
In 1995, the publication of the first com-
plete genome sequence of a free-living 
organism generated huge excitement across 
many fields of research1. For microbiolo-
gists, as the organism in question was the 
bacterium Haemophilus influenzae, this 
milestone opened up the potential to address 
fundamental questions about bacterial 
pathogenesis. Since then, major advances 
in sequencing platforms, particularly the 
introduction of next-generation technolo-
gies, have resulted in a significant reduction 
in the cost of sequencing a bacterial genome 
(currently less than UK£50 per genome for 
Staphylococcus aureus (J. Parkhill, personal 
communication)), and some platforms now 
have a turnaround time of a day or less, but 
the ability to use the genome sequence alone 
to predict the potential for a bacterium to 
cause severe disease remains elusive.

The pathogenicity of a bacterium, or 
its ability to cause disease, is conferred by 
both the bacterium and the host, as it is a 
result of the interplay between the immune 
status of the host and the virulence factors 
encoded by the bacterium. Importantly, this 
interplay depends on how and when these 
bacterial factors are expressed. Defining the 

role of host immunity in disease outcome is 
crucial if tools to predict disease severity are 
to be built, but equally, we must be able to 
predict the virulence potential of a bacterial 
strain from its genome sequence. Although 
sequencing can list which virulence factor-
encoding genes are present in a genome, 
without an understanding of the regulatory 
and epistatic processes that control their 
expression, the contribution of this list of 
genes to virulence cannot be quantified. 
With a more comprehensive understanding 
of the combinations of genetic backgrounds, 
regulatory networks and virulence factors 
that produce virulent strains, researchers 
might be better able to rapidly predict the 
propensity of a particular strain to cause 
severe and transmissible disease. In this 
Opinion article, we outline how a systems 
biology approach might just be the tool to 
help, using the important human pathogen 
S. aureus as a model.

Overcoming current limitations
Many specific definitions of systems biology 
exist. For the purposes of this article, systems 
biology is defined as an interdisciplinary 
approach that focuses on interactions in 

biological systems2. A typical systems biol-
ogy approach is to describe the components 
of a biological system and how they inter-
relate by means of a mathematical model, 
which is then validated through iterative 
cycles of construction and then testing with 
experimental data from diverse sources, 
including the omics fields (such as genomics, 
transcriptomics, proteomics and metabol
omics) and studies in classical genetics, bio-
chemistry, molecular biology and structural 
biology. If the model holds up to scrutiny, 
then it can be applied to real-world situations 
to understand the emergent properties. The 
model can then also be used to predict how 
additional or external factors that affect indi-
vidual components or groups of components 
within the system will affect the activity of 
particular parts of the system or of the system 
as a whole3.

The process of reducing a biological 
system from its rich natural complexity to a 
minimal set of interacting factors is a chal-
lenging concept, especially when experience 
in molecular biology tells us that the devil 
is often in the detail. In addition, to reduce 
complexity, assumptions must be made 
about the characteristics of the factors in the 
model, and this is again an uncomfortable 
concept for many molecular biologists, who 
are more used to building hypotheses on the 
basis of empirical data rather than assump-
tions. Systems biology is not an immediate 
or direct answer to the big questions faced 
by biologists, but rather an integrative and 
iterative approach that describes a biological 
system and then allows the gradual intro-
duction of increasing amounts of complexity 
until the model reflects the system in the 
natural state. It is then that we can address 
the big questions, such as whether bacterial 
virulence can be predicted from genome 
sequence data.

