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Bratislav Mišić , PhD5, Danilo Bzdok , MD, PhD3,11,*

1Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany,
2Department of Health Management, School of Business, Economics and Society, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nürnberg, Germany,
3Department of Biomedical Engineering, McConnell Brain Imaging Center (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, School of Computer
Science, McGill University, Montreal, Quebec, Canada,
4Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University, Aachen, Germany,
5McConnell Brain Imaging Center (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada,
6Montreal Neurological Institute (MNI), McGill University, Montreal, Quebec, Canada,
7Department of Economics, School of Business and Economics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands,
8La Follette School of Public Affairs, University of Wisconsin-Madison, Madison, WI, USA,
9Marketing Department, The Wharton School, University of Pennsylvania, Philadelphia, PA, USA,
10Center for Neuroscience and Society, University of Pennsylvania, Philadelphia, PA, USA,
11Mila – Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
*Corresponding author: Email: danilo.bzdok@mcgill.ca

Socioeconomic status (SES) anchors individuals in their social network layers. Our embedding in the societal fabric resonates with
habitus, world view, opportunity, and health disparity. It remains obscure how distinct facets of SES are reflected in the architecture
of the central nervous system. Here, we capitalized on multivariate multi-output learning algorithms to explore possible imprints
of SES in gray and white matter structure in the wider population (n ≈ 10,000 UK Biobank participants). Individuals with higher SES,
compared with those with lower SES, showed a pattern of increased region volumes in the left brain and decreased region volumes in
the right brain. The analogous lateralization pattern emerged for the fiber structure of anatomical white matter tracts. Our multimodal
findings suggest hemispheric asymmetry as an SES-related brain signature, which was consistent across six different indicators of
SES: degree, education, income, job, neighborhood and vehicle count. Hence, hemispheric specialization may have evolved in human
primates in a way that reveals crucial links to SES.

Key words: brain lateralization; hemispheric asymmetry; machine learning; multi-output pattern learning; population neuroscience;
socioeconomic status.

Introduction
The notion of socioeconomic status (SES) describes an
individual’s embedding in the social hierarchy. SES is
defined as a measure of combined economic and social
status (Baker 2014; House 2002; Galobardes et al. 2006).
In sociology, SES is regarded a latent construct and is
often measured using a composite measure of education,
income, and occupation or a variation of these indicators
(Baker 2014). SES shapes our approach to everyday social
interaction by gating access to various resources includ-
ing friendship networks, nutrition, as well as education
and culture (Adler et al. 1994; Krieger et al. 1997). In
particular, SES interferes with ready access to health ser-
vices and is linked to general health satisfaction. Low SES
escalates the risk of mental disease, suicide, and various
physical diseases such as diabetes and obesity (Sareen
et al. 2011; Stringhini et al. 2017). Given socioeconomic
differences in the distribution of health-relevant behav-

iors such as smoking and physical inactivity (Stringhini
et al. 2017), some diseases are thought to be a con-
sequence of scarce socioeconomic capital. Nonetheless,
the biological basis that underlies SES-related behavioral
dispositions remains poorly understood (Pampel et al.
2010).

More recent work has transitioned from investigating
factors that are environmental or epidemiological in
nature to interindividual differences in biologic determi-
nants of SES. The advent of concerted biobank initiatives
has now opened the door to study the associations
between idiosyncratic biological features and SES traits
that condition everyday life (e.g. Tyrrell et al. 2016).
For instance, a genome-wide association study (GWAS)
in 112,151 participants from the UK Biobank (UKBB)
reported that common-variant genetic profiles account
for 11% of household income and 21% of interindividual
differences in social deprivation (Hill et al. 2016). The
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authors thus concluded that some SES-related genetic
variants are associated with genes that are preferentially
expressed in the central nervous system (Hill et al. 2016).

The present population-scale brain-imaging investiga-
tion takes the next natural step in beginning to complete
principles of how SES is manifested in the human brain.
The thrust of this endeavor is grounded in the care-
fully documented relationship between SES and various
dimensions of cognitive abilities (Hackman and Farah
2009). Intellectual capacities are an important predictor
of and share genetic underpinnings with different health
outcomes (Henderson et al. 2012; Hagenaars et al. 2016;
Marioni et al. 2018). We are committed to making con-
crete steps toward filling this knowledge gap by unravel-
ing key neural substrates that explain interindividual dif-
ferences in SES. Such research agenda has recently been
advocated in the neuroscience community (Farah 2018).
Additionally, the explanatory grip of many existing stud-
ies on the brain-SES correspondence has been limited by
relatively small participant samples with less than ≈1000
subjects. It remains to be seen which previous findings
from in-laboratory studies faithfully generalize to real-
world settings and to the broader human population.

Here, we respond to recent calls for a population-
scale approach to SES (Farah 2018) by data-mining the
brain-imaging resources from several thousand UKBB
participants. To go beyond previous neuroscience stud-
ies on isolated SES factors, we adopt a different-in-kind
approach by bringing multivariate multi-output mod-
els from machine learning to population brain-imaging
of gray and white matter anatomy. These algorithmic
tools optimally exploit relationships between 6 key SES
measures to obtain more robust model fits, which have
yielded stronger generalization performance to new par-
ticipants (Rahim et al. 2017; Bzdok and Meyer-Linden-
berg 2018). Structural brain measures are found to be
relatively more state-independent, compared with func-
tional brain measures, which is important for our goal
of capturing relatively more time-enduring behavioral
tendencies. SES indeed corresponds to a set of character-
istics that tend to be relatively stable across time, place,
and context. Yet, shifts in SES or social mobility were
reported to be associated with changes in different brain
features (Weissman et al. 2018; Dufford et al. 2020).

