
The importance of drug repositioning in the era of 
genomic medicine
The perceived inefficiency of pharmaceutical drug 
development has been widely discussed [1-5]. Only 20 to 
30 new chemical entities (NCEs: drugs not containing a 
previously approved active ingredient) are approved per 
year in the US [4], and each successful NCE requires an 
average of US$1.78 billion and 13.5 years from discovery 
to market [5]. Although estimates of drug discovery costs 
vary (a recent study suggested that the minimum cost of 
developing an NCE is US$204 million [6]), it is important 
to note that these estimates do not yet account for drug 
failures. Given that only 11% of drugs investigated in 
clinical trials are eventually approved [3], the actual cost 
of drug development is much higher than the published 
estimates.

Two approaches to improving productivity are rapidly 
gaining in popularity: drug repositioning to find new uses 
for existing drugs and personalized medicine to find 
tailored therapies for individual patients. The premise of 
repositioning is that reusing drugs that have previously 
passed clinical trials will minimize the risk of failure in 
future late-stage clinical trials due to toxicity and thus 
lead to faster drug approvals. Personalized medicine 
takes into account the fact that 30% of drugs investigated 
in clinical trials fail because of lack of efficacy [3], and its 
premise is that stratifying patients and diseases into 
molecular subtypes and treating with subtype-specific 
drugs will improve drug efficacy. The recent approval of 
crizotinib for non-small-cell lung cancer (NSCLC) 
provides a proof of concept for linking these two 
strategies: crizotinib was repositioned from anaplastic 
large-cell lymphoma treatment and is accompanied by a 
diagnostic test to identify the subset of NSCLC patients it 
is effective for [7]. Here, we introduce repositioning and 
personalized medicine approaches, discuss their benefits 
and challenges, and summarize recent studies that have 
propelled the fields forward.

Drug repositioning as an efficient approach to drug 
discovery
Drug repositioning is the process of finding new thera-
peutic indications for existing drugs. It can be an efficient 
approach to discovery because many existing drugs have 
1) established formulations and manufacturing methods, 
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2)  extensive absorption distribution, metabolism, excre-
tion and toxicity (ADMET) data, 3)  previously passed 
clinical trial safety endpoints and are thus less likely to 
fail future clinical trials owing to adverse effects [2], and 
4)  phase IV (post-marketing surveillance) safety data, 
which are expensive and time consuming to obtain [8]. 
Reviews of the field indicate at least 46 approved drugs 
already repositioned for new therapeutic uses [2,9-11]. 
Examples discussed in this review are summarized in 
Table 1.

Timeline of drug repositioning
The standard drug discovery pipeline from target identi-
fi cation to drug approval is a 10 to 17 year process, com-
prising 2 to 3  years for target discovery and validation, 
0.5 to 1 year to screen or design chemicals with biological 
activity, 1 to 3  years to optimize these drug leads using 
medicinal chemistry, 1 to 2  years to ascertain drug 
ADMET properties using animal models, 5 to 6 years to 
assess drug safety and efficacy in clinical trials, and 1 to 
2 years to obtain approval [2].

Ashburn and Thor [2] estimated that repositioning 
could reduce the 10 to 17 year process to 3 to 12 years, 
because steps such as optimization and ADMET could be 
bypassed. Three drugs that have illustrated the acceler-
ated timeline of repositioning are duloxetine, imatinib 
and crizotinib (Table  1). Duloxetine was originally 
developed to treat depression, but was first reported to 
improve stress urinary incontinence (SUI) outcomes in 
1998 [12] and was then approved in Europe in 2004 [2]. 
Imatinib, which was developed for the treatment of 
chronic myeloid leukemia (CML), was first found to be 
effective in a single patient with gastrointestinal stromal 
tumor (GIST) in 2001 [13] and was approved by the US 
Food and Drug Administration (FDA) in 2008 [14]. 
Crizotinib has had the most rapid translation so far: the 
EML4-ALK fusion was identified as an oncogene in 
NSCLC in August 2007 [15]; and the dual Met proto-
oncogene/anaplastic lymphoma kinase (MET/ALK) 
inhibitor crizotinib, in clinical trials for anaplastic large-
cell lymphoma as a MET inhibitor, was then repositioned 
to NSCLC based on its ALK-inhibiting property; and it 
was approved for NSCLC treatment within just 4  years 
[7]. These timelines are much shorter than the 13.5 year 
average currently reported for new drugs [5] and 
highlight the efficiency of repositioning approaches.

Types of drug repositioning
Figure 1 summarizes various opportunities for reposi-
tion ing. So far, most successfully repositioned drugs have 
been identified through serendipitous observations 
(Figure  1, path  1), such as the antiemetic thalidomide, 
which has gained new indications in leprosy and multiple 
myeloma [2].

Standard drug discovery strategies can also lead to 
repositioning opportunities. High-throughput screening 
detects compounds with biological activity, such as the 
inhibition of a disease phenotype (Figure  1, path  2) or 
target (path 3). Existing drugs found to potently modulate 
the desired activity are repositioning candidates. Gills et 
al. [16] tested six anti-HIV drugs against a panel of 60 
cancer cell lines using cellular proliferation assays, and 
found nelfinavir to be a potent broad-spectrum anti-
tumor agent. Nelfinavir has since entered at least eight 
cancer clinical trials [17]. Large-scale kinome assays have 
also been used to determine new targets of approved and 
clinically tested kinase inhibitors [18,19]. Other examples 
of drugs that have been repositioned based on novel 
target protein activity are shown in Table 1.

