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Madrillet, France

* aguirre@ufmg.br

Abstract

Classical definitions of observability classify a system as either being observable or not.

Observability has been recognized as an important feature to study complex networks, and

as for dynamical systems the focus has been on determining conditions for a network to be

observable. About twenty years ago continuous measures of observability for nonlinear

dynamical systems started to be used. In this paper various aspects of observability that are

established for dynamical systems will be investigated in the context of networks. In particu-

lar it will be discussed in which ways simple networks can be ranked in terms of observability

using continuous measures of such a property. Also it is pointed out that the analysis of the

network topology is typically not sufficient for observability purposes, since both the dynam-

ics and the coupling of such nodes play a vital role. Some of the main ideas are illustrated by

means of numerical simulations.

1 Introduction

One of the many concepts used to analyze dynamical systems and networks is observability.

The genesis of this can be traced back to mid 20th century. It is interesting to see that depend-

ing on the research area observability has been painted with different colors. In control theory,

the cradle of this concept [1], observability is related to the ability of reconstructing the state of

the system from a limited set of measured variables in finite time. A somewhat relaxed version

of this definition of observability and which is applicable to networks is known as structural

observability and can be assessed with graphs [2]. These concepts have a main aspect in com-

mon: both classify the system as either being observable or not. In this paper the term struc-
tural observability will be used to refer to such a feature. In the case of networks such concepts

could, in principle, be used to decide how many nodes should be measured in order to render

a network observable.

There is a different approach to observability, which evolved from the traditional one,

that has a different aim. Even if a system is observable, it might be advantageous, especially

PLOS ONE | https://doi.org/10.1371/journal.pone.0206180 October 31, 2018 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Aguirre LA, Portes LL, Letellier C (2018)

Structural, dynamical and symbolic observability:

From dynamical systems to networks. PLoS ONE

13(10): e0206180. https://doi.org/10.1371/journal.

pone.0206180

Editor: Irene Sendiña-Nadal, Universidad Rey Juan

Carlos, SPAIN

Received: June 29, 2018

Accepted: October 7, 2018

Published: October 31, 2018

Copyright: © 2018 Aguirre et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The codes related to

this paper are available at: DOI: 10.13140/RG.2.2.

25706.57284 DOI: 10.13140/RG.2.2.18995.68640

DOI: 10.13140/RG.2.2.29900.87687.

Funding: This work was supported by 302079/

20114, Conselho Nacional de Desenvolvimento

Cientı́fico e Tecnológico (http://www.cnpq.br/),

ProReitoria de Pesquisa da Universidade Federal

de Minas Gerais (http://www.ufmg.br/prpq/, LAA),

and CAPES (http://www.capes.gov.br/, LLP). The

funders had no role in study design, data collection

http://orcid.org/0000-0002-2746-5102
https://doi.org/10.1371/journal.pone.0206180
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0206180&domain=pdf&date_stamp=2018-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0206180&domain=pdf&date_stamp=2018-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0206180&domain=pdf&date_stamp=2018-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0206180&domain=pdf&date_stamp=2018-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0206180&domain=pdf&date_stamp=2018-10-31
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0206180&domain=pdf&date_stamp=2018-10-31
https://doi.org/10.1371/journal.pone.0206180
https://doi.org/10.1371/journal.pone.0206180
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.13140/RG.2.2.25706.57284
https://doi.org/10.13140/RG.2.2.25706.57284
https://doi.org/10.13140/RG.2.2.18995.68640
https://doi.org/10.13140/RG.2.2.29900.87687
http://www.cnpq.br/
http://www.ufmg.br/prpq/
http://www.capes.gov.br/


from a practical point of view, to measure specific variables. Instead of a crisp classification

in terms of observability, this concept permits distinguishing between more and less observ-

able scenarios [3, 4]. We shall refer to this as dynamical observability. Two decades ago,

some of these concepts were adapted to rank variables of nonlinear dynamical systems based

on observability [5] and from there appeared other related approaches that will be briefly

reviewed in this work.

In the context of networks, the concepts of observability and its dual—controllability—have

been recognized as relevant tools for analysis and design [6–10]. In this respect, two aspects

stand out. First, classical procedures to determine if a system is observable face some serious

practical and numerical difficulties when applied to larger systems. Indeed, it seems that in the

case of high-dimensional networks, observability is more often than not investigated only

from its topology (described by the adjacency matrix): this will be referred to as topological
observability in this paper. As it will be shown, in the case of oscillators connected according to

an adjacency matrix, investigating its connectivity, encoded by the corresponding graph, is

typically not sufficient to assess the observability of the network. Second, to determine a mini-

mum number of sensor nodes for which a network is observable is a valuable piece of informa-

tion. But to be able to choose from alternative configurations is also an important practical

problem that will receive attention in this work.

As it will be argued, the classical way of classifying systems as being observable or not—that

is structural observability –, cannot really help much in solving the mentioned challenge as

recently pointed out [9–11]. In order to do so, alternative scenarios of observable systems must

be compared in order to decide which is more favorable. In other words, as it happened for

dynamical systems, also for networks there should be a change in paradigm: from structural to

dynamical observability.

The benefits and need for this have already been pointed out in the literature. For instance,

it has been acknowledged that to choose variables that convey good observability of the

dynamics enables estimating the state of a network of neuron models using Kalman-related

methods [12, 13]. In a recent study about controllability and observability of network topolo-

gies built with neuron models, it has been found that “it is necessary to take the node dynamics

into consideration when selecting the best driver (sensor) node to modulate (observe) the

whole network activity” [8]. The reader should notice expressions such as “the need to pick

good observables” or “to choose the best sensor nodes”. This type of challenge can be met con-

ceptually using dynamical observability. Of course, the numerical challenge of determining

such a property for a large network is of paramount importance and, at the moment, seems

unsolved in general.