Material and methods
Human population data resource
The UKBB is a prospective epidemiological resource
that provides rich information including brain imaging,
genetic, and various biological and lifestyle measure-
ments in a cohort of ∼500,000 participants recruited
from across Great Britain (https://www.ukbiobank.
ac.uk/). Among the brain imaging data of the 9935
participant UKBB release (see Supplementary Table 1
regarding demographic information), we focused on
high-resolution T1-weighted structural brain scans as
a measure of whole-brain gray matter morphology

as well as diffusion-weighted brain scans reflecting
white matter microstructure (Miller et al. 2016). Par-
ticipants were recruited at ages 40–70, with the brain-
imaging supplemented administered at 28–30 months
after baseline assessment on average. For the sake of
reproducibility and comparability, all our tests of brain–
behavior association were based on the precomputed
and vetted image-derived phenotypes (Miller et al. 2016).
For our analyses of gray matter structure, we relied on
volume estimates in 111 cortical and subcortical regions
defined by the Harvard-Oxford atlas as part of UKBB
Imaging. For our analyses of white matter structure, we
relied on estimates of fiber bundle fractional anisotropy
in 48 tracts defined by the Johns Hopkins atlas. All
structural magnetic resonance imaging (MRI) data were
preprocessed using the pipelines and quality-control
workflows by the FMRIB team, Oxford University, UK
(Alfaro-Almagro et al. 2018). The uniform preprocessing
increases the comparability of our findings to other
and future UKBB studies. In a preparatory step, we
used common linear deconfounding to remove variation
in all brain-imaging-derived phenotypes that could be
explained by interindividual differences in head size or
body mass index, following previously published UKBB
research (Kernbach et al. 2018). As such, effects emerging
from the subsequent modeling steps on the thus cleaned
brain phenotypes cannot be explained by differences in
brain size or adiposity. All participants provided informed
consent. Further information on the consent procedure
can be found elsewhere (http://biobank.ctsu.ox.ac.uk/
crystal/field.cgi?id=200).

Target measures of SES from the UK biobank
Building on previous (non-brain-imaging) research on
SES in the UKBB cohort (Tyrrell et al. 2016), our study
used 6 different indices that capture aspects of SES.
If necessary, the underlying scale was inverted for our
analyses. As such, a higher value stands for a higher level
of SES in all measures (cf. Table 1).

1) Education Years (data-field 845): This variable indi-
rectly measures the years of training of the par-
ticipants. The age that they completed continuous
full-time education is provided in years. The vari-
able provides the age when school education was
finished, which does not include experience during
college or university.

2) Degree (data-field 6138): This variable specifies the
highest educational achievement, ranging from
none to professional qualifications to college or
university qualification.

3) Income (data-field 738): This variable indexes the
average total household income before tax in £,
ranging from <£18,000 to >£100,000 annual income.

4) Job (data-field 132): This variable captures the
participants’ current employment according to
the Standard Occupational Classification 2000
(Statistics USBoL 1999). We have encoded this
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Table 1. Behavioral links of age and sex to the six SES
dimensions. Univariate regression of a given SES dimension onto
age or sex of UK biobank participants (cf. methods).

Age Sex

Income −0.26 0.07
Education_years −0.05 0.02
Degree −0.10 0.02
Neighborhood_level 0.10 0.01
Vehicle_count −0.07 0.02
Job −0.22 0.11

variable as knowledge worker (“white collar”) vs.
manual worker (“blue collar”) traits.

5) Vehicle count (data-field 728): This variable specifies
the number of vehicles that are available in a house-
hold as a measure of material wealth.

6) Neighborhood level (data-field 189): This variable is
defined based on the Townsend Deprivation Index
(Townsend et al. 1988). This established metric cap-
tures the aspects of deprivation such as reflected in
unemployment, household overcrowding, non-car
ownership, and non-home ownership. We inverted
this demographic index such that a higher number
reflects a higher SES.

To quantify the extent to which these SES dimen-
sions carry complementary dimensions that underlie
socioeconomic diversity of the population, we computed
several characterizations of their interrelationship. First,
we conducted a cross-correlation analysis of the 6 SES
dimensions that quantified the degree of linear associ-
ation between all possible pairs of SES indicators. The
linear association strength was measured by computing
Pearson’s correlation coefficient. Second, we carried out
a mixture decomposition of the 6 SES dimensions by
means of principal component analysis. This comple-
mentary analysis investigated the extent that any pos-
sible combinations of SES indices may conjointly carry
similar information about participants’ behavior.

As variables of potential confounding influence for our
analyses, we introduced terms that capture participant
age (data-field 21,022), sex (data-field 31), non-linear age-
sex interactions (age2, age∗sex, and age2∗sex), and fluid
intelligence summary score (data-field 20,016). Introduc-
ing handedness (data-field 1707) as an additional vari-
able of no interest led to virtually identical results and
hence the same neuroscientific conclusions.

Workflow for multi-output pattern analysis via
transfer learning
To analyze population-level brain variation with regards
to 6 SES dimensions in an integrated model estima-
tion, we capitalized on multi-output ridge regression
(Caruana 1998; Simila and Tikka 2007; Borchani et al.
2012; Hastie et al. 2015; Rahim et al. 2017; Bzdok and
Meyer-Lindenberg 2018). Based on our careful bench-
marking of several popular machine learning tools (cf.

Supplementary Material and Methods), we have com-
mitted to the linear modeling solution, given that this
was the overall most predictively successful model
class, for all subsequent analyses on the brain-SES
correspondence (Tables 2 and 3). Fitting a supervised
pattern-learning algorithm to jointly explain variation
in several output variables yields modeling advantages,
if these target phenotypes share a degree of mutual
relatedness. Importantly, single model solution results
from relating brain phenotypes of brain gray matter
or white matter measures to all 6 SES dimensions
in a principled fashion. This modeling strategy is
distinct from the ordinary approach of fitting a separate
linear regression model to each SES dimension in an
independent modeling step, which would ignore the 5
remaining SES dimensions in each instance. Additionally,
sharing statistical strength between related output
dimensions is known to yield more robust modeling
solutions. Profiting from such “sharing of statistical
strength” can lead to more precise point estimates
for the modal parameter values. As a third asset, a
ridge-regression-based approach also suggested itself
because of the native ability of this quantitative tool
to effectively handle possible auto-correlation among
the input variables. Indeed, the technical literature has
stated that “If N>D [more subjects than input variables],
but the variables are correlated, it has been empirically
observed that the prediction performance of ridge is
better than that of lasso” (Murphy 2012).