Repositioning can also occur when a new role is 
revealed for an existing target protein (path  4). The 
mammalian target of rapamycin (mTOR; a key protein 
controlling cell growth and division) and ALK (a mem-
brane receptor tyrosine kinase involved in insulin signal-
ing) were first identified as targets for immuno sup pression 
and anaplastic large-cell lymphoma, respect ively, but 
have since been identified as relevant thera peutic targets 
in pancreatic neuroendocrine tumors and NSCLC, 
respectively. These discoveries led to new indi ca tions for 
the mTOR inhibitor everolimus and the ALK inhibitor 
crizotinib [7,20]. Other examples are shown in Table 1.

The serotonin and norepinephrine reuptake inhibitor 
duloxetine is an example of repositioning at the pathway 
level (Figure 1, path 5). Duloxetine was first developed to 
treat depression; however, the finding that serotonin and 
norepinephrine signaling pathways were involved in 
spinal cord activation of the external urethral sphincter 
led to duloxetine being marketed for SUI [21]. Serotonin 
and norepinephrine were also found to be key neuro-
transmitters in fibromyalgia (a central nervous system 
disorder) and pain management; duloxetine has since 
been approved for fibromyalgia in 2008 [22] and for 
chronic musculoskeletal pain in 2010 [23].

Side effects observed in clinical trials that were not 
apparent in animal models may also lead to repositioning 
opportunities (path 6). Examples of drugs in this category 
include sildenafil and minoxidil, both of which were 
developed for hypertension but later became blockbuster 
drugs for erectile dysfunction and hair loss, respectively 
[24].

In some cases, repositioning avenues may already exist 
but have yet to be linked. The best known example is 
imatinib, which inhibits the BCR-ABL fusion protein (a 
constitutively active tyrosine kinase) in CML, but also 
potently inhibits v-kit oncogene homolog (KIT) and 
platelet-derived growth factor receptors (PDGFRs) [14]. 
Activating mutations in KIT and PDGFR-α (PDGFRA) 
are drivers of GIST proliferation. Connection of the 
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KIT-imatinib and KIT-GIST avenues in 1998 [25] led to 
FDA accelerated approval of imatinib in metastatic GISTs 
in 2002 [26] and regular approval in 2008 after clinical 
trials completion [14].

Personalized medicine to reduce lack of drug efficacy
The two foremost reasons for clinical drug attrition are 
inefficacy and toxicity. From 2008 to 2010, 51% of 87 
phase II drugs failed clinical trials because of inefficacy, 

and 19% failed because of safety issues [27]. From 2007 to 
2010, 66% of 83 phase III drugs failed due to inefficacy 
and 21% because of safety issues [28]. Inadequacy of 
animal models is a factor in clinical trial failures [29], but 
two major reasons are disease and patient heterogeneity.

Lack of efficacy due to disease heterogeneity
The heterogeneity and complexity of human diseases has 
an important role in drug efficacy. For example, we now 

Table 1. Examples of repositioned drugs, their targets and indications*

Drug name Original target Original indication New target New indication References

Successful repositionings from approved drugs

Duloxetine Serotonin and  Depression Serotonin and Stress urinary incontinence,  [12] 
 norepinephrine  norepinephrine reuptake fibromyalgia, chronic  
 reuptake   musculoskeletal pain

Everolimus mTOR Immunosuppressant Unchanged Pancreatic neuroendocrine  [20] 
    tumors

Imatinib BCR-ABL CML KIT, PDGFRA GIST [14]

Minoxidil Unknown Hypertension Unknown Hair loss [24]

Nelfinavir HIV-1 protease AIDS Inhibits AKT pathway In clinical trials for multiple  [17] 
    cancers

Sildenafil PDE5 Angina Unchanged Erectile dysfunction,  [130] 
    pulmonary arterial hypertension

Sunitinib Multiple kinases GIST, renal cell carcinoma Unchanged Pancreatic neuroendocrine  [131] 
    tumors

Trastuzumab HER2 HER2-positive breast cancer Unchanged HER2-positive metastatic  [129] 
    gastric cancer

Successful repositionings from investigational drugs

Crizotinib MET kinase Clinical trials for anaplastic  EML4-ALK oncogene NSCLC [7]
  large-cell lymphoma

Thalidomide Unknown Morning sickness (withdrawn) Inhibits tumor necrosis  Leprosy [132] 
   factor α production

Thalidomide Unknown Morning sickness (withdrawn) Inhibits angiogenesis Multiple myeloma [132]

Zidovudine Reverse transcriptase Failed clinical trials for cancer Reverse transcriptase AIDS [73]

Unsuccessful repositionings

Bevacizumab VEGF Multiple cancers Unchanged Failed clinical trial for gastric  [124] 
    cancer

Buproprion Unknown Depression Synergistic inhibition of  Obesity (rejected by FDA [126,127] 
   appetite and energy  owing to adverse effects)  
   expenditure  

Naltrexone Opioid receptors Opioid addiction Synergistic inhibition of  Obesity (rejected by FDA [126,127] 
   appetite and energy  owing to adverse effects)  
   expenditure  

Naltrexone Unknown Alcohol dependence Synergistic inhibition of  Obesity (rejected by FDA [126,127] 
   appetite and energy  owing to adverse effects)  
   expenditure  

Sunitinib Multiple kinases GIST, renal cell carcinoma Multiple kinases Failed clinical trials for  [125] 
    multiple cancers