In view of all this, one of the aims of this paper is to review some concepts and procedures

concerning observability in the context of nonlinear dynamics. It will be useful to see that

observability can be classified into different types. Hopefully this classification will clarify the

main differences which could help to answer some of the recent remarks that appeared in the

literature. Also, the application of such concepts to networks will be discussed in the light of

some classical and more recent methods for determining network observability. To this end,

tools for nonlinear dynamics will be used. Even if from a numerical point of view, some of the

used procedures are not feasible in the context of large networks, there is much to be gained in

conceptual terms. In particular, numerical examples will be provided for showing that in

investigating the observability of a dynamical network, both node dynamics and coupling

must be considered. A simple example is provided to show that even linear oscillators con-

nected according to the same adjacency matrix may result in either observable or unobservable

networks depending on the variables used for coupling such oscillators.
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Terminology and organization

This paper shall refer to dynamical networks as the interconnection of dynamical systems.

Such dynamical systems will sometimes be called oscillators and compose the node dynamics

of the dynamical network. The interconnection of such nodes is according to a certain topol-

ogy which is described by the adjacency matrix of the network. Graphs can be defined for: i)

the node dynamics, which sometimes are referred to as fluence graphs; ii) the topology, and

for iii) the full dynamical network (combining the node dynamics and the network topology).

Only when the node dynamics are of first order, the graph of the network topology will coin-

cide with the graph of the full dynamical network.

This paper is organized as follows. Section 2 reviews a number of concepts that underline

the rest of the paper concerning observability, especially as they emerged from the field of

dynamical systems. The counterpart, in the context of network topologies, is provided in Sec-

tion 3. Different types or aspects of observability are then summarized in Section 4. Section 5

discusses the relevance of the aforementioned concepts in the case of nonlinear dynamical net-

works. That section also includes some simulation results. The main points are summarized in

Section 6, where Table 1 is provided as a “road map” of this paper.

2 Observability of dynamical systems

The objective of this section is to give a brief historical background in order to set the remain-

der of the paper into context. The main ideas in this section are illustrated with examples of

the paradigmatic Rössler system.

2.1 Either observable or not

The concepts of observability and controllability for linear systems are due to Rudolf Kalman

[1]. Consider the linear system

_x ¼ Axþ Bu

s ¼ Cx;

(

ð1Þ

where x 2 Rn is the state vector, s 2 Rp is the measurement vector, u 2 Rr is the input vector

and (A, B, C) are constant matrices known respectively as the dynamics matrix, the input or

control matrix and the output or measurement matrix. The system (1) is said to be observable

at time tf if the initial state x(0) can be uniquely determined from knowledge of a finite time

history of the output s(τ), 0� τ� tf [14] and the input u(τ) whenever it exists.

One way of testing whether the system (1) is observable is to define the observability matrix:

O ¼ C CA CA2 . . . CAn� 1½ �
T
: ð2Þ

The system (1) is therefore observable if matrix O is full rank, that is if its rank r½O� ¼ n.

This is known as Kalman’s rank condition for observability and according to it a pair [A, C] is

either observable or not.

The concepts of controllability and observability were extended to nonlinear systems in the

1970s, e.g. [15]. Consider a nonlinear system

_x ¼ f ðxÞ

sðtÞ ¼ hðxÞ;

(

ð3Þ
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with f : Rn
! Rn

and, for simplicity sðtÞ 2 R, that is h : Rn
! R. Differentiating s(t) yields

_sðtÞ ¼
d
dt
hðxÞ ¼

@h
@x

_x ¼
@h
@x

f ðxÞ ¼ Lf hðxÞ: ð4Þ

Lf hðxÞ is the Lie derivative of h along the vector field f and sðjÞ ¼ Lj
f hðxÞ. The observability

matrix can be written as

OsðxÞ ¼
@L0

f hðxÞ
@x

. . .
@Ln� 1

f hðxÞ
@x

" #T

ð5Þ

where the index s has been used to emphasize that OsðxÞ refers to the system observed from

s(t).
The pair [f, h(x)] in (3) is said to be observable if r½OsðxÞ� ¼ n; 8x 2 Rn

, which is the coun-

terpart of Kalman’s rank condition for linear systems—see [15] for details. If [f, h(x)] is observ-

able, any two initial conditions x01
and x02

are distinguishable with respect to the measured

time series s(t), t� 0.

Since observability is determined by a rank criterion in both cases, linear and nonlinear sys-

tems are classified either as observable or not.

An interesting step in the field was to recognize that the observability matrix in (5) is in fact

the Jacobian matrix of the map

Fs : Rnðx Þ 7!Rn
ðsðtÞ; sð1Þ; :::; sðn� 1ÞÞ; ð6Þ

between the original and the n-dimensional differential embedding spaces [16]. If Fs is invert-

ible (injective), it is possible to reconstruct the state from s(t). The condition for invertibility of

Fs at x0 is

r
@Fs

@x

� �
�
�
�
x¼x0

�

¼ n: ð7Þ

Hence, the system is locally observable if condition (7) holds, that is, ifFs is locally invert-

ible. If Fs is constant and invertible, then there is a global diffeomorphism and the pair [f, h] is

fully observable. When the reconstructed space is n-dimensional, and thus
@Fs
@x is a n × n matrix,

it may be also useful to express condition (7) as [17] (see Example 1):

Det
@Fs

@x
6¼ 0 : ð8Þ

Remark 1. If the dimension of the reconstructed space is allowed to increase using

Fs : RnðxÞ 7!RdðsðtÞ; sð1Þ; :::; sðd� 1ÞÞ; ð9Þ

with d> n, often, singularities that Fs may have will vanish and, then Fs gradually becomes

Table 1. Summary of types of observability and systems. Yes/No refers to practical applicability of numerical procedures discussed in the paper. The “Node dynamics”

corresponds to low-dimensional dynamical systems interconnected according to a “Topology” to form a dynamical “Network”.

Type of Observability Task Node dynamics Sec. 2 Topology Sec. 3 Networks Sec. 5

Structural Sec. 4.1 observable vs. nonobservable classification Yes Sec. 2.1 Yes Sec. 3.1–3.2 Yes

Symbolic Sec. 4.3 Ranking variables Yes Sec. 2.5 Yes Sec. 3.4 Yes

Dynamical Sec. 4.2 Ranking variables Yes Sec. 2.2–2.4 Only for small dimension Sec. 3.3 No

https://doi.org/10.1371/journal.pone.0206180.t001
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full rank as would be expected from Takens’ theorem [18]. Relations between observability

theory when more than one variable is measured and Takens’ theorem have been discussed in

[19]. Increasing the d in order to remove singularities seems to have serious limitations when

networks are considered [20].

