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Abstract When fixating on a stationary object, the power of the eye’s lens fluctuates.
Studies have suggested that changes in these so-called microfluctuations in accom-
modation may be a factor in the onset and progression of short-sightedness. Like
many physiological signals, the fluctuations in the power of the lens exhibit chaotic
behaviour. A breakdown or reduction in chaos in physiological systems indicates stress
to the system or pathology. The purpose of this study was to determine whether the
chaos in fluctuations of the power of the lens changes with refractive error, i.e. how
short-sighted a subject is, and/or accommodative demand, i.e. the effective distance
of the object that is being viewed. Six emmetropes (EMMs, non-short-sighted), six
early-onset myopes (EOMs, onset of short-sightedness before the age of 15), and six
late-onset myopes (LOMs, onset of short-sightedness after the age of 15) took part in
the study. Accommodative microfluctuations were measured at 22 Hz using an SRW-
5000 autorefractor at accommodative demands of 1 D (dioptres), 2 D, and 3 D. Chaos
theory analysis was used to determine the embedding lag, embedding dimension, limit
of predictability, and Lyapunov exponent. Topological transitivity was also tested for.
For comparison, the power spectrum and standard deviation were calculated for each
time record. The EMMs had a statistically significant higher Lyapunov exponent than
the LOMs (0.64±0.33 vs. 0.39±0.20D/s) and a lower embedding dimension than the
LOMs (3.28±0.46 vs. 3.67±0.49). There was insufficient evidence (non-significant
p value) of a difference between EOMs and EMMs or EOMs and LOMs. The major-
ity of time records were topologically transitive. There was insufficient evidence of
accommodative demand having an effect. Power spectrum analysis and assessment
of the standard deviation of the fluctuations failed to discern differences based on
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refractive error. Chaos differences in accommodation microfluctuations indicate that
the control system for LOMs is under stress in comparison to EMMs. Chaos theory
analysis is a more sensitive marker of changes in accommodation microfluctuations
than traditional analysis methods.

Keywords Accommodation fluctuations ·Chaos theory · Power spectrum ·Refractive
error

1 Introduction

Accommodation is the change in the effective power of the eye’s lens to bring an object
into focus on the retina. It iswell known that evenwhenfixating on a stationary object of
interest, the eye exhibits microfluctuations in accommodation. These fluctuations are a
few tenths of a dioptre inmagnitude and change at a rate of several Hertz (Charman and
Heron 1988, 2015). Since their first observation byCollins (1937),many investigations
have been carried out to determine what role, if any, they play in accommodation
control. It has been found that the magnitude of the fluctuations is correlated with the
objective depth of focus (Yao et al. 2010), and thatwhen the depth of focus is increased,
such as by a decrease in pupil size, there is a concomitant increase in the magnitude of
the fluctuations (Yao et al. 2010; Gray et al. 1993a, b; Stark and Atchison 1997; Niwa
and Tokoro 1998; Gambra et al. 2009). This increase is often attributed to an increase
in the magnitude of the low-frequency component (LFC) (<0.6 Hz). Owing to such
findings, it has been proposed that the accommodative system monitors the resulting
fluctuations in image contrast to help the eye stay in focus (Winn 2000). However,
there is still debate over the exact neurological control mechanism. Understanding
the nature of the control mechanism is of importance in myopia (short-sightedness)
research where changes in the accommodation system, such as in the variability of the
accommodative microfluctuations, have been implicated as a factor in myopia onset
and progression (Langaas et al. 2008; Langaas and Riddell 2012).