*Drugs are divided into successful and unsuccessful repositionings. Within successful cases, drugs are further divided according to whether they were approved at 
their time of repositioning. For each drug, the original target and indication is listed, along with the new target and indication. In many cases, it can be seen that the 
new indication is still based on the same target protein. CML, chronic myeloid leukemia; GIST, gastrointestinal stromal tumor; NSCLC, non-small-cell lung cancer.
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know that cancer is a collection of diseases and subtypes 
that are vastly different in their underlying molecular 
architecture. Gene expression profiles have classified 
breast tumors into four to six major subtypes [30,31] and 
diffuse large B-cell lymphomas into two to three major 
subtypes that respond differently to treatment [32]. There 
is also growing evidence for heterogeneity in many other 
diseases, from asthma [33] and diabetes [34] to less 
common disorders such as glycogen storage disease [35]. 
Specific oncogenic drivers have been elucidated for 
several rare cancer subtypes that aid in the interpretation 
of the heterogeneity, including the Philadelphia chromo-
some in 95% cases of CML [14] (15% of leukemias [36]), 
the EML4-ALK fusion driving 4 to 5% of NSCLC [37], 
and the RET proto-oncogene in familial medullary thyroid 
cancers (less than 3% of thyroid cancers) [38].

In light of this disease heterogeneity, the aim of 
personalized medicine is to diagnose patients and 
prescribe drugs tailored to the molecular biology of the 
individual’s disease. Various levels of molecular-level 
personalized medicine are already in place, such as the 

measurement of human epidermal growth factor receptor 2 
(HER2) expression to determine whether breast cancer 
patients should receive trastuzumab therapy [39]. Patients 
being considered for anti-epidermal growth factor recep-
tor (EGFR) therapy are often screened for mutations in 
the oncogene KRAS [40], because a constitutively active 
KRAS gene downstream of EGFR would not be affected 
by EGFR inhibition. Gene profiling tests such as Onco-
type Dx and MammaPrint predict the risk of recurrence 
of breast cancers to help guide treatment [41]. In August 
2011, the FDA approved two drugs with companion 
diagnostic tests: vemurafenib with a PCR-based test for 
the V600E activating mutation in the oncoprotein BRAF 
in metastatic melanoma [42], and crizotinib with a 
fluorescence in situ hybridization (FISH)-based test to 
detect ALK rearrangements in NSCLC [7]. Clearly, 
prescribing drugs only to a responsive subgroup of 
patients would improve the cost-effectiveness of the 
treatment. Appropriate molecular stratification would 
also result in candidate drugs being more likely to 
succeed in clinical trials instead of appearing ineffective 

Figure 1. Potential avenues of drug repositioning. Most repositioned drugs so far have been discovered through serendipitous treatment 
or unexpected side effects observed during clinical trials (path 1, path 6). More rational approaches to the identification of drug repositioning 
candidates involve finding existing drugs that can modulate specific disease phenotypes (path 2), finding new drug-target interactions (path 3), 
finding new roles for existing targets (path 4), or finding new pathways in disease (path 5). One or two examples of successfully repositioned drugs 
are listed for each method.
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because of the disease heterogeneity. But equally as 
important, the number of patients who would otherwise 
be prescribed an ineffective drug and experience adverse 
effects would decrease, and these patients would then 
have an opportunity to undertake other approved or 
experimental therapeutic regimens that might be 
beneficial.

Lack of efficacy due to patient heterogeneity
The variation of drug efficacy and toxicity between 
individuals is in part due to genetic polymorphisms in 
drug-metabolizing enzymes, drug transporters, 
receptors and other drug targets [43]. One of the earliest 
discovered examples is the enzyme thiopurine methyl-
transferase. Ten percent of Caucasians have inter-
mediate activity and 0.33% have no activity in this 
enzyme, resulting in enhanced adverse effects when 
taking thiopurine drugs [44]. Another well known 
example is cytochrome 2D6 (CYP2D6), which metabo-
lizes almost a quarter of prescription drugs. It has been 
reported that 7 to 14% of Caucasians carry a less 
efficient allele, and another 7% carry a highly efficient 
allele. Studies have shown that a patient’s CYP2D6 
genotype determines the effectiveness of tamoxifen 
treatment for estrogen-receptor-positive breast cancers 
[45]. Polymorphisms in ATP-binding cassette (ABC) 
drug transporters are also known to confer resistance to 
many drugs, including epilepsy drugs and fluvastatin 
[46]. Finally, a recent study found that 14% of pancreatic 
neuroendocrine tumors had mutations in mTOR 
pathway genes, which could affect the efficacy of the 
approved drug everolimus [47]. Resources such as 
PharmGKB [48] can be used to pinpoint genes that are 
known to be important in drug response, and the 
mutational statuses of those genes in the patient can be 
immediately reviewed.

Overall, a deeper understanding of patient and disease 
heterogeneity would allow us to better stratify patients in 
clinical trials and thus improve drug efficacy.

Personalized genomic medicine
Advances in whole genome sequencing (WGS), whole 
exome sequencing (WES) and whole transcriptome 
sequencing (RNA-seq) technologies now allow the 
exami nation of diseases in individual patients at an un-
precedented resolution (Figure 2). Comparing a patient’s 
tumor and normal genomes can comprehensively deter-
mine sequence, copy number, structural and expression 
aberrations in known disease genes. Any identified genes 
that already have approved targeted drugs used in other 
diseases could represent opportunities for re positioning. 
A few anecdotal cases in the literature high light the 
potential of personalized genomics in diagnos ing disease 
and inferring treatment. Gene expression profiling of a 

patient with an atypical morphology acute myeloid 
leukemia (AML) helped changed the treatment from 
standard AML-targeting drugs to rhabdomyo sarcoma 
drugs [49]. Also, a large adaptive clinical trial tested 
NSCLC patients for 11 potential biomarkers and found 
that response to certain drugs or drug combi nations 
correlated with specific markers [50].