Example 1. The Rössler system is [21]:

_x ¼ � y � z

_y ¼ xþ ay

_z ¼ bþ zðx � cÞ;

8
>>><

>>>:

ð10Þ

where (a, b, c) are parameters. If s = y, then the observability matrix is given by

@F3

y

@x
¼ OyðxÞ ¼

0 1 0

1 a 0

a a2 � 1 � 1

2

6
6
6
4

3

7
7
7
5
; ð11Þ

whereF3

y : R3
ðxÞ 7!R3

ðyðtÞ; yð1Þ; yð2ÞÞ and OyðxÞ is constant and nonsingular. Hence the Röss-

ler system is observable from y at any point of the phase space.

2.2 Ranking observable pairs

Friedland defined the coefficient [3]

d ¼
j lmin½O

TO� j
j lmax½O

TO� j
; ð12Þ

where lmax½O
TO� indicates the maximum eigenvalue of OTO (likewise for λmin) for linear

observability. Hence even for full row rank observability matrices, the observability coefficient

0� δ< 1 could be small, indicating “poor observability”. For a nonobservable pair [A, C], δ =

0. The following remarks are in order.

Remark 2. Ranking is of interest for observable pairs. Consider single-output linear systems,

for which c 2 Rn
and the output is s = cTx. Hence we refer to the observability of the pair [A,

cT]. Suppose two pairs ½A; cT
1
� and ½A; cT

2
� have observability matrices (see Eq 2) O1 and O2,

respectively, such that r½O1� ¼ r½O2� ¼ n, therefore both systems are fully observable. Never-

theless, using (12) it is found that 0< δ1 < δ2. In such a situation it is said that ½A; cT
1
� is less

observable than ½A; cT
2
� or, alternatively, s2▷ s1 meaning that s1 ¼ cT

1
x (see Eq 1) provides

worse observability of the dynamics in A than s2 ¼ cT
2
x.

Remark 3. A similar result can be stated for nonlinear systems (f, h1) and (f, h1).

Remark 4. Hence, observability coefficients δ can be used to rank two pairs with Fs1
and

Fs2
, which are constant and invertible. This means that even if there are global diffeomorph-

isms, one situation could be preferable to the other. If the reconstructed space is n-dimen-

sional, this can be directly assessed by the expression of Det
@Fs
@x which can be nonzero but very

small in the case of a poor observable.

An example of Remark 2 is provided by the theory of linear systems for which it is know

that similarity transformations of coordinates do not change the rank of the observability or

controllability matrices [14]. It was shown that δ in (12) and the counterpart controllability

index are sensitive to similarity transformations because, although the rank of the grammian

or observability or controllability matrices does not change, the numerical conditioning will

Structural, dynamical and symbolic observability of networks
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generally different [4]. Similar findings in the context of networks have been reported by Sun

and Motter. In particular it has been pointed out that even for fully controllable networks the

practical implementation of controllers could be virtually impossible due to ill conditioning

[22].

Following the ideas in [3, 4], the concept of ranking observable systems was adapted to non-

linear dynamical systems [5, 17]. In particular (12) was extended to:

dsðxÞ ¼
j lmin½O

T
s Os; xðtÞ� j

j lmax½O
T
s Os; xðtÞ� j

: ð13Þ

The observability matrix OsðxÞ was originally evaluated using (2) with the Jacobian matrix

Df(x) in place of the dynamics matrix A. In subsequent works, the observability matrix in Eq

(5) was evaluated along a trajectory x(t), t0 < t< T and index (13) averaged along x(t), that is

ds ¼
1

T � t0

Z T

t0

dsðxðtÞÞdt; ð14Þ

where T is the final time considered and t0 > 0 is chosen to avoid the effect of transients. The

observability coefficients are computed for the Rössler system in Example 2.

Example 2. For the Rössler system (10), the observability matrix from the z variable, OzðxÞ,
is

@F3

z

@x
¼

0 0 1

z 0 x � c

bþ 2zðx � cÞ � z ðx � cÞ2 � y � 2z

2

6
6
6
4

3

7
7
7
5
; ð15Þ

which is not constant. Because DetðOzÞ ¼ � z2 vanishes for z = 0 this system cannot be “seen”

from the z-variable in the space ðz; _z; €zÞ when the original system is at x = [x, y, 0]T which is

the so-called singular observability manifold, [23]. Hence, OzðxÞ is rank deficient on the singu-

lar plane z = 0 and approximately rank deficient close to it. Using (11), OxðxÞ (not shown) and

(15) in (13) and computing (14) the following values were found [16]: δx = 0.022, δy = 0.133

and δz = 0.006, hence the variables of the Rössler system can be ranked according to observ-

ability as y▷ x▷ z.

2.3 Singularities and lack of observability

Singularities in OðxÞ indicate that the map between the original state space and the considered

reconstructed space is not globally invertible. As illustrated in Example 3, increasing d may

eliminate such singularities, but this is only the case for observable systems. For nonobservable

pairs, increasing d will not avoid singularities. This can be interpreted as a lack of genericity in

the measurement function in terms of Takens’ theorem.

It will be convenient to distinguish between “local” and “global” singularities. A constant

rank-deficient observability matrix O will be said to have a global singularity because it is

always rank-deficient, regardless of where the system is in state space. This is always the case

for nonobservable linear systems. On the other hand, for nonlinear systems OðxÞmay become

rank-deficient at certain regions of state space. For instance, OzðxÞ in (15) becomes rank-defi-

cient at z = 0. The existence of local singularities is a consequence of nonlinearity. A system

with a global singularity in its observability matrix is nonobservable. This cannot be said of a

system with an observability matrix with a local singularity.

Structural, dynamical and symbolic observability of networks
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Hence, observability can be affected by: i) the choice of coordinates of the reconstructed

space, and ii) the existence of singularities and the way in which the trajectory relates to them.