Recent studies on important bacterial 
pathogens such as Pseudomonas aeruginosa4, 
S. aureus5 and Salmonella enterica subsp. 
enterica6 have identified important virulence 
genes by comparing the genetic makeup of 
virulent strains or serovars with that of either 
less virulent or avirulent strains or serovars. 
Such studies have greatly expanded our pur-
view of virulence, generating vast amounts 
of data, but have also demonstrated that the 
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presence or absence of individual virulence 
genes is not sufficient to predict the overall, 
or net, virulence of a strain. Examples of 
disease-specific toxins, such as toxic shock 
syndrome toxin of S. aureus, might seem 
exceptions to this rule, as genes encoding 
these toxins are always present in strains 
causing this type of infection. However, the 
presence of such a gene in itself is not indica-
tive of disease outcome, as the same gene is 
found readily in asymptomatically carried 
strains. The effect of small genetic changes 
(for example, SNPs) in effector genes or in 
their regulators — changes that would be 
undetectable by PCR or microarray screens 
— must also be determined. Crucially, 
the role of epistasis (that is, the effect that 
mutations in one part of the genome have 
on the activity of genes elsewhere) must be 
considered. The effect of epistasis is well 
established for antibiotic resistance mecha-
nisms7–10, but as a term it is less commonly 
associated with the expression of virulence 
genes in bacteria. However, the very exist-
ence of genes encoding global regulators of 
virulence genes demonstrates that epistasis 
is likely to have a significant effect on the net 
virulence of a strain.

To account for epistasis, any systems 
biology model of virulence must incorpo-
rate not only the virulence genes but also 
the regulators controlling their expression. 
Unfortunately, it is difficult to assemble 
gene-regulatory networks from omics  
data sets with a high level of accuracy 
because biological systems are often under-
determined. There is a growing number of 
studies that have constructed transcription-
regulatory networks in microorganisms11–23, 
but even with large-scale omics data sets, 
there are usually more possible ways for 
genes to regulate one another than there 
are molecules with which to achieve such 
regulation. As a consequence, mathemati-
cal models can only characterize regulatory 
networks from omics data sets by making 
limiting assumptions (for example, that 
co‑regulated genes must have similar func-
tions). In addition, these studies typically 
involve one strain and/or one technique  
(for example, transcriptomics or proteom-
ics), which also limits the ability of the 
model to be a general predictor of gene 
regulation. A good example of a study that 
begins to address some of these limita-
tions is that of Yoon et al.23, who used both 
transcriptomic and proteomic data to iden-
tify novel proteins secreted by the single 
serovar S. enterica subsp. enterica serovar 
Typhimurium through the type III secretion 
system, and then used standard cellular and 

molecular biology approaches to verify the 
activity of these proteins. A good systems 
biology approach exploits multidisciplinary 
expertise and techniques to identify the min-
imum set of biological information needed 
to explain or define a system.

Although using systems biology meth-
ods to understand and predict microbial 
virulence may seem futuristic, this does 
not mean that such as goal is not possible. 
In this Opinion article, we argue that many 
of the necessary tools have already been 
developed and that, although the process 
would be labour intensive, the key to solv-
ing this problem lies in selecting more 
comprehensive scientific approaches that 
are designed to overcome limiting assump-
tions. If a model that predicts virulence from 
a genome sequence is to be built, then a 
broader perspective that extends from data 
collection to the construction of a predictive 
tool is needed. Here, we describe a frame-
work to achieve this with currently available 
technology and resources, using S. aureus as 
a model organism.

Staphylococcus aureus as a model organism
S. aureus is an attractive organism with 
which to build a prototypical predictive 
model. This bacterium is a major human 
pathogen, and antibiotic-resistant strains, 
such as methicillin-resistant S. aureus 
(MRSA), are emerging worldwide24,25. Health 
care-associated MRSA (HA‑MRSA) has 
caused problems in health care settings for 
many decades, but the recent emergence of 
strains referred to as community-associated 
MRSA (CA‑MRSA)26,27, which cause infec-
tions in healthy individuals with no health 
care contact, is of increasing concern. If we 
are to develop and implement strategies to 
successfully treat infected individuals and 
block transmission to new hosts, we need 
tools to predict the virulence potential of 
emerging strains.