The first report using sequencing to infer treatment 
was for a patient with a rare tongue adenocarcinoma and 
no standard treatment options. WGS and RNA-seq 
revealed amplification and upregulation of the RET 
proto-oncogene, and subsequent repositioning of RET-
inhibiting kinase drugs conferred 8 months of disease 
stabilization [51]. A metastatic tumor from this patient 
was sequenced after the disease progressed and was 
found to have 1)  increased RET expression and down-
stream extracellular-signal-regulated kinase (ERK) expres-
sion and 2)  increased expression in the parallel protein 
kinase B (AKT) pathway. This result suggested that a 
combination of AKT-pathway and ERK inhibitors could 
be effective in treating the metastasis [51]. In a second 
study, WGS confirmed that a patient with atypical AML 
and inconclusive FISH results had a pathogenic pro-
myelo cytic leukemia-retinoic acid receptor α (PML-RARA) 
gene fusion, which creates an oncogenic complex in 
AML. This confirmation led to all-trans retinoic acid 
consolidation treatment instead of a stem cell transplant 
[52]. Another study performed WES for a 15-month old 
boy, which revealed an X-linked inhibitor of apoptosis 
deficiency and led to recommendation for an allogeneic 
hematopoietic stem cell transplant [53]. Lastly, WGS, 
WES and RNA-seq on tumor and normal tissue from two 
patients with advanced or refractory cancer identified 
targetable oncogenes cyclin-dependent kinase 8 (CDK8) 
and neuroblastoma RAS viral oncogene homolog (NRAS) 
for the first patient and Harvey rat sarcoma viral onco-
gene homolog (HRAS) for the second patient [54]. A 
multidisciplinary Sequencing Tumor Board concluded 
that the first patient should be treated with CDK or MEK 
inhibitors and the second patient with phosphoinositide-
3-kinase and MEK inhibitors [54].

Many targets do not yet have approved therapeutic 
options, such as the ERK and MEK targets identified in 
the above studies. In fact, only 364 of the 2,025 targets 
contained in the latest Therapeutic Target Database have 
approved drugs, another 286 have drugs in clinical trials, 
and the remaining 1,331 only have experimental inhibi-
tors [55]. It is essential to have a repertoire of safe and 
effective small molecule modulators for all druggable 
targets so that therapeutic options will be available when 
a patient’s disease is diagnosed at the molecular level. In 
the next few sections we discuss approaches to finding 
new interactions between therapeutic targets and 
approved drugs.
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Drug-target relationships: from the magic bullet to 
the multi-target paradigm
In the late 19th century Paul Erlich first postulated the 
concept of ‘magic bullets’, or drugs that bind to a single 
molecular disease target [56]. This one-drug one-target 
one-disease strategy has driven much of drug discovery 
in the late 20th century and has resulted in successful 
targeted therapies. Well-known examples are the 
antibodies trastuzumab and rituximab and the small 
molecules imatinib and crizotinib (Table 1). However, we 
now know that small molecule drugs have extensive 
polypharmacologies, which may contribute to their 
clinical efficacy, or adverse effects or may provide insight 
into new repositioning opportunities.

Recent studies have evaluated the extent of 
polypharmacology by analyzing all known drug-target 
interactions. Paolini et al. [57] created a human 
pharmacology interaction network connecting proteins 
that share one or more chemical binders. In their 
database of 276,122 active compounds, 35% hit more 
than one target, whereas 25% of the compounds bound 
targets from different protein families. In a second study, 
Mestres et al. [58] integrated seven drug-target 
interaction databases and found that, on average, each 
drug interacted with six different targets.

Protein kinase ATP-competitive inhibitors are the most 
extensive multi-targeting drugs known so far [18,19], 
corresponding to the over 500 ATP-binding sites in the 

Figure 2. Personalized genomic medicine at molecular-level resolution. Whole genome and transcriptome sequencing of the different sets 
of the patient’s cells provides different types of information. Sequencing the primary tumor and normal cells of a patient can identify potential 
oncogenes, tumor suppressors, structural variations and somatic aberrations (for example, single nucleotide polymorphisms (SNPs), insertions or 
deletions (indels), copy number variations (CNVs), or structural variations) involved in tumor formation, as well as significantly altered biological 
pathways. Sequencing metastatic cells can also provide insight into clonal selection, metastatic-specific aberrations, and other valuable information. 
Together, information from all three cellular sources can help determine targets for therapy. Verifying whether the target, chemoresistance and 
drug metabolism genes have functionally relevant polymorphisms will further enable tailoring of the treatment to the patient. LOH, loss of 
heterozygosity.
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protein kinome [59]. Sunitinib used at concentrations of 
10 μM inhibited 79 of 119 kinases tested, although it had 
ten-fold stronger binding to its four intended targets than 
to any other off-target [18]. In contrast, vandetanib 
inhibited fewer kinases than sunitinib (50 of 119), but 
showed only two-fold stronger binding to its two 
intended targets [18].

There are many benefits to elucidating targets for a 
given drug. The first is to understand the clinically rele-
vant polypharmacologies of a drug. For example, the 
schizophrenia drug clozapine unexpectedly showed less 
efficacy when chemical modifications were made to 
improve its target specificity [60]. In contrast, the sero-
tonergic 5-hydroxytryptamine receptor 4 agonist cisa-
pride, the histamine H1 receptor inhibitors astemizole 
and terfenadine, and the antibacterial drug grepafloxacin 
were withdrawn because of an increased risk of life-
threatening ventricular arrhythmias [61]. This adverse 
effect was determined to be due to inhibition of the human 
Ether-a-go-go-related gene (hERG) potassium channel, a 
key protein in cardiac repolarization and a target shared 
between these four chemically diverse drugs.

