxyl and hydroxyl groups is mainly due to the different electrostatic interactions at the surface 
of the OS-CS AC. As shown in Fig. 10, the trend in Cr(VI) removal is as follows: OS-CS AC masking carboxyl 
group > OS-CS AC masking hydroxyl group > OS-CS AC. This trend may be due to the greater electrostatic 
attraction between the surface of OS-CS AC and Cr(VI) after the carboxyl and hydroxyl groups were masked and 
the number of carboxyl functional groups on the surface of the OS-CS AC, which was greater than the number 
of phenolic hydroxyl functional groups on the OS-CS AC (Table 3). These results indicate that the electrostatic 
attraction between the electron-donating functional groups of OS-CS AC and Cr(VI) plays an important role in 

Table 3.   Surface functional group content of OS-CS AC.

Source
Carboxyl
(mmol/g)

Lactone group
(mmol/g)

Phenolic hydroxyl
(mmol/g)

Acidity
(mmol/g)

Alkalinity
(mmol/g)

Total functional group
(mmol/g)

OS-CS AC 1.70 0.16 0.48 2.34 3.75 6.09

OS-CS AC (after removal of 
Cr(VI)) 1.32 0.09 0.37 1.78 2.15 3.93

Figure 8.   XPS spectrum of OS-CS AC (after removal of Cr(VI)).

Figure 9.   Hydroxy carboxyl group masking mechanism.
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the removal of Cr(VI) by OS-CS AC. Therefore, more positive charges of OS-CS AC lead to larger electrostatic 
attraction and a greater ability to remove Cr(VI).

Mechanism of the removal of Cr (VI).  Based on the electrostatic interactions, the effect of pH and the 
characterization of the physicochemical properties of OS-CS AC, a possible mechanism for removing Cr(VI) by 
OS-CS AC is proposed, as shown in Fig. 11. In simulated acidic Cr-containing wastewater, positively charged 
OS-CS AC (pHpzc = 8.5) and negatively charged Cr(VI) (CrO4

2−, Cr2O7
2−, HCr2O7

−) were combined under elec-
trostatic attraction. Then, the oxygen-containing functional groups (ether, ketone, carboxyl, and hydroxyl) of the 
OS-CS AC were used as electron donors55, and Cr(VI) accepted these electrons and H+, becoming reduced to 
Cr(III) (Eqs. (14–16)). Based on the reported results, some Cr(III) may be ascribed to the formation of a coor-
dinate covalent bond with the oxygen-containing groups of OS-CS AC and was immobilized in OS-CS AC, and 
some was released into the aqueous solution due to electrostatic repulsion with OS-CS AC56. In addition, Cr(VI) 
may be due to the filling of pores under the electrostatic attraction of OS-CS AC57.

Thermodynamics, isotherms and kinetics of Cr(VI) removal.  Figure 12a shows the linear fit of the 
thermodynamic Van’t Hoff model. The thermodynamic parameters of the OS-CS AC used to remove Cr(VI) are 
shown in Table 4. During the removal of Cr(VI) by OS-CS AC, ΔG, ΔH, and ΔS were negative, positive, and posi-
tive, respectively, which means that this is a spontaneous, endothermic, and entropy-increasing process. The ΔS 
is likely positive because the OS-CS AC reduced some Cr(VI) to Cr(III) and released it into the aqueous solution, 
increasing the irregularity and randomness of the solid-aqueous solution interface58.

The Lagergren and McKay kinetic fitting curves for Cr(VI) by OS-CS AC are displayed in Fig. 12b,c, and 
the corresponding parameters are listed in Table 5. From the R2 value, we can see that the McKay kinetic model 
is consistent with the experimental results. The Lagergren kinetic model describes the initial stage of Cr(VI) 

Figure 10.   Hydroxyl and carboxyl masking experiment.

Figure 11.   Removal mechanism of Cr(VI) by OS-CS AC.
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adsorption, while the McKay kinetics describe the entire process of Cr(VI) adsorption, including liquid film 
diffusion, surface adsorption, and internal diffusion. The adsorption process is accompanied by the formation 
of chemical bonds59. Therefore, it can be inferred that the removal of Cr(VI) by OS-CS AC was mainly due to 
chemical adsorption.

The Langmuir and Freundlich isotherms of OS-CS AC for the removal of Cr(VI) are shown in Fig. 12d,e. 
Comparing the Langmuir and Freundlich adsorption isotherm models, we found that the Langmuir adsorption 

Figure 12.   Fitting plots of (a) Vant’Hoff thermodynamic, (b) Lagergren kinetic, (c) McKay kinetic, (d) 
Langmuir adsorption isotherm,and (e) Freundlich adsorption isotherm models.
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isotherm model better describes the removal of Cr(VI). Therefore, according to the characteristics of the Lang-
muir adsorption isotherm model, the adsorption sites of OS-CS AC for Cr(VI) were uniformly distributed and 
had the same affinity, and the adsorption process was mainly chemical adsorption60.

Desorption and regeneration of OS‑CS AC.  Table 6 shows the rate of Cr(VI) desorption from OS-CS 
AC at pH 2. The desorption rate changed from 73 to 37% over three sorption cycles, which indicates that it is 
difficult to reuse OS-CS AC for numerous cycles of sorption and desorption, which may be due to the weak 
desorption of chromate.

Conclusion
From the direct co-pyrolysis of oily sludge and corn stalks, the waste recycling material biochar OS-CS AC was 
obtained; this material had a Cr(VI) removal rate as high as 99.14%. When the dose of OS-CS AC was 10 g L−1 and 
the concentration of Cr(VI) was 50 mg L−1, the removal time and temperature were 2 h and 40 °C, respectively. 
Greater electrostatic attraction between the electron-donating functional groups of OS-CS AC and Cr(VI) led to 
a stronger the Cr(VI) removal ability. A greater number of oxygen-containing functional groups on the surface of 
OS-CS AC improved the ability to reduce Cr(VI) to Cr(III), as this oxygen-containing groups can act as electron 
donors. In addition, the specific surface area and pore structure of OS-CS AC can affect the adsorption ability for 
Cr(VI) via pore filling. Moreover, the removal process of Cr(VI) by OS-CS AC better fit the McKay kinetic model 
(R2 > 0.96) and Langmuir isotherm model (R2 > 0.99), and the process of Cr(VI) removal was mainly chemical 
adsorption. Furthermore, the ΔG, ΔH, and ΔS of the Van ’t Hoff thermodynamic model were negative, positive, 
and positive, respectively, indicating that the removal of Cr(VI) was a spontaneous, endothermic, and entropic 
process. Through this research, we developed an inexpensive, environmentally friendly, and directly obtained 
adsorbent for the removal of Cr(VI) from wastewater.

Data availability
All data generated or analyzed during this study are included in this published article.
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