It has been found that accommodative microfluctuations are chaotic in nature
(Hampson and Mallen 2012; Sumida et al. 1994). Hence, chaos is a potential fac-
tor in the accommodation control mechanism. Despite the traditional meaning of the
word chaos, chaotic systems are described completely by underlying laws (Williams
1997). A marker of chaos is sensitivity to initial conditions, the so-called butterfly
effect. This effectively means that if there is a miniscule change in the initial condi-
tions, the resulting evolution of the system over time will be very different. Chaos
exists everywhere in nature, from the dynamics of the weather to the heartbeat. Chaos
is advantageous for physiological systems as it allows for complex output behaviour
using a low number of input variables (Skinner 1994). Several studies have found
that the breakdown or reduction in chaos in physiological signals, such as the heart-
beat, is indicative of stress to the system and pathology (Poon and Merrill 1997; Su
et al. 2008; Yeragani et al. 2002; Rao and Yeragani 2001). Furthermore, chaos theory
analysis has been found to be a more sensitive marker of changes in the dynamics of
physiological signals than methods such as power spectrum analysis (Yeragani et al.
2002; Hampson et al. 2013), which is commonly used to analyse the accommoda-
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tive microfluctuations (Monticone and Menozzi 2011). For example, Hampson et al.
(2013) used adaptive optics to correct for fluctuations in visual blur owing to defo-
cus fluctuations. They found that this correction resulted in a decrease in chaos in
the accommodation microfluctuations. Changes were not detected when analysing the
power spectra of the accommodation signals, however.

The aim of this experiment was to determine whether refractive error and/or accom-
modative demand affects the level of chaos in microfluctuations in accommodation.
The data were also tested for topological transitivity, which is another marker of chaos.
The power spectra and standard deviation of the microfluctuations were also deter-
mined for comparison.

2 Method

2.1 Subjects

Eighteen subjects took part in the study and were classified by their mean spherical
equivalent refractive error (SER, sphere + 1/2 cylinder) and age of onset ofmyopia. The
cut-off age separating early-onset versus late-onset myopes was 15 years (McBrien
and Millodot 1986). Six emmetropes (EMMs, mean SER +0.30± 0.16 D), six early-
onset myopes (EOMs, mean SER−4.71±1.58 D), and six late-onset myopes (LOMs,
mean SER −1.79 ± 0.75 D) were recruited from the student cohort of the School
of Optometry and Vision Science, University of Bradford. Subjects gave informed
consent, and the study was conducted in accordance with the Declaration of Helsinki.
Ethical approval was granted by the Institutional Ethical Committee. The median age
of each refractive group was 23, 21.5, and 27 years for the EMMs, EOMs, and LOMs,
respectively. All subjects were free from ocular pathology and required cylindrical
refractive error corrections of ≤0.50 D. All myopic observers were habitual contact
lens wearers and wore their ultra-thin spherical soft contact lens correction throughout
the experiment.

2.2 Instrumentation

Accommodation microfluctuations were measured using the SRW-5000 autorefractor
(Grand Seiko Co. Ltd, Hiroshima, Japan) which was modified to allow for continuous
recording of accommodation at a sampling rate of 22 Hz, whilst retaining the ability
to measure static refractive error (Wolffsohn et al. 2001). The experimental set-up
is shown in Fig. 1. The fixation target was a high contrast (90%), black and white
Maltese cross, subtending 1.5◦ visual angle at the eye and viewed via a +5.00 D
Badal lens system. The target was viewed in open view via a hot mirror that is part of
the instrument. This mirror transmits visible light from the target. The infrared beam
responsible for measuring accommodation is reflected by the hot mirror into the eye
and returns via the same path. The mechanics of the set-up facilitated the presentation
of target vergences of−1.00,−2.00 and−3.00D to stimulate accommodation. Hence,
the accommodative demands were 1.00, 2.00, and 3.00 D. The target vergence was
changed manually between trials. Subjects were instructed to focus on the centre of
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Fig. 1 Experimental set-up. The target is viewed via a hot mirror which transmits visible light. The infrared
light used for measuring the accommodation fluctuations is reflected into the eye via the hot mirror

the target and to ‘keep it clear’ at all times, i.e. as sharp as possible (Stark and Atchison
1994). For each subject, 20 s of accommodation data was recorded at each of the three
accommodative demands. The order of testing was randomised.

3 Analysis

3.1 Blink Removal

Any changes in accommodation of ≥0.45 D between consecutive readings were
deleted. This equates to a change in accommodation velocity of >10 D/s, which
is believed to be the maximum accommodation velocity (Campbell and Westheimer
1960). The deleted data were replaced by the average accommodation reading of the
300 msec prior to the blink.