In a transfer learning approach, multi-task ridge
regression solved the following numerical optimization
objective for the ∼10,000 participant sample (Hastie

et al. 2015):Ŵ = argmin
(W∈Rp x k)

1
2∗n

∥∥∥Y − XW
∥∥∥2

F
+ 1

2 ∗
α ∗

∥∥∥W
∥∥∥2

F
, where Y ∈ R

nxk denotes the vector-valued

response with k outcome components (z-scored across
participants) that captured the 6 SES indicators from
the n participants, X ∈ R

n×p denotes the matrix holding
the collection of input variables for all participants
n with a number of input variables p, and W ∈
R

p×k is the matrix of p ∗ k slope parameters to be
estimated, α is the regularization strength of the �2-

penalty term (defaulted to α = 0.01), while
∥∥∥A

∥∥∥
F

=√∑q
i=1

∑r
j=1

∣∣∣aij

∣∣∣2 denotes the Frobenius matrix norm.

This modeling framework enabled adaptively borrowing
information between the model parameters to exploit
that the 6 SES estimation problems are different but
mutually related. One outcome estimation induced
movement in the estimation of the respective k − 1 other
outcome estimations. Thus, learning 1 brain-SES pattern
helped in learning the other brain-SES associations. This
instance of parameter sharing imposed group structure
in the k coupled model estimation goals (i.e. called
“tasks” in the machine learning community). In this way,
regressing interindividual variation in 1 SES dimension
against the set of brain features affected how the
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Table 2. Benchmarking analysis of different machine-learning algorithms regarding out-of-sample prediction from gray matter
volumes.

Pearson’s r Explained Variance
Score

Mean Absolute Error Coefficient of
Determination

Mean Squared Error

Ridge Regression 0.2334 0.0599 0.7967 0.0591 0.9421
Random Forest 0.2323 0.0613 0.8016 0.0601 0.9410
Gradient Boosting 0.2310 0.0603 0.8013 0.0591 0.9420
k-Nearest Neighbor 0.1223 0.0019 0.8233 -0.0012 1.0021
Kernel Ridge Regression 0.2256 0.0561 0.8011 0.0550 0.9461
Deep Learning 0.1911 0.0374 0.8080 0.0363 0.9648

(cf. Supplementary Table 11)

Table 3. Benchmarking analysis of different machine-learning algorithms regarding out-of-sample prediction from white matter
microstructure.

Pearson’s r Explained Variance
Score

Mean Absolute Error Coefficient of
Determination

Mean Squared Error

Ridge Regression 0.2261 0.0562 0.7954 0.0551 0.9394
Random Forest 0.2186 0.0552 0.7949 0.0539 0.9319
Gradient Boosting 0.2202 0.0559 0.7944 0.0546 0.9312
k-Nearest Neighbor 0.1395 0.0099 0.8140 0.0077 0.9775
Kernel Ridge Regression 0.2222 0.0553 0.7927 0.0541 0.9318
Deep Learning 0.1980 0.0406 0.7969 0.0393 0.9464

(cf. Supplementary Table 12)

other SES dimensions were regressed onto these brain-
imaging-derived measurements. The pooled regularized
loss for multi-output learning was minimized using the
coordinate descent solver.

The input brain phenotypes were either 111 region
volume measures from the Harvard-Oxford atlas or 48
fiber tract microstructural measures from the Johns Hop-
kins atlas (Miller et al. 2016; Alfaro-Almagro et al. 2018)
(cf. above). This analysis scenario implies joint estima-
tion of p = 111 + number of control variables or p =
48 + number of control variables, respectively. As pre-
liminary de-confounding procedure, any (linear) varia-
tion in these brain phenotypic measures that could be
explained by variation in head size or body mass index
was removed from the brain variables before submit-
ting these variables to the model of interest, following
previous UKBB research (Kernbach et al. 2018; Kiesow,
Spreng, et al. 2020). Before estimation of the pattern-
extraction model, each input and output variable was z-
scored across participants by de-meaning to zero average
and unit-variance scaling to one.

To improve the statistical quality of the parameter
weights learned by the pattern-learning algorithm, we
derived population confidence intervals around each
model parameter value using an instance of bootstrap-
ping aggregation (Efron and Tibshirani 1994). In each of
100 bootstrapping iterations, we have resampled among
the ≈10,000 UKBB participants a bootstrap dataset with
the same number of participants. Based on each of these
drawn bootstrap datasets, the identical multi-output
algorithm fitting procedure was repeated. This analysis
yielded 100 candidates for each parameter value that we

have averaged across participants to obtain a more solid
final multi-output modeling solution.

Nonparametric permutation procedure to test
for significant regional effects
We determined the statistical significance of each
region-SES and each tract-SES population association
by means of nonparametric perturbation testing. The
impact of a given set of brain phenotypes, either gray
matter volumes or white matter tract microstructure,
on associations with SES dimensions was isolated by
shuffling the participants set of 6 SES measures. This
randomization issued a perturbed set of unrelated brain
phenotypes and SES measures to selectively destroy the
correspondence of brain region or tract variation with
the SES dimension across participants.