Understanding drug-target interactions also opens up 
the possibility of combining a number of approved drugs 
to enhance activity against a common therapeutic target, 
while minimizing effects on other targets. Moreover, 
using a combination of drugs may also provide a greater 
obstacle for a disease to acquire resistance. Many diseases 
have approved combination regimens, such as metastatic 
colorectal cancer and its four-drug FOLFIRI (folinic acid, 
5-fluorouracil, irinotecan) with cetuximab regimen [62]. 
In short, finding all the targets of existing drugs is 
essential not only to understand their mode of action and 
their adverse effects but also to find repositioning 
opportunities.

Current approaches to find new drug repositioning 
candidates
Although the prospect of discovering specific multi-
targeting drugs is attractive, the actual implementation is 
a complicated endeavor. Drugs must be screened against 
multiple targets at a time and attain specific combinations 
of target affinities. In the case of sunitinib, it is still not 
clear exactly which combinations of its target inhibitions 
are effective for which cancers [63]. A more rational 
approach at present would be to determine new targets 
for existing drugs.

Experimental approaches
Experimental approaches to systematically elucidate new 
drug-target interactions fall into three categories. The 
first is to determine direct-binding partners of existing 
drugs. Examples of this approach include washing cell 
lysate extracts over a bead column fixed with an approved 

drug [64], high-throughput Biacore screening of an 
approved drug library against protein tyrosine phos-
phatase 1B [65], or high-throughput direct-binding assays 
to test drugs against 317 kinases [19]. In contrast, cell-
based approaches screen for drugs that induce a desired 
change in cellular phenotype. They have been used to 
find approved drugs that can regulate autophagy [66], 
induce apoptosis in retinoblastoma cell lines [67], or 
inhibit proliferation of prostate cancer cell lines [68]. One 
recent study combined high-throughput cell prolifera-
tion, kinome binding assays and in vivo mouse studies to 
identify the chemotherapeutics 5-fluorouracil and borte-
zomib as inhibitors of ependymoma (a chemoresistant 
brain tumor) and as leads for immediate clinical trans-
lation [69]. The third approach uses gene expression 
analysis to identify drugs that show an opposite gene 
expression profile to that of a disease [70], or that have 
similar gene expression profiles in cell lines to other 
approved drugs [71].

For experimental repositioning screens, obtaining a 
physical collection of approved drugs has been the great-
est obstacle. Several companies have marketed smaller 
libraries containing 500 to 1,000 approved or off-patent 
drugs, including Enzi Life Sciences (Plymouth Meeting, 
PA, USA), Prestwick (Washington DC, USA), and Spec-
trum (Microsource, Gaylordsville, CT, USA). However, it 
was only in April 2011 that the National Institute of 
Health’s Chemical Genomics Center (NCGC) pharma-
ceu tical collection was initiated, containing 2,391 world-
wide-approved drugs in a screenable format [72]. Their 
plan is to set up a screening service with collaborators and 
assess these drugs in a wide range of assays, and thus find 
new repositioning candidates for a wide range of diseases.

Aside from approved drugs, the multitude of com-
pounds that have failed clinical trials because of lack of 
efficacy (not toxicity) also represent a rich resource for 
repositioning, as these drugs have known clinical and 
pharmacokinetic data. With results from personalized 
genomics studies underscoring the heterogeneity of 
diseases and patients, it is possible that many of these 
failed drugs were not tested on the correct subset of 
patients. Thus, failed drugs may still be useful for future 
personalized medicine approaches, particularly for those 
patients without other treatment options. For example, 
the ineffective cancer drug zidovudine later became a 
widely used anti-HIV drug [73]. A physical collection of 
failed compounds would be difficult to assemble because 
of the associated intellectual properties; however, we 
believe that this would be a valuable resource for both 
drug repositioning and personalized medicine.

Computational approaches
Given the large number of druggable protein targets and 
existing drugs, it is infeasible to set up assays to test every 
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interaction in the laboratory. In addition to the time and 
cost required, a tailored assay must be developed for each 
protein, and compound libraries of all existing drugs 
must be collated. Many computational approaches have 
been published in recent years, many of which mirror the 
types of repositioning summarized in Figure  1. Most 
methods are based on similarity, between drugs [74], 
proteins [75], or side effect phenotypes [76]. These 
methods hypothesize that drugs with similar chemical 
structures or side effects are likely to have similar targets. 
A higher resolution method is molecular docking, which 
simulates the binding of a drug inside a target three-
dimensional structure at an atomic level. Docking is 
widely used to virtually screen large chemical libraries 
against targets of interest. In 2001, ‘inverse docking’ was 
first proposed as an approach for investigating the 
docking of one drug against multiple protein binding 
sites [77], and subsequent methods have been scaled up 
to investigate hundreds of targets and thousands of drugs 
[78-81]. However, the lack of solved protein structures 
for many targets is a major limitation of structure-based 
approaches.

Computational methods have also been applied to 
analyze the wealth of existing experimental data in public 
databases such as PubChem Bioassays [82] and the Gene 
Expression Omnibus [83]. New target-disease associa-
tions can also be formed using systems biology approaches 
[84]; in one study, network analysis identified a new 
glioblastoma target protein that already had an approved 
drug [85]. Furthermore, literature-mining methods used 
by mode of action by network analysis (MANTRA) [71], 
IDMap [86] and CoPub [87] can search for associations 
that already exist but have yet to be linked.

The most useful resources for computational methods 
are datasets of known interactions, often used as training 
data, positive control data or benchmark data in analyses. 
A few drug-target databases focusing on approved drugs 
include DrugBank, Kyoto Encyclopedia of Genes and 
Genomes (KEGG) Drug, the Therapeutic Target Data-
base, and Matador [55,88-90]. Overall, computa tional 
efforts are efficient complementary approaches to experi-
mental studies and have been described in more detail 
elsewhere [91,92].