3.2 Chaos Theory Analysis

Amarker of chaos, i.e. sensitive dependence on initial conditions, is a positive largest
Lyapunov exponent (LE) (Rosenstein et al. 1993). The LE describes how the dis-
tance between nearby trajectories in phase space changes exponentially over time.
All processing was carried out using custom written code in MATLAB (MathWorks,
Massachusetts, USA). Prior to the calculation of any parameter associated with chaos
theory analysis, the linear trend in the data was removed (Williams 1997).

3.2.1 Phase Space Reconstruction

Phase space is effectively a plot in which each axis represents a variable.When record-
ing a single variable over time, as is commonly the case, and is the case here, a
multi-dimensional plot is formed using lagged phase space (Liu 2010). Essentially,
the time course signal is broken down into overlapping segments separated by an
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embedding lag τ . Each segment is a ‘sub-series’ representing the values for that axis.
The number of axis is governed by the embedding dimension d. The resulting phase
space plot represents the dynamics of the system as it would be had each of the vari-
ables been known or measured. Using this method, a point, p(t), in a phase space with
d dimensions is given by

p(t) = [x(t), x(t + τ), . . . , x(t + (d − 1)τ )] , (1)

where the embedding lag τ = t0 + i�t , with �t being the time between frames (Liu
2010). The number of data points, nss, per sub-series is given by

nss = N − (d − 1) × i, (2)

where N is the total number of data points in the original time record and i is the
embedding lag in units of data points.

We determined the embedding lag using the first minimum of the mutual informa-
tion (Williams 1997). As illustrated in Fig. 2a, the mutual information is in effect a
correlation between the signal and a delayed version of itself. A schematic of obtaining
a multi-dimensional phase space plot based on the determined lag is shown in Fig. 2b.
In the example shown, the embedding dimension is two. For two time series x and y,
the mutual information is given by
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Fig. 2 Principle of obtaining a multi-dimensional phase space plot from a one-dimensional time series. a
The embedding lag is determined from the first minimum of the mutual information, which is three in the
example given. b The original time series and the portion of the signal used for each of the two axes to
obtain the phase space plot
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Fig. 3 Principle of obtaining the
correct embedding dimension.
The correct dimension is three in
the example shown. If the two
points are embedded in too low a
dimension, two in the example,
the points appear artificially
close
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, (3)

where PXY is the joint probability, and PX and PY are the marginal probabilities
(Williams 1997). To determine τ , the two time series are the original time series and
the lagged time series. Hence,

I (τ ) =
∑

x(t),x(t+τ)

P(x(t), x(t + τ)) log2

(
P(x(t), x(t + τ))

P(x(t))P(x(t + τ))

)
. (4)

I (τ ) was calculated for each accommodation record for a lag of i = 1−50 data
points.

To determine the correct dimension, the phase space plot is obtained for a number
of dimensions. The separation of neighbouring points is then calculated for each
dimension. If the dimension is too low, the points are artificially too close and referred
to as false nearest neighbours (FNNs) (Kennel et al. 1992). The correct dimension is
the one in which further increases in the dimension do not change the distance between
the majority of data points and so the number of FNNs falls below a given threshold.
An illustration of the effect of an incorrect and correct dimension is shown in Fig. 3.
A data point located in d-dimensional space is given by

p(t) = [x(t), x(t + τ), . . . , x(t + (d − 1)τ )] , (5)

and its nearest neighbour is given by

pNN(tNN) = [x(tNN), x(tNN + τ), . . . , x(tNN + (d − 1)τ )] . (6)

The distance between the points is

R2
d(p,pNN) =

d∑

k=1

[x(t + (k − 1)τ ) − x(tNN + (k − 1)τ )]2 . (7)
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The separation of points when the dimension increases by one is given by

R2
d+1(p,pNN) = R2

d(p,pNN) + [x(t + dτ) − x(tNN + dτ)]2 . (8)