A compilation of 1,000 such perturbed datasets was
thus generated from the original participant sample.
In each of the 1,000 perturbed versions of the origi-
nal dataset, the identical multi-output ridge regression
pipeline was carried out and evaluated in the same fash-
ion. Relying on minimal modeling assumptions, a valid
empirical null distribution was derived for the brain phe-
notype parameters obtained from multi-output regres-
sion analysis. In 1,000 permutation iterations, the matrix
of brain phenotypes was held constant, while the sets
of SES measures were subject to participant-wise ran-
dom shuffling. The permuted surrogate data preserved
the statistical structure idiosyncratic to the volumetric
or diffusion MRI signals, respectively. Yet, this empir-
ical null model permitted to selectively eliminate the
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signal property related to the brain’s association with
SES measures to be tested (Efron 2012). The thus gener-
ated distribution reflected the null hypothesis of absent
association between brain region/tract variation and SES
traits across individuals. P-values were obtained based on
counting the number of times that the original (bagged,
cf. above) model parameter values were smaller or bigger
than those estimated from the null multi-output model,
where multiple comparisons were explicitly taken into
account by searching through a space of multi-output
algorithm solutions [all P < 0.001, family-wise error cor-
rected (Kernbach et al. 2018; Karrer et al. 2019; Spreng
et al. 2020)].

Functional profiling of the structural brain
patterns underlying SES
To obtain a data-driven functional characterization of
the spatial pattern of derived brain-SES associations,
we capitalized on the Neurosynth resource. This is one
of the largest existing repositories of functional brain-
imaging results with rich experimental descriptions
(see Supplementary Table 14 for list of 123 terms).
We obtained probabilistic measures of the association
between our gray matter atlas (cortical and subcortical
regions, cf. above) and terms of neurocognitive processes
from Neurosynth. This meta-analytic tool synthesized
results from >15,000 published functional brain-imaging
studies by searching for high-frequency key words
(such as “pain” and “attention”) that are published
alongside standardized coordinates of neural activity
responses [https://github.com/neurosynth/neurosynth
(Yarkoni et al. 2011)]. Neurosynth measured associations
as the probability that a given term is reported in a
brain-imaging experiment if neural activity changes
are observed at a given brain location. The approach is
based on the co-occurrence that certain brain areas are
frequently mentioned in conjunction with certain words.
We focused primarily on cognitive function and therefore
limited the terms of interest to cognitive and behavioral
terms rather than clinical or diagnostic concepts. These
terms were aligned with the Cognitive Atlas, a public
ontology of cognitive science (Poldrack et al. 2011),
resulting in 123 terms ranging from umbrella terms
(e.g. “attention,” “emotion”) to specific terms of cognitive
processes (e.g. “visual attention,” “episodic memory”),
behaviors (e.g. “eating,” “sleep”), and emotional states
(e.g. “fear,” “anxiety”) (Supplementary Table 14). The
location-by-term associations reported by Neurosynth
were parcellated into 111 cortical and subcortical
regions (see above), yielding a region-by-term matrix
that quantitatively represents how regional functional
activity is related to mental processes.

Parcellated data from Neurosynth were correlated
with brain-wide parameter estimates for each SES
variable. That is, each column of the location-by-term
matrix obtained from Neurosynth was independently
correlated with the regional parameter values generated
from our multi-output SES model. Correlations highlight

the spatial overlap between functional activations
associated with a given cognitive term and the obtained
whole-brain correlates of SES.

Scientific computing implementation
Python was selected as the scientific computing engine.
Capitalizing on its open-source ecosystem helps enhance
replicability, reusability, and provenance tracking. The
scikit-learn package provided efficient, unit-tested imple-
mentations of state-of-the-art machine learning algo-
rithms (http://scikit-learn.org/). This general-purpose
machine-learning library was interfaced with the nilearn
library for design and efficient execution of brain-
imaging data analysis workflows (http://github.com/
nilearn/nilearn).

Results
Several indices of SES tell rich and
complementary stories
To assess complementary perspectives on how UK
Biobank participants are positioned in the social hier-
archy, we have mapped a portfolio of six different SES
measures to the brain (Oakes and Rossi 2003). Our UKBB
sample comprised 48% men and 52% women who were
aged 40–70 years at recruitment, with British (92%), Irish
(3%), other white (2%), or other ethnic (3%) background.
More details on the population characteristics are openly
accessible to anybody elsewhere (https://biobank.ndph.
ox.ac.uk/showcase/). Following previous studies on the
UKBB population cohort (Tyrrell et al. 2016), we have built
on the participant profiling including 6 indicators of SES
(see methods section for further details).

In initial exploratory steps, we conducted descriptive
summaries of these demographic and lifestyle indicators.
These preparatory analyses quantified the degree to
which the examined sources of population variation
carry partly separate information that underlies an
individual’s SES profile (Fig. 1). At the behavioral level, all
pairwise Pearson correlation coefficients were computed
for the 6 target dimensions of SES. We thus assessed
the strength of linear association between each possible
combination of 2 SES indicators. All pairwise index-index
relations yielded a certain extent of linear relation, but
all with a Pearson’s � < 0.5. In other words, the 6 target
SES measures were far away from being identical. Yet,
these trait markers carry a certain degree of shared
information as evidenced by the estimated Pearson
correlation coefficients.