The first case can happen in linear systems [4] or nonlinear systems; the second case only hap-

pens in nonlinear systems.

Example 3. If the Rössler attractor is reconstructed in (z, z(1), z(2), z(3)), where z(i) is the ith
derivative of z, the corresponding map is F4

z , where the superscript 4 indicates the dimension

of the reconstructed space. Therefore, the observability matrix for z = 0 (which in Example 2

has been shown to be rank deficient on the singular plane in the 3D reconstructed space)

becomes [19]:

@F4

z

@x

�
�
�
�
z¼0

¼

x � 0 0 1

0 0 x � c

b 0 � yþ ðx � cÞ2

2bðx � cÞ � 2b �4;3

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

; ð16Þ

where ϕ4,3 = −3b − x − ay + (x − c)[−3y + (x − c)2] and which is a full column rank matrix.

Hence there is an embedding from R3ðx; y; zÞ to R4ðz; zð1Þ; zð2Þ; zð3ÞÞ and that the system is

observable from such a reconstructed space. Alternatively, it can be said that there is a global

diffeomorphism from the attractor in R3
ðx; y; zÞ to the one in R4

ðz; zð1Þ; zð2Þ; zð3ÞÞ—both attrac-

tors have the same dimension. Nonetheless, this was attained at the expense of increasing the

dimension of the reconstructed space. This was not required for the y variable. Hence y pro-

vides a more favorable situation than z as quantified by the observability coefficients.

2.4 Graphical approaches

Convenient ways of assessing and interpreting observability can be developed using graphical

techniques. In [24] a procedure was put forward that does not result in numerical indices, it

falls into the category of ranking observable systems. This is an important point because, as it

will be seen later in Sec. 3, there are other graphical procedures that follow the either observable
or not framework.

The method in [24] consists of representing the variables of a single dynamical system and

the corresponding relationship by means of a graph that resembles an inference diagram. In

such a diagram, linear and nonlinear dependencies are indicated by continuous and dashed

arrows, respectively, as shown in the next example.

Example 4. The first equation of (10) tells us that variables y and z act linearly on x. Thus,

arrows from vertices y and z will reach x with a solid line. The second and third equations can

be interpreted likewise. The whole graph is shown in Fig 1a. The solid arrow pointing to z rep-

resents the constant b. This graph is drawn from the Eq (10), regardless of the recorded vari-

able s(t).
From the graph in Fig 1a, an unfolded scheme (Fig 1b) is built by graphically assuming that

each node variable is measured one at a time, that is, s(t) = x, y, z. This is done in order to high-

light the differences among such variables in what concerns observability. To this end, the

unfolded scheme is obtained by visiting the variables starting from the measured variable s(t),
and moving against the arrow directions. Each column in Fig 1b corresponds to an additional

dimension in embedding space. For instance, when y(t) is measured—hence s(t) = y(t)—it

serves as the first coordinate. The second and third coordinates are _y and €y, respectively. Start-

ing from node y (first coordinate), we move one step agains the arrow to produce _y (the second

Structural, dynamical and symbolic observability of networks
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coordinate). Since the arrow is continuous and ends at node x in Fig 1a, a continuous connec-

tion appears in Fig 1b between y and x, and so on.

Since continuous arrows indicate linear relationships, whenever the three variables (x, y, z)
are connected horizontally by solid arrows there is a global diffeomorphism. This is because

the links will not vanish and the 3D space has information about all the coordinates of the orig-

inal space. Hence in Fig 1b it is seen that the only global diffeomorphism happens between the

original state space and ðy; _y; €yÞ. Contrary to this, dashed arrows arise from nonlinear interac-

tions that are related to singularities in the map from the original to the embedding space. The

sooner dashed arrows appear in the unfolded scheme the worse from an observability point of

view. Hence, when x is measured dashed arrows appear in the last stage, connecting _x to €x,

whereas for the z variable, there are dashed arrows already in the first stage. As a consequence,

z provides worse observability of the system dynamics than x, hence y▷ x▷ z.

2.5 Symbolic observability

As discussed in Sec. 2.3, one of the aspects that greatly influence observability in nonlinear sys-

tems are the singularities that appear in the observability matrix. Because at a singularity the

determinant of the n × n observability matrix will become null, the underlying motivation in

symbolic observability is that the more complicated the determinant Det½ ~Os] of the symbolic

observability matrix, the less observable the system is [25].

The computation of Det½ ~Os] can be a nearly impossible task for five-dimensional rational

system. Nevertheless the complexity of Det½ ~Os] can be assessed simply by counting the num-

ber of linear, nonlinear and rational terms in it, without paying attention to its exact form and

this will suffice to quantify observability [26].

The main steps for computing symbolic observability indices are: i) obtain the symbolic

Jacobian matrix ~J from the classical Jacobian matrix by replacing constant, non-constant

polynomial, and rational elements, respectively with 1, �1, and ��1 (see Example 5); ii) build the

Fig 1. Graphical observability analysis for the Rössler system. (a) Graph of the interaction between the variables for the Rössler system. A solid

(dashed) arrow represents a (non) linear coupling. (b) Unfolded schematic view of the variables reached when the first and the second derivative are

computed.

https://doi.org/10.1371/journal.pone.0206180.g001
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symbolic observability matrix ~Os as detailed in [26], iii) compute the symbolic expression for

Det½ ~Os] and count the number of symbolic terms in such an expression, iv) finally, the sym-

bolic observability coefficient is obtained as

Zsn ¼
N1

N1 þ N�1 þ N��1

þ
N�1

ðmaxðN1; 1Þ þ N�1 þ N��1Þ
2

þ
N��1

ðmaxðN1; 1Þ þ N�1 þ N��1Þ
3
;

ð17Þ

where N1, N�1 and N��1 are the numbers of symbolic terms 1, �1 and ��1, respectively. In the sym-

bolic approach, the known equations are used to check whether the elements of the Jacobian

matrix of the system are constant, non-constant polynomial or rational. When investigating a

network with nodes that are copies of the same dynamics, this can be treated in an automatic

way from the Jacobian matrix of the node dynamics and the adjacency matrix. What can be

computationally long is to test all possible combinations between the measured variables and

their retained derivatives. The number of these possibilites can be significantly reduced by

either investigating the symbolic observability matrix [11] or by using a graphical approach

[29].