Hence, the change in distance can be calculated as

√
R2
d+1(p,pNN) − R2

d(p,pNN)

R2
d(p,pNN)

= |x(t + dτ) − x(tNN + dτ)|
Rd(p,pNN)

. (9)

A point is considered a FNN if two conditions are satisfied:

√
R2
d+1(p,pNN) − R2

d(p,pNN)

R2
d(p,pNN)

> RTol, (10)

and
Rd+1

RA
> ATol. (11)

where RA is the standard deviation of the time series (Kennel et al. 1992). Condition
two prevents the number of FNNs rising again as d increases beyond the appropriate
dimension, owing to the fact that the nearest neighbour of a point may not necessarily
be the one closest to it. For a given dimension, the nearest neighbour of each point is
determined and Eqs. (10) and (11) are evaluated for each pair of points. The correct
embedding dimension is the value in which the number of FNNs falls below a given
threshold.

For each accommodation record, the percentage of FNNs was determined for d =
1 : 10. RTol was set to 15 (Su et al. 2008) and ATol was set to 5. The embedding
dimension was taken as the dimension in which the percentage of FNNs was ≤5%.

3.2.2 Lyapunov Exponent Calculation

TheLE represents the rate of exponential divergence (separation) of nearby trajectories
in phase space. Figure 4a shows a schematic example of the phase space plot for a
chaotic time series with an embedding dimension of two. The time evolution of the
separation (δ) of two nearby trajectories is also shown. Figure 4b shows the plot of
the natural logarithm of the divergences versus time for the series. For a chaotic time
series, there is an initial rise in the divergence of nearby trajectories. The slope of the
linear rise is the LE. The end of the linear rise is the limit of predictability. Beyond this
time the trajectories can be considered as effectively moving randomly with respect
to each other. For a time series consisting of noise there is no relationship between the
trajectories and so the plot is a continuous horizontal line (LE = 0). A periodic signal
also has a value of zero.

To calculate theLEweused the algorithmofRosenstein et al. (1993). This algorithm
is robust to noise and also suitable for small data sets. The divergence of trajectories
at a time t is given by

d(t) = CeLt, (12)
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Trajectory 1
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Fig. 4 Determination of the Lyapunov exponent for a series with an embedding dimension of two. a
Schematic of the divergence of nearby trajectories in phase space. b How the LE is obtained from the
separation of neighbouring trajectories over time. The LE is the slope of the natural logarithm of the
divergence of neighbouring trajectories over time. For a chaotic time series there is an initial rise in the
natural logarithm of divergence over time and so the LE is positive

where C is a constant and L is the largest Lyapunov exponent. The nearest neighbour
is found for each data point in the reconstructed phase space. In order to consider
the two points to represent two different nearby trajectories the neighbour has to be
separated in time by more than the average period of the time series. This is calculated
as the inverse of the mean frequency of the power spectrum (Rosenstein et al. 1993).
From Eq. (12), for the j th pair of neighbours, and time step i , the separation is

d j (i) = CeL(i�t), (13)

where �t is the time between frames. Hence

ln d j (i) = lnC + L(i�t). (14)

For each accommodation record, the left-hand side of Eq. (14) was evaluated for
i = 1 : 100. From this, a plot of the natural logarithm of divergence, averaged across
neighbours, versus time (i�t) was obtained (Rosenstein et al. 1993). For plots that
showed evidence of an initial linear rise, the data were fitted using two straight lines
given by

y1 = m1x(1, 2, . . . , n) + C1, (15)

and
y2 = m2x(n, n + 1, . . . , 100) + C2. (16)

n is the break-point time step, determined as the value which minimises

m2x(n) + C2 − (m1x(n) + C1). (17)

Hence m2 was determined as the LE, and (n�t) the limit of predictability.
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3.2.3 Transitivity

To confirm chaos, we also tested the accommodation records for topological tran-
sitivity using the recurrence plot and the method proposed by Hirata and Aihara
(2010). A recurrence plot is an image of a matrix consisting of ones and zeros. For
an index (i, j), which represent the time indices, if the separation of two points in
phase space is within a given threshold ε, the value is one. Otherwise the value is
zero. Hence, effectively a recurrence plot is a plot of all the pairs of times where
the trajectory revisits the same point in phase space. Hirata and Aihara have shown
that if the minimum, of the maximum plotted row for each column, is greater than
the maximum of the minimum plotted row for each column, then the phase space
is topologically transitive. The bottom left-hand corner of the matrix represents
(0,0).