Next, we interrogated how combinations of multiple
SES indicators may show driving effects in decomposing
the SES construct as measured in UKBB participants. We
computed a mixture deconvolution of the 6 examined
SES dimensions by means of principal component anal-
ysis (Supplementary Fig. 1). The overall variance across
the SES indicators was largely explained by distinct latent
principal dimensions of variation that mostly involved
dominant contributions from single SES indicators. The

https://github.com/neurosynth/neurosynth
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Fig. 1. Mutual relationships between different indicators of SES. This
exploratory analysis in 10.000 UK biobank participants shows that
socioeconomic traits relate to a complex constellation of social,
demographic, and financial aspects. Pearson’s correlation shows that
these factors are moderately interrelated. The behavioral markers thus
capture largely complementary aspects of an individual’s standing in
society (Farah 2018). A negative relation between the indices of higher
degree and education years is expected since education years only count
time in school (not college or university) (see Materials and Methods
section). The color tones indicate Pearson’s correlation coefficients �. All
index–index relations yielded a � < 0.5. These descriptions thus indicate
that our SES dimensions involve mostly specific, but also a degree of
shared variation across participants. For mixture deconvolution of joint
and distinct information in the SES indicators, see Supplementary Fig. 1.

most prominent joint variation was identified by this
matrix decomposition technique between income and
several other SES indicators (32.2% explained variance).
The second most explanatory pattern made apparent
joint variation between the number of education years
and the achieved highest degree (22.2% explained vari-
ance). The third pattern highlighted especially opposite
variation for neighborhood and job type (15.4% explained
variance). Each of the first 5 patterns discovered from the
set of SES indicators explained at least 10% of the overall
variation (for full details see Supplementary Fig. 1). As
such, this second descriptive analysis confirmed that
no 2 indicators carried identical or largely redundant
information about the SES of the UKBB participants.

Taken together, this preliminary exploration of our tar-
get SES dimensions in the participants of the 10,000 UKBB
release invigorated that the 6 measures tell rich and
partly separate stories about how the participants differ
in their socioeconomic standing in society. This behav-
ioral finding suggests specific brain correlates and a
coherent joint pattern of SES dimensions that are robust
at the population level.

Differences in SES indices are linked to gray
matter morphology
We sought to simultaneously probe association with 6
SES dimensions in an integrated modeling framework
(Rahim et al. 2017; Bzdok and Meyer-Lindenberg 2018).
For this purpose, we brought to bear a supervised algo-
rithm to extract principled patterns from variation in
gray matter volume from 111 target regions (Harvard-
Oxford atlas). This multi-output learning algorithm (i.e.

L2-penalized multi-task learning, see methods section
for details) allowed us to tease apart coherent multivari-
ate patterns of how the set of brain features are related
to the 6 SES dimensions in a single modeling process (see
methods section).

This analytical approach showed that the SES dimen-
sions were significantly (P < 0.001) associated with gray
matter variation in both cortical and subcortical regions
(Fig. 2; Supplementary Figs 2 and 3, Supplementary
Tables 2–4). The cortical regions with relevant asso-
ciation strengths tapped on all four major lobes of
the cerebral cortex, as well as both the left and right
hemisphere. The subcortical regions with robust links to
interindividual differences in SES dimensions included
the caudate nucleus and brainstem.

Several gray matter regions were consistently asso-
ciated with more than 1 of the 6 SES determinants.
For instance, a brain-SES association was evident for
the volume of the left caudate nucleus that was posi-
tively related to degree (0.077 ± 0.048/0.109 [5%/95% con-
fidence interval formed based on 100 participant resam-
pling iterations by means of the bootstrap]) and education
(0.075 ± 0.035/0.119). As another example, the left tem-
poral pole showed a positive SES association with both
degree (0.058 ± 0.035/0.084) and job (0.046 ± 0.016/0.075).

Differences in SES indices are linked to white
matter microstructure
In analogous fashion, we subsequently deployed the
supervised multi-output learning algorithm on pop-
ulation variation in microstructural properties (mean
fractional anisotropy) in 48 target white matter tracts
(Johns Hopkins University atlas). The investigated SES
dimensions showed a rich pattern of association with
interindividual variation of major white matter tracts.
The brain-SES associations that achieved statistical
significance (P < 0.001) included anatomical connections
of the brain, such as tracts between cerebrum, dien-
cephalon, and cerebellum (Fig. 3, Supplementary Fig. 3,
Supplementary Tables 5–7). Similar to our findings in
gray matter (cf. above), the brain-SES associations
revealed a differentiated spatial pattern spread across
both brain hemispheres. Moreover, SES dimensions
revealed significant effects in several kinds of anatomical
white matter tracts, which included association, com-
missural, and projection fibers (Supplementary Table 7).

In particular, several fiber tracts were associated
with more than one SES factor, similar to our region
associations with SES (cf. above). For instance, frac-
tional anisotropy of the right cingulum was nega-
tively linked to income (−0.057 ± −0.081/−0.032 [5%/95%
confidence interval formed based on 100 participant
resampling iterations by means of the bootstrap]) and
job (−0.069 ± −0.097/−0.038). As another example, brain-
SES associations became apparent between fractional
anisotropy of the anterior limb of the left internal capsule
for income (−0.081 ± −0.110/−0.053) and vehicle count
(−0.066 ±−0.100/−0.034). Moreover, the right posterior
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Fig. 2. Population variability in SES shows imprints in regional gray matter morphology. Supervised learning algorithms identified a variety of
multivariate patterns between 111 gray matter regions and SES indicators. These brain–behavior associations (all significant at P < 0.001, after
explicitly considering multiple comparisons) uncovered both positive (red) and negative (blue) direction. Certain regions, including the left caudate
and left temporal pole in particular, were associated with several SES determinants. These brain manifestations uncover similarity and idiosyncrasies
between the six examined SES indicators. The color bar represents z-scores. R/L = right/left hemisphere. For full effect sizes and bootstrap uncertainty
intervals used to assess significance, see Supplementary Tables 2–4.

thalamic radiation also demonstrated 2 positive brain-
SES associations for degree (0.088 ± 0.056/0.121) and
neighborhood level (0.072 ± 0.038/0.103).