Example 5. For the Rössler system (10), the Jacobian and symbolic Jacobian matrices are

Df ¼

0 � 1 � 1

1 a 0

z 0 ðx � cÞ

2

6
6
6
4

3

7
7
7
5

; ~J ¼

0 1 1

1 1 0

�1 0 �1

2

6
6
6
4

3

7
7
7
5
; ð18Þ

respectively. Notice that ~J can be obtained from Df by inspection. If variable x is measured,

the respective observability matrix is given by [26]:

~Ox ¼

1 0 0

0 1 1

�1 1 �1

2

6
6
6
4

3

7
7
7
5
; ð19Þ

for which the symbolic determinant is Det½ ~Ox� ¼ 1� ð1� �1 � 1� 1Þ. In that expression

there are four 1s, and one �1, hence N1 = 4, N�1 ¼ 1 and N��1 ¼ 0. Using these values in (17)

yields ηx3 = 0.84. Similarly [26]: ηy3 = 1 and ηz3 = 0.56, where the exponent indicates the dimen-

sion of the reconstruction space (see Example 3). Therefore the variables can be ranked as

before y▷ x▷ z.

2.6 Data-based observability

All the types of observability discussed so far are defined based on the system equations. Moti-

vated by the fact that in practice the system equations are not always available, an alternative

procedure for assessing observability was proposed in [27]. However, observability is, by defi-

nition, related to the equations of the vector field or related to the map, in the case of discrete-

time systems. Hence estimating coefficients from data is only an indirect way of assessing

observability from some of its signatures found in a reconstructed space.
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3 Graphical approaches for assessing observability

This section is devoted to graph-theoretic approaches for assessing observability of dynamical

systems. When a network is considered, there are three levels of description: i) the node

dynamics, commonly made of a dynamical system (oscillator), ii) the topology of the network,

described by the corresponding adjacency matrix, and iii) the full network combining the

node dynamics with the network topology. Each level can be represented by a specific graph

providing different assessment of the network observability as it will be addressed in Sec. 5.

Given the importance of graphs, this section reviews some results concerning the quantifica-

tion of observability from such a representation. Some examples will be taken using simple

dynamical systems (oscillators).

3.1 Lin’s method

In a seminal paper, Lin developed the concept of structural controllability [2] which was

later extended to that of structural observability in [28]. Such concepts have been defined for

linear systems as (1). In words, a linear dynamical pair [A, C] is structurally observable if

there exists a “perturbed” pair [A1, C1] of the same dimension with the same structure which

is completely observable. [A, C] and [A1, C1] are of the same structure if for every fixed zero

entry of [A, C] the corresponding entry of the pair [A1, C1] is also a fixed zero and vice-versa

[28]. Also, [A1, C1] is a perturbed pair of [A, C] in the sense that there exists an � > 0 such

that ||A − A1|| < � and kC − C1 k< �. For instance, consider the pair

A ¼
A11 0

A21 A22

" #

; C ¼ C1 0½ �; ð20Þ

where the nonzero entries can assume any values. Clearly, the observability matrix (2) will be

rank deficient regardless of the values of Aij and of C1, hence the pair (20) is (structurally)

nonobservable.

A very interesting analysis proposed by Lin was the drawing of a graph for the pair [A, b].

An extension of Lin’s procedure for the case of observability can be easily accomplished by

means of the duality theorem [14] by which the pair [A, cT] (see Remark 2.2) is structurally

observable iff its dual [AT, c] is structurally controllable. When matrix A is transposed, the

arrows of the edges should point in the reverse direction.

Example 6. In this example it is shown how the Rössler system (10) can be represented

using a graph such that a procedure akin to Lin’s can be followed. Lin’s starting point is the

dynamic matrix A and the input vector b. The controllability of the Rössler system can be

investigated using the Jacobian matrix Df of (10) and b:

x y z bx
..
.

by bz

½Df ..
.
b� ¼

0 � 1 � 1 1 ..
.

0 0

1 a 0 0 ..
.

1 0

z 0 x � c 0 ..
.

0 1

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

! x

! y

! z

ð21Þ

Fig 2a shows the graph of pair [Df, [0 0 1]T]. Vertices x and y are both accessible from vertex

bz: the Rössler system is structurally controllable when the system is driven from the bz vertex.

When the control is applied to variable y, vertex x is accessible but vertex z will not be
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accessible if the dashed link vanishes (z = 0): the pair [Df, [0 1 0]T] is therefore not structurally

controllable for z = 0. A similar result is obtained for the pair [Df, [1 0 0]T].

In order to investigate the observability using Lin’s result, we have to use the dual system

(Fig 2b). At z = 0 the connection from vertex z to vertex x vanishes and both x and y become

non-accessible vertices (Fig 2b). Hence at z = 0 the pair (Df)T, c] is noncontrollable and, from

the duality theorem, this implies that[Df, cT] is not observable at z = 0, as seen in Example 2.

We can reach a similar conclusion from the graph in Fig 2a but drawing an output vector c
(Fig 2c) and using a “dual interpretation” for the edges. Thus, an edge from vi to vj means that

vj receives information from vi. Fig 2c illustrates the case when z is measured. Because the flow

of information from x—and consequently from y—is cut when z = 0, the pair [Df, [0 0 1]] is

structurally nonobservable. In this way, it is found that the pair [Df, [0 1 0]] is structurally

observable. This is in agreement with the fact there exists a global diffeomorphism between the

original state space and ðy; _y; €yÞ [16].

From the discussion above, it is clear that structural observability is unable to distinguish,

given an observable system, situations with different observability features. For instance, for

0< z� 1 the edge linking z to x in Fig 2 has not yet vanished and the system remains structur-

ally observable as well as for another system for which such a link has a constant weight. This

weakness of addressing the observability of a graph is overcome by other definitions of

observability.

As a consequence of nonlinearity there will be non constant elements in [(Df)T ..
.

c] and

therefore there will be dashed connections (that can vanish) in the graph. Hence procedures to

investigate observability that treat constant and variable connections alike ignore the effect of

nonlinearity which is one of the main causes of singularities which, in turn, greatly affect the

observability of a system, as discussed in Sec. 2.3.