There are a number of ways in which the threshold can be chosen for a
recurrence plot. One is to set the threshold to a value that gives a fixed den-
sity (recurrence rate) of plotted points (Hirata and Aihara 2010). When test-
ing for transitivity, too high a threshold value can result in false positives,
whereas too low a threshold can result in false negatives. Hirata and Aihara
have shown that the appropriate threshold depends on factors such as the noise
level in the signal and the length of the signal. As this is the first time tran-
sitivity of the accommodation microfluctuations has been studied, the threshold
value for the recurrence plot was chosen such that the recurrence rate was
50%.

3.3 Traditional Analysis

For comparison purposes the power spectrum was calculated for each measurement
record using the periodogram function in MATLAB, which is part of the MATLAB
signal processing toolbox. This calculates the power spectral density of a time series.
A Hanning window was used to reduce spectral leakage. Again the data were linearly
detrended as failure to do so results in artificially high power spectral densities at
low frequencies (Bendat and Piersol 2000). The area under the LFC (<0.6 Hz) and
high-frequency component (HFC) (1–2.3 Hz) were calculated. Prior to detrending, the
standard deviation of the fluctuations and the mean accommodation level were also
calculated for each record.

3.4 Statistical Analysis

All statistical analysis was carried out using SPSS (v.21, IBM). Bonferroni post hoc
testing was used in which the p value is adjusted for multiple comparisons. For exam-
ple, when comparing the microfluctuations across refractive groups, there are three
comparisons: EMM versus EOM, EMM versus LOM, and EOM versus LOM. In this
case, rather than a statistically significant difference being represented by p < 0.05,
a value of p < 0.05/3 is used.
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4 Results

4.1 Chaos Theory Analysis

Figure 5 shows an example of the chaos theory results for each processing step for
an LOM and 2 D accommodative demand. A mixed ANOVA looking at demand as
“within-subjects effect”, with refractive error group as “between-subjects effect”, was
calculated for the LE, embedding lag, embedding dimension, and limit of predictabil-
ity. The ANOVA tests revealed insufficient evidence that accommodative demand
had an effect (p > 0.05) for the LE, embedding lag, embedding dimension, and
limit of predictability. The analysis showed a statistically significant effect of refrac-
tive error on both the LE (p = 0.038, F = 4.084) and embedding dimension
(p = 0.014, F = 5.735). Post hoc analysis revealed that the EMMs had a higher
LE than the LOMs, 0.64 ± 0.33 versus 0.39 ± 0.20 D/s, (p = 0.015), but there
was insufficient evidence of a difference between EMMs and EOMs (p > 0.05/3)
or EOMs and LOMs (p > 0.05/3). In addition, the EMMs had a lower embedding
dimension than the LOMs, 3.28 ± 0.46 versus 3.67 ± 0.49 D/s, (p = 0.005). Again
therewas insufficient evidence of a difference betweenEMMsandEOMsorEOMsand
LOMs. Figure 6 shows the divergence plots averaged across accommodative demand
for each refractive group. The mean values for each parameter across refractive error
and accommodative demandwere: LE, 0.50±0.29D/s; embedding lag, 0.30±0.10 s;
embedding dimension, 3 (3.44±0.50); predictability 1.21±0.57 s. The results for each
refractive group averaged across accommodative demand are shown in Table 1. There
was insufficient evidence of a correlation between the average LE of each subject (i.e.
averaged across accommodative demand) and SER (p = 0.09).