Taken together, a brain-wide pattern of gray matter
regions and white matter tracts was reliably linked to
more than 1 of the examined SES dimensions. Notably,

there was no single region or major fiber tract that we
observed to be associated with one SES variable in one
direction and with another SES variable in the opposite
direction. In other words, all our findings in architectural
features of gray and white matter were directionally
consistent. These brain-imaging findings complement
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Fig. 3. Population variability in SES reverberates in white matter tract
microstructure. Supervised learning algorithms revealed associations in
positive (red) and negative (blue) direction specific to SES indicators
across 48 white matter tracts. The identified links to SES involved
association, commissural, and projection fibers (all statistically
significant at P < 0.001, after explicitly considering multiple
comparisons). Three fiber tracts (right cingulum and posterior thalamic
radiation, left internal capsule) were robustly associated with multiple
SES dimensions. Analogous to our gray matter findings (Fig. 2), these
brain substrates of SES in white matter corroborate a complementary
composition of single SES dimensions. The color bar represents z-scores.
R/L = right/left hemisphere. For full effect sizes and bootstrap
uncertainty intervals used to assess significance, see
Supplementary Tables 5–7.

our exploratory analyses of the distinctness and com-
monality within SES dimensions in our UKBB participant
sample (see above). In line with this, the distributed pat-
tern of these associations highlights distinct, but partly
overlapping brain signatures of SES dimensions.

Hemispheric asymmetry characterizes the brain
representation of SES
The distributed pattern of brain-SES associations was
suggestive of a global motif of lateralization effects.
Among all gray matter regions in our atlas, the caudate
nucleus, frontal pole, posterior parahippocampus, as well
as the subcallosal cortex showed associations with SES
in both brain hemispheres. Yet, all of these associations
turned out to be positive in the left brain but negative in
the right brain (cf. Supplementary Tables 2–4). As such,
positive SES associations in brain features appeared to
dominate in the left hemisphere. In contrast, negative
SES associations appeared to dominate in the right
hemisphere.

Therefore, we directly examined the possibility of a
coherent brain-wide lateralization pattern in SES using
dedicated statistical tests (Supplementary Fig. 3). Indeed,
we confirmed systematically more positive than negative
SES association counts with cortical gray matter regions
in the left hemisphere and a diametrically opposed pat-
tern of brain-SES associations for the right hemisphere
(χ2 = 4.991; df = 1; P = 0.025). This hemispheric lateral-
ization effect did not reach statistical significance in
anatomical fiber tracts (χ2 = 0.202; df = 1; P = 0.653) in this
approach.

In a second post-hoc analysis of the obtained multi-
output modeling solution, we examined more closely
the obtained SES-related effect sizes and parameter
uncertainty in the left vs. right brain. To this end,
we quantified the extent of hemispheric asymmetry
in how the estimates of model parameter values
corresponding to specific gray matter regions and white
matter fiber tracts were associated with the 6 SES
measures (Supplementary Tables 2 and 5). Based on
continuous effect sizes, a consistent trend became
apparent for opposite regression weights in the left vs.
right hemisphere (Fig. 4). This observation was reliable
whether we included IQ as covariate in our multi-output
learning model or not. Moreover, the observation was
largely consistent across subanalyses of only cortical
regions, only subcortical regions, only fiber tracts, as well
as across the 6 examined SES dimensions (Fig. 4).

Across 2 complementary post-hoc inspections of
the obtained brain-SES associations, we ascertained
a global pattern of hemispheric asymmetry based on
measures of gray matter morphology and fiber tract
microstructure in the UKBB cohort. We add support
for a pattern of left–right asymmetry in brain-SES
associations when resorting to classical linear regres-
sion, without multi-output modeling and without l2-
penalization shrinkage (Supplementary Tables 8 and
9). This hemispheric asymmetry pattern was observed
again when applying classical linear regression to the
principal components derived from our 6 SES indicators
(Supplementary Tables 10 and 11). Moreover, we have
replicated the left–right asymmetry in 3 independent
samples of 10,000 new UK Biobank participants in an
external validation check (Supplementary Figs 4–8).
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Fig. 4. The left and right brain hemisphere relate to SES factors in
opposite ways. All main analyses in our study were based on
multivariate multi-output algorithms of six major determinants of SES
on brain atlas features. Separate pattern-learning analyses were
conducted to explain the SES dimensions based on either a) gray matter
volumes of 111 cortical and subcortical regions (Harvard-Oxford atlas;
Fig. 2) or b) microstructure of 48 white matter tracts (Johns Hopkins
University atlas; Fig. 3). After model building, the formed estimates for
the model parameters were summarized for interrogation of systematic
interhemispheric effects. To this end, we computed Pearson’s
correlation coefficients across the (bootstrap-uncertainty-adjusted)
model parameters of brain features that are homologous in the left vs.
right brain (x-axis). This post-hoc aggregation across the computed
models uncovered notable anti-correlation in the associations of how
left-sided and right-sided brain features are linked to interindividual
variation in SES. Our observation of hemispherically differentiated
brain-SES correspondence held up when considering a) all regions
(darkest red tone), b) only cortical regions, c) only subcortical regions,
and d) only fiber tracts (lightest red tone). When restricting attention to
statistically significant brain-SES associations, rather than the spatial
distribution of the full effect sizes, we substantiated evidence for a
distributed brain asymmetry pattern of SES (Supplementary Fig. 4).

Functional profiling of the brain manifestation of
SES indices
To annotate the delineated relationship between the
brain imprint of SES and mental processes, we have built
on the Neurosynth database. We obtained probabilistic
measures for the degree to which specific terms (such
as “attention,” “emotion,” and “sleep”) are functionally
linked to specific brain regions (Yarkoni et al. 2011). These
ensuing quantities reflect how often specific ontological
terms and brain locations have co-occurred in thousands
of published research articles. We hence assessed the
correlation of the SES-related brain patterns against the
individual term maps from this database (Fig. 5).