The virulence of S. aureus is well defined 
and is conferred by the activity of many 
effector molecules that interact directly with 
the host. These effectors can be grouped into 
three categories: adhesins28, which facilitate 
adherence to host tissues; toxins24,26, which 
cause specific tissue damage to the host; 
and evasins29,30, which interfere with host 
immune function. The phenotypes con-
ferred by these factors are determined by 
the level of expression of the genes encod-
ing them, which is in turn controlled by the 
activity of the virulence regulatory network. 
Virulence regulators can be either proteins31 
or regulatory RNA molecules32. As more 
genetically diverse S. aureus strains are being 

studied, it is becoming increasingly clear that 
the regulatory networks are not uniform, 
and this illustrates the importance of under-
standing the epistatic interactions that occur 
between virulence regulators and virulence 
genes. For example, in many HA‑MRSA 
strains, agr (the major regulatory system 
responsible for the density-dependent switch 
from the adhesive to the toxic phenotype) 
is inactive, making these strains more adhe-
sive than toxic33,34. There are many other 
examples of genes encoding dysfunctional 
regulators in particular strains (such as sigB 
(encoding RNA polymerase σ-factor σB)35, 
saeRS36, sarT37 and sarU37), suggesting that 
the activity of each member of the regula-
tory network is likely to be a key factor in 
the virulence phenotype of an individual 
S. aureus strain.

The genome sequence databases are 
growing rapidly for S. aureus strains. 
Moreover, S. aureus effector molecules and 
their regulation are largely understood, 
and the organism is genetically tractable. 
Together with the general importance of 
S. aureus to human public health, and the 
ease with which the bacterium can generate 
new, successful clones, these factors make  
S. aureus an ideal model organism for  
developing a systems biology approach to 
virulence prediction, as described here.

The framework
The following is a description of a frame-
work to generate a systems biology tool  
that predicts the virulence of an S. aureus 
strain from its genome sequence. Although 
the framework presented here is tailored  
to S. aureus, it could be applied to any  
culturable pathogen (BOX 1).

Define the phenotypes that differentiate 
virulent and avirulent strains. The first 
step towards building a predictive tool is to 
identify the traits that differentiate virulent 
and avirulent strains. This can be done 
using currently available approaches such as 
omics, genetics, evolutionary genetics, bio-
chemistry, molecular biology and structural 
biology. For S. aureus, there is a significant 
amount of data available concerning the 
different types of virulence phenotype that 
it displays (the toxic24,26, adhesive28 and 
evasive29,30 phenotypes outlined above), 
including the contribution of antibiotic 
resistance to these phenotypes27–29,35,36. There 
is also a wealth of data linking the expres-
sion and activity of these traits in vitro with 
their activity in vivo25–27,38–40. For S. aureus, 
many of these virulence traits can be quan-
tified in multiwell plates, which means 
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Box 1 | A framework for using systems biology to predict bacterial virulence

•	Define the phenotypes that differentiate virulent and avirulent strains.

•	Characterize how the relevant phenotypes are encoded, using expression arrays to construct 
models of the gene-regulatory networks and process diagrams that are informed by the 
underlying genetics.

•	Develop models that predict the gene combinations leading to specific virulence phenotypes.

•	Test and refine the model with sets of strains that are independent from those use to build the 
model.

Nature Reviews | Microbiology
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that phenotyping hundreds of individual 
S. aureus strains should be fairly straight
forward. For example, adhesion to fibronec-
tin — a trait that is known to contribute to 
the development of endocarditis and the 
formation of metastatic abscesses38,41 — can 
be assayed in 96‑well plates in a couple of 
hours. The cytolytic activity of bacteria can 
be assayed using immortalized cell lines, also 
in multiwell formats34. These phenotypes can 
be clustered into classes that are sufficient 
to define virulence, and high-throughput 
assays can be used in this way to determine 
net adhesiveness, toxicity and evasiveness. 

These data can then be used to generate 
virulence indices for individual S. aureus 
strains, in which a strain could be, for  
example, highly adhesive, not toxic and 
moderately evasive.

The type of statistical analyses used in 
such a project will depend on the type of 
data generated (that is, it will be problem 
driven), but methods such as analysis of 
variance, principal component analysis and 
clustered permutation tests can be used to 
reveal associations between specific viru-
lence indices and disease type and/or  
severity (details of which are available from 

the clinical data associated with each iso-
lated strain). The virulence of subsets of 
these strains can also be measured in animal 
models that represent specific aspects of 
disease (for example, sepsis, wound infection 
or endocarditis) to test these associations. 
These approaches are well established, so 
their application to collections of clinical 
strains, rather than sets of isogenic mutant 
strains, is only a question of volume.