Figure 7a shows examples of the recurrence plot for an EMM, EOM and LOM for a
3 D accommodative demand. Although some similarities were evident, in general we
found that each data record had its own unique recurrence plot. Topological transitivity
was confirmed in 37 out of 54 accommodation records (three demands for each of the
18 subjects). We investigated the effect of the recurrence plot density on whether
topological transitivity is detected. Figure 7b shows the minimum recurrence rate
needed for a record to test positive for topological transitivity. The plot shows the
average value for each refractive group for each demand and for each refractive group
across all demands. A mixed ANOVA revealed that the minimum recurrence rate
was affected by demand (p = 0.035, F = 3.754). Post hoc analysis revealed that the
thresholdwas higher for 1D than for 2D (p = 0.012), 52.8±16.1 versus 39.9±16.8%.
We found insufficient evidence of an effect of refractive error.

4.2 Traditional Analysis

Figure 8 shows the area under the LFC, area under the HFC, standard deviation, and
mean accommodation level, for each refractive group for each demand and for each
refractive group across all demands. A mixed ANOVA found insufficient evidence of
refractive error having an effect on the area under the LFC, the area under the HFC,
standard deviation of the fluctuations, and mean accommodation level (p > 0.05 in
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Fig. 6 Divergence plots for each refractive group averaged across all accommodative demands. Also shown
is the fit to each curve. The gradient of the linear rise is the LE. Circles indicate the limit of predictability

Table 1 Chaos parameters for each group averaged across accommodative demand

Parameter Refractive group

EMM EOM LOM All

Em. lag (s) 0.29 ± 0.11 0.31 ± 0.07 0.32 ± 0.13 0.30 ± 0.10

Em. dim. 3.28 ± 0.46a 3.39 ± 0.50 3.67 ± 0.49a 3.44 ± 0.50

Predict. (s) 0.96 ± 0.32 1.21 ± 0.43 1.46 ± 0.78 1.21 ± 0.57

LE (D/s) 0.64 ± 0.33a 0.46 ± 0.28 0.39 ± 0.20a 0.50 ± 0.29

a Indicates a significant difference between groups (p < 0.05/3)
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Fig. 7 a Recurrence plots for three subjects for a 3 D accommodative demand. White represents a value
of one. b Plot of the minimum recurrence rate for topological transitivity to test positive

all cases). There was an effect of demand (p = 0.012, F = 6.241), for the area under
the HFC only. Post hoc analysis revealed that the area under the HFCwas significantly
lower for 1 D in comparison to 2 D (p = 0.009). We found insufficient evidence of a
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Fig. 8 Results from the traditional analysis methods used to study changes in microfluctuations in accom-
modation. a Area under the LFC. b Area under the HFC. c Standard deviation. d Mean accommodation
level

Fig. 9 Effect of filtering on the LE. Asterisk represents statistically significant difference (p < 0.05/3)

correlation between the LE and the area under the LFC (p = 0.53), LE and the area
under the HFC (p = 0.06), LE and mean accommodation level (p = 0.09), or LE
and standard deviation (p = 0.08).

In order to determine the contribution of the LFC and HFC to the LE, we used a
Butterworth filter in MATLAB to remove either the LFC or HFC from the accommo-
dation record prior to calculating the LE. A Butterworth filter was chosen owing to
its constant amplitude across the frequencies of interest that the filter passes. Figure 9
shows the effect of filtering on the LE for each refractive group for each filter and
for each filter across all refractive groups. A mixed ANOVA revealed an effect of
filtering (p = 0.002, F = 10.039) and refractive error (p = 0.045, F = 3.842), but
not accommodative demand (p = 0.951, F = 0.050). There was also an interaction
between demand and refractive error (p = 0.018, F = 3.539). Post hoc analysis
revealed that filtering out the HFC resulted in a larger LE (0.74± 0.42 D/s) than both
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the unfiltered data [0.50 ± 0.29 D/s (p = 0.002)] and the data with the LFC filtered
out [0.44 ± 0.32 D/s (p = 0.005)]. There was insufficient evidence of an effect of
refractive error under post-hoc testing.

5 Discussion

In this paper, we determined the effect of refractive error and accommodative demand
on chaos in microfluctuations in accommodation. For comparison purposes, we also
used power spectrum analysis to ascertain any differences between the two methods
of analysis.