Across the interrogated 6 SES indices, functional anno-
tations from Neurosynth with large positive loadings
were related to mental skills or skills development
(e.g. “consolidation,” “expertise,” “mental imagery,”
“rehearsal,” or “strength”). Negative term associations
included attention- and working-memory-related capac-
ities (e.g. “visual attention” and “focus”), but also manage-
ment of interpersonal relationships (e.g. “communica-
tion,” “competition,” “empathy,” and “facial expression”).
We made similar observations and conclusions when
computing the functional associations separately for
each brain hemisphere (Supplementary Fig. 9). We also
provide results after an additional partial regression

Fig. 5. Functional annotation of how SES is linked to the measures of
brain architecture. A large-scale database of brain-imaging
experiments—Neurosynth—was queried for co-occurrence with
ontological terms that map onto the derived gray-matter-wide patterns
of SES associations. We computed the similarity between a given term’s
functional activity patterns and the obtained brain correlates of SES
(red/blue = positive/negative correlation, range = [−0.3, 0.3]). Word size
represents the relative magnitude of each brain-concept association. We
have also performed this meta-analytic profiling analysis separately for
each hemisphere (Supplementary Fig. 9) and for variation unique to
each SES dimensions (Supplementary Fig. 10).

step to elucidate that meta-analytic associations that
are uniquely or specifically explained by 1 of the 6
SES measures (Supplementary Fig. 10). Taken together,
SES-related patterns of gray and white matter were
associated with behavioral functions involving mental
focus, social competence, and competitive drive.
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Discussion
In human societies, and those of other primates, indi-
viduals of low SES are more vulnerable to mental and
physical disease (Sareen et al. 2011; Stringhini et al. 2017).
Individuals of high SES and of low SES are known to
diverge in their behavioral repertoire and daily lifestyle
choices. Such predispositions and tendencies have deep
consequence for well-being and life trajectories (Denney
et al. 2014). The present study focused on the ≈10,000
UK Biobank release to carefully delineate the relationship
between socioeconomic position and human behavior. By
developing a multivariate multi-output pattern-learning
framework, we have detailed how key SES indicators are
reflected in brain architecture, as measured by variation
in regional brain volume and fiber tract microstructure.
The core insight from our analysis is that SES aspects are
reflected in both gray matter volume and white matter
integrity in a diametrically opposite way in both brain
hemispheres.

Broadly, a convergent spatial distribution of asymme-
try effects emerged across all the identified SES mani-
festations in the brain. It is important to keep in mind
that SES is not a monolithic term in our study. The brain-
SES associations revealed a global pattern of left–right
asymmetry that became consistently apparent for each
of the examined 6 SES dimensions. Individuals in the
upper SES echelons tended to have larger brain volume
effects in several regions of the left brain and smaller
volume effects in several regions of the right brain; vice
versa for individuals of low SES. This observation of
left–right divergence in brain substrates explaining SES
also became apparent for subcortical brain regions for
most examined SES dimensions. In our white matter
analyses, we made the analogous observation for the
microstructure of anatomical fiber tracts. That is, indi-
viduals with higher socioeconomic standing tended to
showed stronger effects in microstructure measures in
fiber tracts in the left brain, whose homologues in the
right brain were weaker, and vice versa.

In contrast, the handful of existing brain-imaging
studies on SES have typically limited attention to the
frontal lobe (e.g. Tomarken et al. 2004; D’Angiulli et al.
2012; Vargas et al. 2020). In these earlier studies, left
hemisphere differences were repeatedly discussed in
the context of language and semantics capacities.
However, some brain-imaging studies showed that left-
hemisphere effects in SES remained significant after
controlling for language test performance (Raizada et al.
2008). Such residual effects were for instance shown
in the left inferior frontal gyrus including Broca’s area.
Instead, right hemisphere differences in SES studies were
frequently discussed in the context of immunosuppres-
sion, cortisol levels, neighborhood deprivation, as well as
stress exposure and health disparity (Lewis et al. 2007;
D’Angiulli et al. 2012; Hanson et al. 2012; Vargas et al.
2020).

The here-discovered brain signature is consistent
with the interpretation of a reduced degree of brain
lateralization in individuals placed in the lower layers
of society. This speculation is motivated from reanal-
ysis of neuropsychological tasks (Boles 2011). This
study confirmed that behavioral differences between
individuals of high and low SES are consistent with
prominence vs. paucity of hemispherically differentiated
task responses. The investigators revealed a consistent
relationship between SES and hemispheric asymmetry
as measured by lateral differences in dichotic listening,
tactile dot enumeration, visual emotion, and word
recognition. The findings were interpreted by the author
as being consistent with maturation delay or reduced
hemispheric specialization in groups of lower SES (Boles
2011).

Given the copious sample size (n ≈ 10,000) in the
present investigation, our findings can be expected to
be fairly robust. A previous meta-analysis of 11 small-
sample studies, each with less than 300 participants,
indicated that high SES, as compared with low SES, is
linked to decreased volume of the left superior frontal
cortex and orbital frontal cortex (Yaple and Yu 2020).
The authors also linked high SES to increased gray
matter volume of left and right hippocampus as well
as of right precuneus. Another large-sample study
(n = 1099) has associated higher parental education (as
an indicator of higher SES) with increased hippocampal
volume in children and adolescents (Noble et al. 2015).
In addition, this population study reported that family
income specifically accounted for significant variation
in surface area in the bilateral inferior frontal, cingulate,
insula, and inferior temporal regions, as well as in the
right superior frontal and precuneus cortex. Several of
these reported regions are implicated in language-related
processing and executive functioning (Noble et al. 2015).
These early hints from previous SES studies are mostly
based on single parental or subjective SES measures.
This circumstance may explain some discrepancy from
our own results. These findings, however, overlap with
our results in that we confirm the left hippocampus
to be associated with income. Moreover, our findings
are in line with other previous reports that have found
a relationship of SES with the microstructure of the
fornix and cingulum bundle (Ursache et al. 2016; Dufford
and Kim 2017). Extending this prior work, our multi-
trait and multi-tissue analyses confirmed SES-sensitive
features of brain architecture and extended them to the
population level.