Applications of personalized medicine and drug 
repositioning
The use of personalized medicine approaches to study 
individual diseases and reposition drugs for these 
diseases has far-reaching implications for diagnosis and 
treatment. Both of these methods are particularly rele-
vant for rare diseases or disease subtypes, which are 
difficult to study and to hold clinical trials for owing to 
their low prevalence. They are also relevant for patients 
who are resistant to or have acquired resistance to 

therapies and do not have treatment options. In this 
section, we discuss how personalized medicine and drug 
repositioning strategies can be beneficial for these two 
scenarios.

Rare diseases
Orphan diseases are defined as diseases affecting a small 
percentage of the population (in the US, ‘small’ is defined 
as less than 1 in 200,000 people). However, despite the 
low prevalence, there are currently around 7,000 orphan 
diseases affecting approximately 25 million patients in 
North America. Approved drugs for rare cancer sub-
types, such as crizotinib and imatinib, are the largest 
class of orphan disease drugs, representing 31% of all 
orphan products to date [93,94].

Finding therapeutics for rare diseases may be particu-
larly challenging as the low number of afflicted 
individuals and their geographical dispersal can render 
standard clinical trials infeasible [93]. It would thus be 
beneficial if approved drugs with existing safety profiles 
could be repositioned to an orphan disease. An example 
of this is sildenafil, which was first repositioned from the 
treatment of angina to erectile dysfunction, and has now 
received orphan drug approval for pulmonary arterial 
hypertension [95]. This strategy is supported by the 
observation that causative genes in many orphan diseases 
share pathways with common disease targets [96], creat-
ing opportunities for repositioning. The Rare Disease 
Repurposing Database currently lists 236 drugs that have 
shown clinical relevance for an orphan disease but are 
already marketed for at least one common disease [97].

Personalized genomic approaches are also particularly 
relevant for rare diseases, which often lack standard 
treatment options and can be difficult to diagnose. This 
was the case in the study mentioned above concerning a 
patient with a rare tongue adenocarcinoma and no 
standard treatment options [51]. An immunohisto-
chemistry assay detected an EGFR amplification; 
however, treatment with the EGFR inhibitor erlotinib did 
not slow down tumor growth. Results from whole trans-
criptome shotgun sequencing and WGS revealed an 
increased copy number and gene expression of the RET 
oncogene, providing an explanation for the erlotinib 
inefficacy as well as pinpointing RET as a therapeutic 
target. The functional relevance of this pathway was 
verified when administration of RET-inhibiting drugs 
sunitinib and sorafenib stabilized the disease for 
8 months. It would not have been possible to determine 
the functional relevance of all affected disease genes and 
set up a clinical trial for patients with the same subtype of 
cancer within a therapeutically relevant timeframe for 
this patient. Thus, personalized genomic approaches also 
represent a tractable method for rare diseases where low 
prevalence renders clinical trials infeasible. In extreme 
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cases, a subset of patients may have molecular alterations 
that are unique or very rare and would thus need to be 
investigated individually [98]; elucidating these altera-
tions would be the only way to accurately diagnose their 
diseases and recommend effective therapeutics. Further-
more, for highly heterogeneous diseases, clinical trials 
should be conducted in the context of the specific 
molecular defects and not the diseases.

Recent sequencing efforts have uncovered mutations in 
cancer genomes that appear at significant yet low 
frequencies, including mutations in genes encoding 
enhancer of zeste homolog 2, a histone-modifying enzyme 
[99], isocitrate dehydrogenase 1 (EZH2), an enzyme that 
creates an oncometabolite when mutated (IDH1) [100] 
and death-domain-associated protein (DAXX), thought 
to promote apoptosis [47] (more reviewed in [101]). 
Although the prospect of finding an existing drug that 
could selectively inhibit the identified variant is 
challenging, the potential time and money saved would 
be worth the investigatory high-throughput screens. In 
addition, modeling mutations in three dimensions (if a 
crystal structure of the target has been solved) would 
allow approved drugs to be readily screened in silico 
against the mutant and normal targets.

Diseases that are resistant to treatment
Acquired resistance is also a major obstacle to the 
effectiveness of current targeted therapies. Sequencing 
methods can be used to monitor patients undergoing 
treatment to detect the emergence of new mutations. The 
molecular pathways identified by genomic characteri-
zation of the primary disease can suggest personalized 
biomarkers with which to monitor the patient’s disease 
progression. Metastasis genomes can be compared with 
previously characterized tumor and normal genomes to 
determine targetable pathways. Such analyses were 
performed in the previously mentioned investigation of a 
tongue adenocarcinoma patient, although studies of the 
post-treatment metastasis did not reveal molecular 
targets with approved therapeutic options [51].

Resistant disease may divide the molecular subtypes of 
the particular disease into even smaller groups, making 
rational drug repositioning more desirable. Also, resistant 
forms of disease may subsequently involve pathways for 
which there are obvious repositioning candidates. In 
short, personalized genomics approaches will be a 
powerful method to study individual drug resistance 
mechanisms, and repositioning will probably provide 
therapeutic options for these individual diseases.