An illustration of the potential to use 
virulence phenotypes in vitro to explain 
disease outcomes in humans comes from 
two MRSA strains. The CA‑MRSA USA300 
strain, which corresponds to multilocus 
sequence type ST8, is known to be highly 
toxic and to cause a substantial burden of 
purulent disease in healthy individuals26,27,41. 
By contrast, an HA‑MRSA ST8 clone that 
is dominant in the United Kingdom and 
Ireland causes chronic infections in suscep-
tible hosts and has recently been shown to 
have traded off its toxicity for high levels 
of antibiotic resistance33,34. These examples 
demonstrate how differing phenotypes  
(high or low toxicity) can influence success 
in different environments (healthy or sus-
ceptible hosts) and could therefore be used 
as predictors of the disease potential,  
or pathogenicity, of individual strains.

Characterize how the relevant phenotypes 
are encoded. Gene surveillance studies in 
S. aureus have been used to make associa-
tions between combinations of genes encod-
ing virulence effectors and specific disease 
capabilities5,39,40, but they have not yet proved 
robust enough to make predictions about 
the virulence potential of the strains. A more 
comprehensive approach, which builds on 
the previous step of the framework, is to 
determine the combinations of virulence 
effector and regulatory genes that contribute 
to particular virulence phenotypes (toxicity,  
adhesiveness and evasion) in different 
strains. Although the regulatory network in 
each strain is likely to be unique, this net-
work will undoubtedly have elements which 
are part of a core regulatory network, com-
mon to all strains, and these elements can be 
revealed using advanced omics techniques 
such as differential network mapping42,43. 
This network can then be linked using  
statistical methods to the virulence index  
of the strain.

An extensive review of the literature has 
allowed a rudimentary depiction of the core 
virulence-regulatory network of S. aureus 
to be built (FIG. 1). The network consists of 
not only the 20 regulators that are known to 
have an effect on the virulence phenotype of 

Figure 1 | The known virulence-regulatory network in Staphylococcus aureus.  Inside the circle 
are all the regulatory genes shown to have an effect on each other and on virulence66–77,79–96. Outside 
the circle are the known effects of each regulator on adhesiveness (A), toxicity (T) and evasiveness (E). 
Much of the data used to generate this image is qualitative. A question mark indicates that there is 
either no information regarding the direct activity of the regulator or the available information  
is conflicting.
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S. aureus, but also the known effects of these 
regulators on the activity of other regulators 
in the network. A preliminary model of this 
regulatory network can be built using stand-
ard techniques. For example, by applying the 
network identification by multiple regression 
(NIR)44 method, the functional relationships 
of all known regulators are first expressed by 
a system of linear (or nonlinear) differential 
equations44,45, each describing the change in 
expression level of each regulator in response 
to individual perturbations (mutations).  
The system, or the underlying regulatory 
network, can then be inferred through 
multiple linear regression, or other iterative 
methods (such as MCMC19) that minimize 
the deviation between model prediction and 
experimentally determined expression levels.

However, the regulatory network 
depicted in FIG. 1 is currently limited by the 
fact that much of the available data have 
been generated in different laboratories, 
using different media and different S. aureus 
strains, at different time points of growth 
and using different methods (including  
northern blots, reporter fusions and quanti
tative reverse-transcriptase PCR). It is 
therefore difficult to compare these data 
directly. The network in FIG. 1 is also skewed 
towards certain regulators, according to 
their perceived importance and how recently 
they have been characterized. The data set 
is also incomplete; the lack of a connecting 

line between two regulators implies not that 
there is no interaction between these regula-
tors but rather that these experiments have 
yet to be carried out. Therefore, the picture 
of how the regulators interact with each 
other remains incomplete, and the com-
binations of regulators that determine the 
virulence phenotype of each strain have not 
yet been determined. The network also does 
not include newly identified regulatory RNA 
molecules or account for the effects of post-
translational modification. Nevertheless, 
it serves as an illustration of how a robust 
definition of such a system can be used as 
a starting point to which additional details 
and features can be added when their role in 
virulence is established. 