5.1 Chaotic Nature of Microfluctuations in Accommodation

The mean LE for each refractive group and accommodation demand was positive. We
also found that in the majority of cases, the accommodation records tested positive
for topological transitivity. Taken together, these results indicate that the microfluctu-
ations in accommodation are chaotic. Hence, there are underlying laws governing the
dynamics of the fluctuations. It was found that the EMMs had a statistically signifi-
cant higher LE and lower embedding dimension than LOMs. There was insufficient
evidence (p > 0.05) of a difference between refractive groups for the embedding lag
and limit of predictability. An effect of accommodative demand was also not evident.
As a reduction in the LE and increase in embedding dimension in systems such as the
heart indicate stress or disease (Su et al. 2008; Yeragani et al. 2002; Rao and Yeragani
2001; Hampson et al. 2013), this suggests that the accommodation system of LOMs
is under stress. It is interesting to note that although not statistically significant, the
mean values of the chaos parameters for the EOMs fall between that of the EMMs and
LOMs for the LE and embedding dimension, as well as the embedding lag and limit
of predictability. Differences in the magnitude of the refractive error of the groups are
not sufficient to explain the differences between the changes in chaos. For example,
the EOMs had on average the biggest refractive error of the groups yet the LE fell
between that of the EMMs and LOMs. Furthermore, we found insufficient evidence
of a correlation between SER and the LE.

By increasing the recurrence rate beyond the chosen value of 50%, all accom-
modation records became topologically transient. When investigating the minimum
recurrence rate necessary for a given accommodation record to test positive for topo-
logical transitivity, we found a statistically significant effect of demand, but not
refractive error. The threshold recurrence rate for 2 D was lower than that of 1 D.
This could reflect changes in the statistical properties of the accommodation system
(Leahy et al. 2010), such as reduced noise at 2D. Futureworkwill involve investigating
this further.

Advantages of chaos as a control strategy of physiological systems are that the
system is able to easily adapt to changes in the environment. It may be that LOMs
have a less adaptable accommodation system. The results from this study will aid
in the development of models of accommodation microfluctuations and changes in
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myopia. For example, an embedding dimension of three indicates that there are of the
order of three variables that control the microfluctuations in accommodation.

5.2 Comparison with Previous Studies

The value of the LE and other phase space reconstruction parameters, i.e. embedding
lag, embedding dimension, and predictability, found here are similar to those found
in other studies which analysed microfluctuations in accommodation (Hampson and
Mallen 2012, 2013; Sumida et al. 1994;Hampson et al. 2013; Iwase andMurata 1999).
Although the LE and embedding dimension were found to be different for LOMs,
using the traditional analysis methods of power spectrum analysis and the standard
deviation did not reveal any refractive error differences. Day et al. for example found
a significant effect of refractive error on the powers of the LFC and the standard
deviation of the fluctuations. They found that the LFC power increases more rapidly
with accommodative demand for EMMs and EOMs, in comparison to LOMs, and that
the standard deviation of the fluctuations is higher in LOMs (Day et al. 2006).

One explanation for finding insufficient evidence of a difference in this study with
regard to the LFC may be the way in which the data were processed. Here the linear
trend was removed prior to processing the data. Failure to remove a linear trend results
in an artificial increase in the power spectrum for low frequencies (Bendat and Piersol
2000). We reprocessed the power spectrum data without removing the linear trend and
found that there was still insufficient evidence of an effect of refractive error, however.
Interestingly, when the linear trend is not removed, we find the effect of demand
becomes statistically significant for the area under the LFC as in other studies, e.g. Day
et al. (2006). Another possible explanationmay simply be that the subjects in this study
did not have detectable significant differences in their power spectrum (or standard
deviation). It has been shown that these measures vary greatly between subjects (Harb
et al. 2006). Insufficient evidence of a difference in the power spectrum (and standard
deviation) found here suggests chaos theory analysis is potentially a more sensitive
marker of differences in accommodation function between refractive groups. This has
been shown to be the case when determining the effect of adaptive optics correction
of blur on microfluctuations in accommodation (Hampson et al. 2013) and also when
studying other physiological signals such as the heartbeat (Yeragani et al. 2002).