3.2 Liu and coworkers’ method: Sensor sets

A more recent procedure has been put forward by Liu and coworkers who have addressed the

problem of determining the minimum number of sensor nodes needed to reconstruct the state

[6]. First, an inference diagram is built, this is a graph. The graph is decomposed in strongly

connected components (SCC) which are the largest subgraphs in which there is a directed

path from every vertex to any other vertex. If an SCC does not have any incoming edges, it has

Fig 2. Graphs for controllability and observability analysis. (a) Graph of the pair Df, bz] where bz = [0 0 1]T is the input vector. (b) Graph of [(Df)T,

cz], the dual of (a), where cTz ¼ ½0 0 1� is the input vector. (c) Graph of [Df, cz] used with the “dual interpretation”. Dashed lines indicate non constant

connections due to nonlinearities. Notice the similarity with the graph in Fig 1a.

https://doi.org/10.1371/journal.pone.0206180.g002
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been called a root SCC [6]. Observability of the whole system is claimed to be achieved if at

least one vertex of each root SCC is measured.

Example 7. We start with the graph shown in Fig 1a which corresponds to the Rössler sys-

tem (10) but without distinguishing between full and dashed lines. Notice that it is possible to

start at any vertex (node or variable) and reach all other vertices following the arrows. Hence,

the whole graph is an SCC. Because there is no incoming edge, this is also a root SCC. Hence

in order to guarantee observability it suffices to measure any of its variables. However, if the

dashed line vanishes, the z variable will no longer be part of the SCC (see Fig 3b) and should

not be measured.

Example 7 shows that this method, as acknowledged by the authors [6, p. 2464] is unable to

indicate that measuring the y variable from the Rössler system is preferable to, say, measuring

z. On the other hand, it was shown that this graphical approach underestimates the number of

variables which must be necessarily measured [10, 11]. An improved version of this graphical

approach was recently proposed [29], showing that nonlinear interactions should be removed

for determining the root SCCs and that such graph only provides necessary but not sufficient

conditions on the measurements for ensuring structural observability.

3.3 Ranking observable graphs

In Lin’s method for structural observability (Sec. 3.1) only the presence or absence of edges is

of concern. Therefore the method either classifies the graph as observable or not.

A more challenging situation is furnished by the pair ½A; ~C� with A given in (20) and

~C ¼ ½C1 C2�, as follows. If C2 6¼ 0 the pair stands a chance of being observable. Let us assume

that it is observable, that is, the observability matrix (2) computed with the pair ½A; ~C� is full

rank,. Structural observability will be lost only if C2 = 0, and even for extremely small values of

C2, the pair will be structurally observable. Hence such type of observability will not distin-

guish among a whole range of pairs that can be either far or arbitrarily close to the condition

C2 = 0. A possible way out in this very simple example is to compute the condition number

(12) for the observability matrices of ½A; ~C� for the different measuring situations that result

Fig 3. Graphs of the Rössler system. The root SCC (drawn as a thick circle) contains the three variables when the method considers all connections

constant (a) and only variables x and y when nonlinearities are removed for building the graph (b).

https://doi.org/10.1371/journal.pone.0206180.g003
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in different ~Cs. Ill-conditioned observability matrices will indicate unfavorable situations in

terms of observability.

As for the method by Liu and coworkers for sensor set selection, the lack of discriminatory

power pointed out in Example 7 is due to disregarding the differences in the type of edges, that

is, the method treats full and dashed arrows alike. In order to rank the variables, features of the

links should be taken into account, such as the weight of a link: small constant weights might

result in ill-conditioned observability matrices and variable weights will give rise to singulari-

ties in such matrices. Hence such features will usually give rise to poorly observed regions and

must be taken into account.

As it happened in the development of the theory of observability for dynamical systems, the

first results classified graphs either as being observable or not. It seems that it would be desir-

able to see the development of procedures to rank graphs in terms of observability.

3.4 Symbolic observability of topologies

Provided that the symbolic Jacobian matrix J can be written for a graph then, in principle,

symbolic observability coefficients can be computed. For relatively simple systems, to obtain

J is straightforward, as the following example shows.

Example 8. We again consider the graph shown in Fig 1a. In a typical graph, there would

be no distinction between full and dashed lines, as for the methods of Lin and of Liu and

coworkers. Calling J 0
a symbolic Jacobian matrix that does not take into account the nonlin-

ear connections, and ~J the standard symbolic Jacobian matrix [26], from system (10) we get

J 0 ¼

0 1 1

1 1 0

1 0 1

2

6
6
6
4

3

7
7
7
5

and ~J ¼

0 1 1

1 1 0

�1 0 �1

2

6
6
6
4

3

7
7
7
5
: ð22Þ

Notice that ~J is the same as obtained in (18). Hence proceeding as in Example 5 the same

symbolic observability coefficients obtained from the system equations are found using ~J ,

that is, from the graph. If J 0 is used instead, the result reached at is that any of the variables

provide the same level of observability. This shows why the method by Liu and co-workers is

unable to provide guidance of which sensor vertex to use within the root SCC which here (Fig

3a) contains the three variables. In the spirit of symbolic coefficients, the modified approach

[29] does not take into account the nonlinear edges (Fig 3b).

For graphs of even moderate sizes, it might not be feasible to build analytical observability

matrices. A software like Maple fails to compute the observability matrix of a 5D rational sys-

tem [11]. Symbolic approaches are therefore an alternative to overcome this difficulty.

4 Types of observability

The aim of this section is to recognize differences among types of observability in what con-

cerns definitions and aims, as reviewed in sections 2 and 3. Links between definitions will be

pointed out and some extensions to networks will be proposed. The main results are summa-

rized in Table 1.