Challenges in personalized medicine and drug 
repositioning
Personalized medicine at the molecular level is indeed a 
powerful tool to identify drugs tailored to an individual’s 

disease. Recent studies have used sequencing approaches 
to characterize patient genomes; however, technologies 
to survey the proteome and epigenome and a better 
understanding of the interplay between genetics and the 
environment will be important additions to the personal-
ized genomic diagnostic toolset. Today, we can sequence 
and analyze a cancer patient’s low coverage whole genome 
(5 to 15X), transcriptome and exome (70 to 100X) for 
roughly US$3,600 within 1 month [54] - a therapeutically 
relevant cost and timeframe. Moreover, the much-touted 
US$1,000 genome is expected to be attained in 2012 
[102].

However, there are still many factors that can complicate 
the process of personalized diagnosis and medicine. In this 
section, we discuss a number of the biological and 
analytical factors, including patient hetero geneity, tumor 
heterogeneity, acquired resistance, drug adverse effects, 
data interpretation and drug screening.

Inter-patient heterogeneity
The results of clinical trials show that approved targeted 
therapies for rare disease subtypes are not universally 
effective. The response rate of vemurafenib in patients 
with BRAF V600E-mutation-positive metastatic melanoma 
ranged from 48% to 52% [42]. Crizotinib had a 57% 
response rate in EML4-ALK-translocation-positive 
patients with NSCLC [103], and trastuzumab had only a 
23% response rate in HER2-positive metastatic breast 
cancer patients [104]. The substantial percentage of 
unresponsive patients suggests that important targets 
have yet to be discovered, which may further subdivide 
these diseases into more molecularly distinct subtypes.

Intra-tumor heterogeneity
Intra-tumor heterogeneity is the observation that tumors 
often contain unique cellular subpopulations, such as 
cancer stem cells, diverse subclones, as well as neigh boring 
immune, stromal and normal cells. Sequencing mixtures 
of these cells may thus obfuscate details that are important 
for diagnosis or for determining drug combinations.

Intra-tumor heterogeneity also presents challenges to 
drug efficacy. For example, a study of eight AML patients 
with analysis of primary and relapse tumor genomes 
found that chemotherapy failed to eradicate all of the 
tumor subclones and the tumors acquired resistance to 
the drugs used [105]. This suggests that each tumor may 
even need to be stratified into distinct subclones and that 
the ideal treatment would be a combination of 
personalized, targeted therapies to eliminate all the 
subclones of individual tumors.

Acquired resistance to targeted therapies
Patients treated with crizotinib, vemurafenib or trastu-
zumab typically develop resistance within 1  year of 

Li and Jones Genome Medicine 2012, 4:27 
http://genomemedicine.com/content/4/3/27

Page 9 of 14



treatment [106-108]. The mechanisms of resistance to 
targeted therapies vary between individuals [109] and 
can further stratify the disease. For example, tumors that 
acquired the same mutation that conferred imatinib 
resistance responded differently to increased doses of 
imatinib [110]. This result highlighted the intrinsic 
heterogeneity in resistant tumors, which could be due to 
the patient’s genetic makeup. However, many cancers 
acquire resistance in predictable ways. For example, 
overexpression of PDGFR-beta (PDGFRB) and muta-
tional activation of NRAS account for 40% of vemura-
fenib resistance cases in malignant myeloma [111]. 
Mutant ERK signaling was determined to be a resistance 
mechanism in another 30% of patients, suggesting that 
MEK inhibitors could be repositioned to treating these 
patients [112].

In CML, common mechanisms of imatinib resistance 
have also been identified, and the second-generation 
inhibitors dasatinib and nilotinib can target many BCR-
ABL mutations [113]. If we can identify the type of 
resistance mechanisms that a patient is likely to acquire, 
we could create drug combinations to reduce the chance 
of the disease acquiring resistance. For example, using an 
in vitro mutagenesis screen Bradeen et al. [114] 
determined that combination therapies of dasatinib plus 
imatinib or dasatinib plus nilotinib were able to eliminate 
the development of all but one acquired mutation in a 
CML cell line model. It is also conceivable that certain 
drugs could be used only to induce specific resistant 
forms of the disease, which could be treated effectively by 
subsequent drugs [115].

Interpreting genomic data
With rapidly increasing sequencing capacity, keeping up 
with analysis is a widely acknowledged problem [116]. 
Large computer clusters can be used for assembling and 
analyzing sequence data, but determining the germline 
or somatic aberrations that are driving the disease 
requires more attention. Databases such as Database for 
Annotation, Visualization and Integrated Discovery 
(DAVID) [117] and Ingenuity (Ingenuity  Systems, 
Mountain View, CA, USA) map aberrations to known 
disease genes and pathways, but cannot accurately curate 
and interpret the entire available literature and incor-
porate this into their knowledge databases. Human 
expertise and research are necessary to fill gaps in exist-
ing databases and many factors can complicate diagnostic 
analyses. For example, if aberrations occur in multiple 
disease targets, determining which of the targets, if any, 
are of functional relevance to the disease may be 
impossible within a reasonable timeframe for the patient. 
Thus, the analyses are heavily reliant on the current state 
of the literature. It will be essential to discover more 
about the functions of all genes in the genome as well as 

their relevance to diseases to allow a better understanding 
of the observed aberrations. Similarly, a deeper under-
stand ing of the pharmacogenomic variants and drug-
drug interactions in humans will allow us to better tailor 
therapies to individual patients. However, there will also 
be situations in which none of the disease targets 
identified have approved drugs, such as the 385 identified 
disease genes that do not yet have FDA-approved drugs 
[118]. Thus, the identification of new drug-target inter-
actions is also essential to drug discovery.