Existing molecular techniques could 
easily be used to define this system more 
robustly; for example, constructing a library 
of isogenic strains in which each regula-
tor is mutated would take approximately 
6 months. The effect of each mutation on the 
genome-wide expression profile of the strain 
could be determined using RNA sequenc-
ing (RNA-seq) technology in approximately 
6 months, and using high-throughput assays, 
the virulence phenotypes of 20 isogenic 
mutant strains could be determined in less 
than a week. So, although much of this 
work would be reproducing some previ-
ous findings, and therefore less rewarding, 
in our opinion it is not beyond the current 

technical capabilities. Network component 
analysis can be then applied to these data  
to build a model that represents all the  
interactions which occur in the system.

In addition to the different combinations 
of regulators found in different S. aureus 
strains, sequence variations and poly
morphisms in the genes encoding individual 
regulators must also be considered. Such 
variability can substantially affect protein 
activity. For example, for a transcriptional 
regulator, a sequence alteration in the pro-
tein or the encoding gene could affect the 
abundance of the protein within the cell, the 
affinity of the target-binding sites, and  
the activity of the regulator when bound  
to a target. Bioinformatic analysis of the  
gene sequences of these 20 regulators  
(FIG. 1) in ten S. aureus subsp. aureus 
strains (MRSA252 (REF. 46), Newman47, 
USA300 (REF. 48), NCTC 8325 (REF. 49), 
COL50, TW20 (REF. 51), MSSA476 (REF. 46), 
MW2 (REF. 52), Mu50 (REF. 53) and N315 
(REF. 53)) reveals a wide range of sequence 
variability between strains (FIG. 2). The 
most variable gene is agrD, which shows 
only 57% identity between strains N315 
and MRSA252. At the other extreme, only 
sarA and sarR are 100% identical across all 
ten strains, suggesting that they are under 
extreme stabilizing selection. For all the 
other regulatory genes tested, the sequence 
identity is high across the ten strains (FIG. 2). 
SarS serves as a good illustration of how 
two nucleotide changes in the gene can 
significantly affect protein activity and how 
structural information can greatly inform 
this approach (detailed in BOX 2). Other 
approaches, such as network component 
analysis and regulatory linkage analysis54–56, 
can be applied to characterize potential 
changes in protein activity as a result of SNPs 
in genes encoding transciption factors, as 
has been done previously in Saccharomyces 
cerevisiae56. These potential changes can be 
further verified by molecular techniques 
(such as expression of protein variants in 
null backgrounds followed by an assessment 
of protein activity) and fed into the mathe
matical description (that is, the model) of 
the regulatory network.

To fully account for this variability, and 
for existing systems biology models to be 
developed further, the data sets need to be 
expanded to include full genomic coverage. 
For S. aureus, at least, this should be possible, 
as large global collections of S. aureus strains 
are currently being sequenced57,58. The qual-
ity of the sequencing and the clinical data 
associated with each strain will be crucial 
if we are to make robust genome-wide 

Figure 2 | Staphylococcus aureus sequence variability.  The sequence variability within virulence-
regulatory genes across ten Staphylococcus aureus strains. Pi is the probability that nucleotides in a 
gene differ between individuals.
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associations between genome, virulence and 
disease outcome. But as genome sequencing 
is becoming faster and cheaper, such studies 
should become more common, providing a 
wealth of sequence data from which the vari-
ability in the virulence-regulatory network 
can be determined and indexed. This will 
facilitate indexing of the regulatory network, 
or the specific combination of regulators 
and their variability, for individual strains, 
and this index can then be linked to the 
virulence index.

Model validation and testing. When the 
virulence phenotypes have been character-
ized and how they are genetically encoded 
is known, the causal relationship between 
gene sequence and virulence can be exam-
ined using statistical approaches such as 
structural equation modelling (SEM)59 or 
perturbed-signalling-network modelling60. 
SEM differs from traditional linear statistical 
approaches in that it can examine complex 
pathways, for example, the influence of vari-
able A on variable C through its influence on 
variable B. In our case, the aim is to model 
the effect of gene sequence on virulence 
through its influence on virulence pheno
types. SEM allows for the estimation of 
latent (that is, unmeasured) variables, which 
can be used to determine whether all of the 
phenotypes that contribute to virulence have 
been identified. Provided the research team 
has the appropriate mathematical expertise, 
we estimate that building the preliminary 
model would take approximately 12 months.