4.1 Structural observability

The adjective structural was used by [2] to indicate cases in which controllability was robust

against perturbations of unknown parameters. Here we use structural in a somewhat wider,
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but closely related, sense. Definitions of observability that classify a system in either observable

or not are included in the class of structural observability. The justification for this is that in

such cases, observability only depends on the internal structure (presence and nature of cou-

pling terms) of the system variables. In this sense, Kalman’s definition and the nonlinear coun-

terpart [15] belong to this class although such are sometimes referred to as being definitions of

complete or full observability. Other terms such as exact and mathematical controllability/

observability have been used recently [30].

A slightly different aim has been pursued in [6] where a minimum set of sensor vertices is

sought in order to render a graph observable or not observable.

The aspect common to all such procedures reviewed in sections 2.1, 3.1 and 3.2 is a classifi-

cation of a system according to which it is either observable or not.

4.2 Dynamical observability

In contrast to structural observability, we shall refer to dynamical observability whenever there

is a continuous quantification of our ability to estimate the state of a system from a finite set of

data. This can be done computing observability coefficients as discussed in sections 2.2 and

2.3. This class of observability only makes sense for systems that are observable. Hence dynam-

ical observability helps us to rank observable pairs [f, hi(x)] for a given vector field f.
A similar situation in terms of controllability of linear complex networks has been reported,

namely the situation in which a network is controllable however, in practice, control is very

difficult to attain [30]. As argued by Cowan and coworkers: “more important than issues of

structural controllability are the questions of whether a system is almost uncontrollable” [31].

This is the typical situation in which a dynamical rather than a structural assessment of con-

trollability or observability is called for. Dynamical observability was investigated in the con-

text of three-node networks of Fitzhugh-Nagumo oscillators in [7].

In assessing this type of observability, there are two challenges to be faced. First is how to

quantify how far the system is, at a certain point, from the location in space where observability

is lost, that is, where observability matrix becomes rank deficient. Second, how to average this

result in order to have a single “global” indication of observability. In Sec. 2.2 these challenges

were met by computing the condition number (13), and taking an average along a trajectory

(14) which can be interpreted as a spatial average in state space.

Other ways of facing the first challenge would be to use the determinant of the observability

matrix or its singular values. The fraction of time that the trajectory spends within a neighbor-

hood of the singularity manifold has been used to assess dynamical observability [23].

The coefficients that quantify dynamical observability have only relative interpretation and

are not comparable in general among different systems. This shortcoming is overcome by the

coefficients for symbolic observability, as discussed in Sec. 2.5.

4.3 Symbolic observability

Symbolic observability shares some features of the previous types of observability and includes

characteristics of its own. On the one hand, as with structural observability, symbolic observ-

ability does not depend on parameter values but only on the nonlinear couplings within the

system variables. On the other hand, as with dynamical observability, symbolic observability is

capable of ranking observable pairs.

Central to the definition of symbolic observability is the complexity of the singularities that

appear in the symbolic observability matrix. Some advantages compared to the other defini-

tions are the fact that it is more amenable to be computed for larger systems with more compli-

cated dynamics [26], it provides “normalized” results in the range [0; 1] that permit comparing
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different systems in terms of observability. Related to this, it has been argued that systems with

a symbolic observability coefficient greater than 0.75 have good overal observability properties

[32].

These symbolic coefficients are very promising for assessing the observability of systems

and networks that are larger than the ones analyzed with the dynamical observability coeffi-

cients [11].

5 Observability of dynamical networks: Numerical results

A dynamical network is a set of dynamical systems—oscillators—interconnected according to

the network topology which is described by the corresponding adjacency matrix. The aim is to

discuss, in the context of a simple example where the node dynamics is linear, some of the

aspects seen so far.

Here we will consider a network whose topology is described by the adjacency matrix

Aadj ¼

0 a12 0

a21 0 a23

0 a32 0

2

6
6
6
4

3

7
7
7
5
; ð23Þ

and for which at each node there is a three-dimensional dynamical system

Si : ð _xi; _yi; _ziÞ
T
¼ ð� yi; xi; axi � ziÞ

T
: ð24Þ

Nodes are coupled via one of their variables (xi, yi or zi). In this network, the term a32 may

vanish, for instance due to a nonlinear coupling. In what follows, we adopt the convention that

the element aij of the adjacency matrix Aadj corresponds to an edge from vertex j to vertex i
[33, Sec. 6.2]. If the other convention were adopted, we would have to use AT

adj in place of

matrix A or the Jacobian matrix.

Consequently, following Newman’s convention, controllability can be investigated by con-

sidering the pair [Aadj, b] where b = [0 0 1]T, hence only system S3 receives the driving signal

(Fig 4). As long as a32 6¼ 0 the network is structurally topologically controllable since each node

can be reached from vertex v3 (Fig 4a). The topological observability of the network can be ana-

lyzed using the dual pair ½AT
adj; c� where c = [0 0 1]T, hence only one or more variables from S3

can be measured (Fig 4b). As long as a32 6¼ 0 the network is structurally topologically

observable.

Using symbolic observability and treating the adjacency matrix Aadj as a Jacobian matrix, it

is readily found that the network in Fig 4a is not topologically observable from S2 (Z3
2
¼ 0), it is

fully topologically observable from S1 (Z3
1
¼ 1) and is poorly topologically observable from S3

(Z3
3
¼ 0:56). The lack of observability from S2, which can be readily confirmed from linear sys-

tem theory, is not obvious, as this node receives information from the other two nodes. This

result seems to be in line with the discussion presented in [9].

When considering the observability of a dynamical network as shown in Fig 4a with nodal

dynamics (e.g. as given in Eq 24), it must be realized that the topological observability only

provides a partial answer. In order to ensure structural observability of the full network from,

say, v3, not only every node of the dual pair ½AT
adj; ½0 0 1�

T
� (Fig 4b) must be accessible by acting

on v3 but also every vertex of the full network as shown in Fig 5a. In fact, the result strongly

depends on the observability conveyed by the variable used in measuring the sensor node and
the one used for coupling the nodes.
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Since (24) is linear, it is straightforward to verify that the pair ½Df
3
; cT

3
� is structurally observ-

able only if the measured variable is z3 (that is, cT
3
¼ ½0 0 1�) and α 6¼ 0. Therefore, although

the network is structurally topologically observable from S3 (a32 6¼ 0), it is only structurally

observable if variable z3 is recorded at S3. In addition, if α = 0, the network is not structurally

observable even for a32 6¼ 0. Indeed, in Fig 5a the node dynamics, S3, is structurally observable

when variable z3 is measured (Zz3
3
¼ 1, Det @F

@x ¼ � a
2 whereF : ðx3; y3; z3Þ 7! ðz3; _z3; €z3Þ) and

is not observable when x3 or y3 (Zx3
3
¼ Zy3

3
¼ 0) are measured.