False positives and negatives in screening approaches
Although we have reviewed many rational approaches to 
finding new interactions for existing drugs, high-
through put computational and experimental approaches 
each have their own sets of advantages and limitations 
[119-122]. False positive results can be detected in 
follow-up experiments and secondary screens, but false 
negative results are difficult to detect and can obstruct 
efforts to identify drug interactions when screening small 
libraries. The number of false negative results can be 
reduced with more replicate experiments and rigorous 
statistical analysis [123], or with a variation of biological 
assays (for example, testing in more cell lines), although 
these options will always be restricted by experimental 
time and cost. Ultimately, despite the goal of wholly 
rational drug design, serendipity still has a substantial 
role in finding new drug repositioning candidates.

Failures in drug repositioning
Not all cases of drug repositioning are successful. The 
kinase inhibitor bevacizumab failed to show efficacy in a 
phase III trial for gastric cancer despite having already 
been repositioned to many other cancers [124]. The multi-
kinase inhibitor sunitinib has failed clinical trials for breast 
cancer, colorectal cancer, NSCLC and prostate cancer, but 
was approved for the treatment of GISTs, pancreatic 
neuroendocrine tumors and renal cell carci nomas among 
others [125]. The lack of efficacy of generic kinase-
targeting drugs such as sunitinib suggests that, at least for 
some cancers, more targeted strategies need to be pursued.

The combination of bupropion and naltrexone, previously 
approved for the treatment of depression and opioid 
addiction, respectively, seemed to synergistically regulate 
appetite and energy expenditure in obesity [126]; 
however, the FDA rejected this combination in February 
2011 owing to potential cardiovascular adverse effects 
[127]. Therefore, even repositioned drugs that have passed 
clinical safety standards might still be found to have 
adverse effects. In addition, it is important to consider 
the original drug indication during repositioning  - for 
example, a cytotoxic chemotherapeutic may not be an 
ideal candidate for hypertension, as it may damage 
healthy cells at the required dosages.
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Conclusions and future directions
The field of medicine has always been personalized as 
doctors endeavor to determine the underlying causes of 
disease for each patient. However, with increasing 
biological knowledge and technologies, the resolution at 
which we can determine the contributing factors in 
disease has greatly improved. Human diseases are hetero-
geneous and complex, and sequencing methods now 
have the potential to characterize an individual’s disease 
at a molecular resolution in clinically relevant time-
frames. This can lead to treatments that take into account 
the specific molecular mechanisms underlying disease as 
well as the known pharmacogenomic variants in the 
patient. Some scientists now refer to this type of 
personal ized medicine as ‘precision medicine’ [128].

Advances in next-generation sequencing technologies 
are enabling personalized genomic studies on a larger 
scale, which in turn provides insight into the hetero-
geneity between patients, within a disease and, in the 
case of cancer, even within a tumor. As personalized 
genomic studies gain in popularity and reveal molecular 
insights into diseases in individual patients, we will be 
able to segregate broad disease categories into smaller, 
target-centric subtypes, such as the EML4-ALK subtype 
of NSCLC and the BRAF V600E subtype of melanoma. 
The approval of trastuzumab for the treatment of a new 
HER2-positive subtype of gastric cancer is another 
example [129]. It will be essential to develop a toolkit of 
safe and effective drugs for the specific targets of such 
disease subtypes.

Given the considerable time and cost of developing 
new drugs, a much more efficient option is to reposition 
drugs from other disease indications when possible. 
These drugs are already approved for use in humans and 
are more likely to be safe than drugs still undergoing 
trials. In addition, approved drugs are already optimized 
to their target proteins, which is an advantage if the 
target is found to be important in another disease. 
However, if the drug is being repositioned to an off-
target’s associated disease, the potent inhibition of the 
original target may cause adverse effects.

We have reviewed the various avenues in which 
repositioning can occur, as well as the experimental and 
virtual screening approaches that can be used to identify 
new drug-target interactions. Like personalized medicine, 
repositioning is also appropriate for rare diseases for 
which the recruitment of adequate numbers of patients 
for clinical trials is infeasible. In particular, repositioning 
approaches may find suitable drug candidates for disease 
targets with low-frequency mutations. To facilitate 
repositioning research, it is essential to have a physical 
collection of drugs for high-throughput screening. We 
have discussed some of these resources, such as the 
NCGC approved drug collection [72], and we suggest 

that a collection of the 27 to 45% of drugs that have failed 
clinical trials because of efficacy (89% of drugs failed 
clinical trials, 30 to 50% because of lack of efficacy) 
[3,27,28] would also be an excellent resource for re-
positioning. The spectrum of repositioned drugs dis-
cussed here shows that any type of drug, whether 
withdrawn (for example, thalidomide), in clinical trials 
(for example, crizotinib), failed in clinical trials (for 
example, zidovudine) or approved (for example, sunitinib), 
has the potential to be repositioned for treatment of 
another disease (Table 1). Drug repositioning analysis is 
likely to become routine for every new drug and target 
discovered, resulting in more efficient identification of 
therapeutics for targeting specific molecular aberrations.

The current de novo drug discovery pipeline is still 
essential for discovering and testing new drugs; however, 
stratification of patients based on their molecular disease 
signatures and testing of signature-targeting drugs should 
improve drug efficacies in clinical trials. For example, 
crizotinib would not have passed efficacy endpoints in a 
NSCLC trial as it is effective only in the 4 to 5% of 
patients with EML4-ALK translocations. Determining 
the appropriate biomarkers or clinical endpoints for 
assessing efficacy for each drug and implementing these 
in clinical trials is also a necessary step, but it will signifi-
cantly increase the time and cost of clinical trials in the 
short term. Although there are still many challenges in 
drug repositioning and personalized medicine, we 
envision that comprehensive characterization of a 
person’s genome and epigenome (whether by sequencing, 
proteome analysis or future technologies) will become a 
routine approach for diagnosing diseases and for 
recommending effective tailored medicines.
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