As mentioned above, the model of the 
regulatory network, which includes all  
the variability that exists, together with its 
effect on virulence, can be built from first 
principles with minimal complexity — that 
is, by initially including only known interac-
tions. Importantly, however, robust valida-
tion of the resulting systems biology-based 
models is crucial. Although an initial model 
can be constructed using data from a set of 
‘starter’ strains, this model must be validated 
using iterative cycles of data and data from 
an independent set of ‘tester’ strains. To do  
this, the regulatory index of a strain must  
be determined from the genome sequence.  
The predicted virulence index can then be 
compared to the actual virulence index, as 
measured empirically using the same assays 
that were used to define the index of the 
starter strains (for example, toxicity, adhe-
sion and evasion). In addition to testing the 
predictive power of the model, this step will 
also help identify previously uncharacterized 
factors. If the predictive power is found to  
be poor (for example, only accurate for 50% 

of the tester strains), the genome sequences of  
the strains that do not fit the model should 
be analysed to identify any common factors 
that may explain this deviance. These fac-
tors could include the presence or absence 
of regulatory genes or small RNA molecules 
that are not currently considered in the 
model; the presence of specific SNPs in 
regulatory loci; the presence or absence of 
dominant effector molecules (for example, 
phenol-soluble modulin (PSM)-mec61,  
a small secreted cytolytic molecule that 
is encoded by the psm-mec locus and is 
believed to contribute to the virulence 
of CA‑MRSA); or the presence of small 
encoded peptides that can be missed with 
current bioinformatic algorithms. When 
such common factors are identified, the 
effect of these factors on the regulatory 
network and on the virulence index can be 
determined empirically (that is, the gene can 
be mutated and the change in phenotype 
assayed) and then incorporated into the 
model. The refined model will then need 
to be verified with another independent 

set of ‘tester’ strains, followed by testing on 
new strains until the predictive power of the 
model is at a satisfactory level. The differ-
ence in the predictive success of the model 
for the first set of strains and for the final set 
can be used as a benchmark of progress.

Summary. There is already a considerable 
amount of data concerning the different viru-
lence phenotypes displayed by S. aureus24–27,62. 
We also have a good understanding of how 
these phenotypes are regulated, and we are 
aware of the large amount of variation among 
the regulators and that this has important 
effects on the virulence phenotype of a 
strain. What we do not yet have is a detailed, 
robust and cross-comparable model of this 
virulence-regulatory network. Although 
this network is currently underdefined and 
improvement will be labour intensive, a 
more predictive model is not beyond cur-
rent technical capabilities. With genome-
wide transposon libraries of S. aureus 
strains becoming readily available (see the 
Functional Genomics Explorer of the Center 

Box 2 | Structural insights into bacterial virulence

Structural biology can provide insights into the structure and function of particular virulence 
molecules. From our bioinformatic analysis of the Staphylococcus aureus virulence regulator SarS, 
we observed that there are asparagine-to-aspartic acid substitutions at positions 221 and 243 in 
SarS in two out of ten sequenced strains (S. aureus subsp. aureus str. TW20 and S. aureus subsp. 
aureus str. MRSA252). By examining the SarS crystal structure78 (Protein Data Bank (PDB) accession 
1P4X), we mapped these substitutions onto the protein and from this can make predictions about 
how the substitutions affect the function of the molecule.
The charge present on the concave and convex surfaces of SarS is indicated by colour (see the 

figure; red represents a negative charge, grey represents neutral, and blue represents a positive 
charge). We found that both substitutions are situated along a negatively charged band on the 
convex part of the surface. This indicates that the substitutions are not likely to affect DNA binding, 
which is associated with the concave surface of SarS, but are likely to affect RNA polymerase 
activation, which is associated with the convex, negatively charged SarS surface79. We predict that 
such substitutions will hinder the ability of SarS to recruit RNA polymerase to the promoter region 
because they have replaced negatively charged residues with polar residues, which will affect the 
electrostatic interactions between SarS and the positively charged RNA polymerase subunits. This 
analysis would inform researchers taking a systems biology approach that the activities of these 
variant proteins should be determined, and if they differ, this information should be incorporated 
into the model.
This analysis was possible because the crystal structure of SarS had been previously solved. To 