More specifically, anatomical variation in the caudate
nucleus and temporal pole regions and in the posterior
thalamic radiation tract here showed a positive relation
to 2 of the SES dimensions education degree and
neighborhood level. An exhaustive review of cognitive
functions supported by the caudate nucleus concluded
(Grahn et al. 2008) that this brain region is implicated
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in exciting correct action schemas and in selecting
appropriate sub-goals based on an evaluation of action-
outcomes, in addition to its commonly mentioned role in
motor function. This SES-related region may be involved
in neurocognitive processes that are fundamental to the
successful pursuit of short-term tactics and long-term
strategies (Grahn et al. 2008).

Additionally, neurological lesion studies and neuropsy-
chological studies in bilingual individuals also point to
the preferential implication of the left caudate nucleus
in the neural mechanisms underlying language selection
and control (Caplan et al. 1990; Zou et al. 2012). Much
of human education is intimately related to semantic
concepts and word choice and may thus explain a part of
our brain-SES associations. The left temporal pole, here
significantly associated with higher degrees and hav-
ing a knowledge worker (“white-collar”) job, is similarly
instrumental for realizing language capacities. This SES-
sensitive brain region is widely considered to be a func-
tional hub for semantics and concept comprehension
(Tsapkini et al. 2011). A review of the literature on both
nonhuman and human primates extends this suggested
role of the temporal pole to higher processes necessary
for social interaction. Such high-level functional involve-
ments go beyond semantic memory and imply relevance
of personal semantic memory by storage of perception-
emotion links (Olson et al. 2007), abstract cultural knowl-
edge, and “scripts” of adequate social behavior for the
variety of contexts of everyday life (Zahn et al. 2007).
Taken together, the socioeconomic position of individuals
is related to interindividual anatomical variation in brain
features that have been linked to neurocognitive pro-
cesses, which underlie goal-directed behavior, language
capital, and rules that provide a scaffold for everyday
social interplay.

Our meta-analytic query of the Neurosynth database
has linked the collective gray matter substrates of SES to
functional aspects of mental focus, social competence,
and competitive drive. The delineated structure–function
annotations substantiate earlier studies arguing that SES
differences mediate hemispheric asymmetry in a way
that impacts attentional performance and dealing with
motivational states (D’Angiulli et al. 2012). Such cere-
bral asymmetry, especially in the frontal lobe, can be
attenuated by acute and accumulated life stress, such as
due to traumatic experience (Carrion et al. 2001; Lewis
et al. 2007; Hanson et al. 2012). The size of this atten-
uation effect was found to be tied to poor health sta-
tus (Lewis et al. 2007), which is known to be linked to
low SES. Specifically, variation in structural and func-
tional brain asymmetry was thought to be driven by
early childhood stress (Carrion et al. 2001; Hanson et al.
2012). The conditions of early childhood experience are
itself influenced by socioeconomic conditions and mood
disorders of caretakers (Tomarken et al. 2004). Again, a
wide ranging restriction to the frontal lobe characterizes
many of these previously published accounts on SES
and brain lateralization. Our spatially impartial study

extends these previous cues in the neuroscience litera-
ture by showing that hemispheric asymmetry represents
an principled brain pattern with an intimate relationship
to what underpins success and status in society. Future
brain-imaging studies could take a step forward and
investigate more specifically to what extent hemispheric
asymmetry is associated with the degree of mental focus,
social competence, and competitive drive.

More broadly, as one previously proposed explanation,
hemispheric specialization might have been spurred by
hemispheric conduction delay (Ringo et al. 1994). Several
investigators have put forward that during evolution,
brain asymmetries may have developed as a biologi-
cal adaptation related to more efficient processing of
information (Corballis 2017). It has been argued that
aligning the direction of behavioral asymmetries in a
population may have arisen as an ‘evolutionarily stable
strategy’ under social selection pressures. This scenario
could have occurred when individual behavior needed
to be coordinated with the behavior of other organ-
isms, with asymmetrical specialization, of the same or
different species (Vallortigara and Rogers 2005): “Brain
and behavioral lateralization, as we know it in humans
and other vertebrates, may have evolved under basically
‘social’ selection pressures” (Ghirlanda and Vallortigara
2004). Additionally, brain asymmetry in humans has been
reported to be more variable than in apes (Neubauer et al.
2020). This finding may reflect increased anatomical
compartmentalization and functional modularization of
the human brain. More nuanced segregation of func-
tional brain organization could provide a scaffold for a
richer and more sophisticated behavioral repertoire.

In the light of present and previous research, there
may be evolutionary advantages to increasingly sophisti-
cated hemispheric specialization (Hartwigsen et al. 2021),
which may resurface as special relationships in how
the left and brain hemisphere are associations with SES
dimensions in the present study. However, there may
also be environmental influences correlated with SES,
which in turn factor into the development of hemispheric
specialization. Our findings would be consistent with
the idea that hemispheric asymmetry is related to SES
because the degree of hemispheric specialization has
been associated with better mental performance—the
extent of hemispheric asymmetry is probably an impor-
tant ingredient that distinguishes the human brain from
that of other animals (Hartwigsen et al. 2021). These col-
lective findings support the notion that brain asymmetry
may link to the aspects of socioeconomic disadvantages
or socioeconomic privilege.

In conclusion, by repurposing algorithmic tools for
mining the UKBB resource, we began to reveal the charac-
teristic brain-global imprint of SES in the wider society. As
the central conclusion from our structural brain-imaging
study, an individual’s socioeconomic position may res-
onate preferentially with patterns of brain lateralization
between both hemispheres. Several brain regions and
fiber tracts were robustly associated with SES indicators
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in the positive direction in the left brain and in the
negative direction in the right brain. This population-
level insight paves the way for future investigations into
the interplay of SES with the neural circuits that govern
human behavioral tendencies, daily choices, and their
long-term sequelae for health outcomes. Such studies
should employ a longitudinal design to scrutinize the
causal influence that SES exerts on brain structure and
function.
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