Fig 4. Graphs based on topology described by the adjacency matrix. (a) Graph of the network whose topology is described by the adjacency matrix

(23) with a single driving node S3, and (b) the dual graph. If a32 vanishes in (b), nodes S1 and S2 become non-accessible and the dual network is no

longer structurally controllable, hence the pair ½Aadj; cT3 � is no longer structurally observable from S3.

https://doi.org/10.1371/journal.pone.0206180.g004

Fig 5. Graph of the full network with the topology in Fig 4a. (a) Coupled via variable z. (b) Coupled via variable x The details of the node dynamics

are included. If z3 is measured, and α = 0 the network is not structurally observable regardless of the value of a32.

https://doi.org/10.1371/journal.pone.0206180.g005
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When the nodes of the full network are coupled by variable z there is a directed path from

every vertex to vertex z3 if α 6¼ 0. To see that the network observability also depends on the

coupling consider when coupling is accomplished via variable x (or similarly via variable y).

The unfolded graph drawn in Fig 5b shows that the resulting network will only be structurally

observable if z1, z2 and z3 are simultaneously recorded, even for α 6¼ 0 and a32 6¼ 0.

The previous examples help to understand why Gates and Rocha have argued that to repre-

sent nodes as variables lacks intrinsic dynamics and that there is often a discrepancy between

results related to controllability that only consider the network topology [34].

To summarize, in investigating the observability of a dynamical network, these three ingre-

dients must be considered: i) nodes connected according to an adjacency matrix (a graph), ii)

the coupling and iii) the node dynamics.

Structural topological observability of the full network (Fig 5) is not sensitive to a gradual

reduction in observability e.g. due to the decrease of a32 or α. This difficulty can be overcome

by quantifying dynamical observability e.g. computing (12) using Aadj to compose the observ-

ability matrix. Dynamical observability of the topology of the network, disregarding the node

dynamics, is shown in Fig 6a whereas the dynamical observability of uncoupled node dynam-

ics is shown in Fig 6b. These plots resemble the overall shape of the plots presented in Ref. [7,

see their Fig 5].

For the full network in Fig 5a, that is, when three systems (24) are coupled by their variable

z according to (23) and when z3 is measured the observability coefficients are shown in Fig 6c.

Slices of this plot retain some features of the two previous ones. However, when the nodes are

coupled through variable x according to the same adjacency matrix, the observability is practi-

cally lost as illustrated in Fig 6d, where the values in the plot are all close to zero within

machine accuracy. This shows that a joint analysis is required, that is, not only node dynamics

and how the nodes are connected must be used, but also the coupling variables must be taken

into account.

An accurate analysis can be performed for a simpler system using Det @Fs
@x . First we set a12 =

a21 = 0 to treat a two node network {S2, S3} with measurements in node S3, either x3, y3 or z3.

We were able to get a full rank 6 × 6 observability matrix with Fx3y3z4
3
, Fx2

3
z4
3

or Fy2
3
z4
3

for which

the determinants were equal to�a3
32
a2. The full network becomes structurally non observable

when α32 or α is equal to zero as already found. Therefore, the network is observable from S3 if

we measure z3 plus, at least, another variable from that node.

This simple example shows that investigating a dynamical network by only analyzing the

network observability from the adjacency matrix can lead to wrong results because the topo-

logical observability is only correct in the extreme case where the nodes are not only coupled

but also observed by the variable providing the best observability. If the network is structurally

topologically observable, then the network observability depends on the variable with which

node dynamics are coupled and observed. Consequently, topological observability must be at

least associated with an analysis of the observability of the node dynamics (the isolated system

acting at each node) and it must be checked whether the coupling conveys the information up

to the measured variable.

6 Conclusions

Two decades have past since it was argued that a procedure borrowed from the theory of

observability of linear systems could be adapted to explain why global modeling algorithms

performed differently using different recorded variables [5]. This paper has aimed at providing

a general view of how some concepts related to observability have developed in the realm of

nonlinear dynamics and to point out some important differences among the approaches. In
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Fig 6. Observability coefficients. Observability coefficient (12) computed (a) for the network topology shown in Fig

4a, (b) for the uncoupled node dynamics in (24). Mathematically, the network becomes structurally not topologically

observable from the sensor node S3 only for a32 = 0 and the node dynamics becomes not structurally observable from

z3 only for α = 0. Normalized observability coefficients for the full network (c) coupled using z (Fig 5a), and (d) coupled

using x (Fig 5b).

https://doi.org/10.1371/journal.pone.0206180.g006
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order to make distinctions clearer, some different types of observability measures were pro-

posed. Also, the use of the discussed techniques in the field of dynamical networks has been

discussed briefly. An overview is provided in Table 1.

An important point to realize is that whereas the definition of observability aims to classify

a system as being observable or not, a more interesting challenge is to be able to rank variables

of observable systems in terms of the potential performance each would have in certain practi-

cal situations. The first problem has been connected to structural observability, whereas the

second one to dynamical and symbolic observability. These concepts can be readily applied to

dynamical systems or to dynamical networks and their three levels of description, namely:

node dynamics, topology and the full network.

However, as for the observability of dynamical networks, some limitations of graph-based

procedures have been pointed out. It has been argued that the observability of a dynamical net-

work depends on three ingredients: i) the topology described by the adjacency matrix—called

topological observability in this paper–; ii) the variable used for coupling nodes and iii) the

observability of node dynamics. It was shown that the topological observability of a network—

only based on the adjacency matrix—can provide spurious assessment of the observability of

the full network in certain cases. In the case of dynamical networks, which are composed of

oscillators at the nodes interconnected according to a topology, topological observability does

not seem adequate to accurately characterize a network dynamics.
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