date, structures of the following virulence effector molecules have been solved (PDB accessions 	
in brackets): AgrA (3BS1), SarA (2FNP and 1FZP), SarS (1P4X), SarR (1HSJ), SarZ (3HRM, 3HSE and 
3HSR), LytR (3BS1), MgrA (2BV6) and ClpP (3ST9, 3STA and 3QWD).
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for Staphylococcal Research at the University 
of Nebraska Medical Centre (UNMC), USA; 
Further information), the construction of 
mutants for such studies is no longer a limit-
ing factor. What is perhaps most exciting is 
that genome sequencing, which will provide 
the data to allow such a project to come to 
life, is already underway57,58.

Can this be applied to other bacteria?
Several recent reviews have described the 
application of systems biology methods 
that, in the absence of epistasis, should be 
sufficient to map gene sequence to viru-
lence63,64. We believe that these models could 
be improved by incorporating an under-
standing of how the genes interact with 
each other. Recent evidence suggests that 
problems such as functional redundancy, as 
well as problems caused by diverse combina-
tions of genes resulting in similar pheno-
types, apply to many bacterial pathogens of 
humans, including Mycobacterium tubercu
losis7, S. enterica8, Escherichia coli9 and 
Pseudomonas aeruginosa10. We propose 
that these problems can be overcome by 
applying systems biology methods to many 
isolates, carefully validating these methods 
for the relevant species, and then using the 
resulting models to identify and predict 
the gene combinations that lead to specific 
virulence phenotypes and to predict the 
traits of a strain from its genome sequence 
alone. Although this type of project is likely 
to be challenging and will require the efforts 
of teams of scientists, the framework we 
outline here should prove useful for any 
microbial pathogen. Similar programmes 
of work are already underway, such as the 
Systems Biology Program for Infectious 
Disease Research3 (funded by the National 
Institute of Allergy and Infectious Disease, 
US National Institutes for Health), which 
is focusing on M. tuberculosis, influenza 
virus, severe acute respiratory syndrome 
coronavirus (SARS-CoV), Salmonella spp. 
and Yersinia spp., with the aim of shifting 
the paradigm of host–pathogen research and 
developing new ways to control these human 
pathogens3.

Conclusion
In the 17 years since the first bacterial 
genome was sequenced1 and the 12 years 
since systems biology was first launched as 
an experimental approach65, vast amounts  
of data have been generated that have pro-
vided a deeper insight into some biological 
systems. However, we do not yet have the 
ability to predict the virulence of a bacte-
rial strain from its genome sequence. This 

limitation has many other contributory 
factors beyond those addressed in this 
article. Host susceptibility is a key factor in 
precipitating disease. Other factors such as 
intra- and interspecies competition during 
colonization and infection can also affect 
disease severity66–77. Nevertheless, despite the 
plethora of complicating factors, we believe 
that the approach outlined here provides a 
first step towards linking bacterial virulence 
to gene sequence using existing technolo-
gies. As it is rapidly becoming as cost effec-
tive to sequence the genome of an infecting 
strain as it is to send the strain to a routine 
diagnostics laboratory for identification and 
antibiotic resistance profiling, we need to 
find ways to interpret and make use of the 
sequence data obtained. Although sceptics 
might argue that the potential for systems 
biology to be used to predict virulence will 
not be reached for decades, in this Opinion 
article we have illustrated how this might 
be achieved for S. aureus using existing 
data and technology, and we believe that 
these tools can be built within the next 
5–10 years. The framework presented here 
can be applied to any microorganism, but it 
will require multidisciplinary teams using 
large and diverse data sets and appropri-
ate model validation. We think that the 
considered application of systems biology 
to understanding and predicting virulence 
could potentially revolutionize the way that 
existing and emerging global pathogens are 
investigated and controlled.
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