5.3 Potential Origin

A potential contributor to the chaotic dynamics is the heartbeat. The healthy heartbeat
is itself chaotic (Sharma 2009), and several studies have shown that the HFC of the
microfluctuations in accommodation is correlated with the heartbeat; see, for example,
Winn et al. (1990), Collins et al. (1995), van der Heijde et al. (1996). Although the LFC
region is considered to be part of the accommodation control system, part of this region
is correlated with respiration and fluctuations in instantaneous pulse rate (Collins et al.
1995; van der Heijde et al. 1996). Both respiration and fluctuations in instantaneous
pulse rate are chaotic (Poon andMerrill 1997; Su et al. 2008; Yeragani et al. 2002; Rao
and Yeragani 2001; Donalson 1992). We found that filtering out the HFC increases the
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level of chaos in the accommodative microfluctuations and so the presence of the HFC
potentially adversely affects the accommodation system. However, care must be taken
when analysing a chaotic signal that has been filtered as it has been shown that this can
distort the phase space plot and result in incorrect determination of the chaos theory
parameters (Rosenstein and Collins 1994). Future work will include simultaneously
measuring the pulse and the microfluctuations in accommodation in order to study
further the connection between the heart and oculomotor system.

The level of chaos in heart rate variability has been found to depend mainly on the
parasympathetic branch of the nervous system,with some effect due to the sympathetic
branch (Hangerman et al. 1996). An increase and decrease in parasympathetic activity
produce increases and decreases in the LE of heart rate variability, respectively. An
increase and decrease in sympathetic activity have the opposite effect on the LE but to
a lesser extent. During a task inwhich cognitive demand increased, Davies et al. (2005)
have found that LOMs have increased sympathetic activity in the heart in comparison
to EMMs. At first sight, this appears to be a possible explanation for the results found
here. However, using a sympathomimetic and parasympathomimetic agent, Sumida
et al. (1994) found an increase and decrease in the LE of microfluctuations in accom-
modation respectively. Further testingwithmore subjects is required to investigate this
further. These studies suggest that the effects of the sympathetic and parasympathetic
components of the nervous system controlling the heart, and those parts controlling
the eye, potentially have different effects on the eye. Interestingly, atropine applied to
the eye, which reduces stimulation of the parasympathetic nervous system, has been
found to be effective in slowing myopia progression (Chia et al. 2012). Unfortunately,
we do not have data on whether the myopic subjects used in this study were stable
or progressing. Future work will include investigating the differences in chaos in the
microfluctuations in accommodation in progressive versus stable myopes. Other stud-
ies that have investigated the accommodation system in stable and progressive myopes
have found differences between these two groups. For example,Millodot (2015) found
that the gradient of the stimulus response curve of accommodation is different.

Aside from the impact of heart rate variability and respiration on the LFC, part of the
LFC is considered to be part of the accommodation control system owing to changes
with depth of focus (Charman and Heron 1988, 2015;Winn 2000). Hence, this may be
the mechanism which also imparts chaos in the microfluctuations in accommodation.
Themicrofluctuations have also been found to be a potential cue in the accommodative
step response (Metlapally et al. 2016). Future work will include using chaos theory to
determine the effect of the LE on dynamics of the step response in different refractive
groups (Seidel et al. 2005). It must be pointed out that the LE values found here are
likely to be lower than those induced by fluctuations in the crystalline lens due to the
tear film affecting the measured signal and reducing the chaos (Hampson and Mallen
2012; Jayakumar et al. 2013).

6 Conclusion

In conclusion, we have found that the dynamics of the microfluctuations in accom-
modation remain chaotic irrespective of accommodative demand and refractive error.

123



1886 K. M. Hampson et al.

Chaos theory applied to microfluctuations in accommodation can reveal differences
in EMMs compared to LOMs that are not detected using traditional analysis methods.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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