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Summary

Metabolism is closely linked with cellular state and biological

processes, but the mechanisms controlling metabolic properties

in different contexts remain unclear. Cellular senescence is an

irreversible growth arrest induced by various stresses, which

exhibits active secretory and metabolic phenotypes. Here, we

show that retinoblastoma protein (RB) plays a critical role in

promoting the metabolic flow by activating both glycolysis and

mitochondrial oxidative phosphorylation (OXPHOS) in cells that

have undergone oncogene-induced senescence (OIS). A combi-

nation of real-time metabolic monitoring, and metabolome and

gene expression analyses showed that OIS-induced fibroblasts

developed an accelerated metabolic flow. The loss of RB down-

regulated a series of glycolytic genes and simultaneously reduced

metabolites produced from the glycolytic pathway, indicating

that RB upregulates glycolytic genes in OIS cells. Importantly,

both mitochondrial OXPHOS and glycolytic activities were abol-

ished in RB-depleted or downstream glycolytic enzyme-depleted

OIS cells, suggesting that RB-mediated glycolytic activation

induces a metabolic flux into the OXPHOS pathway. Collectively,

our findings reveal that RB essentially functions in metabolic

remodeling and the maintenance of the active energy production

in OIS cells.
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Introduction

Cellular senescence is a state of essentially irreversible growth arrest that

is induced by various stresses, such as shortened telomeres, DNA

damage, and oncogene activation. It is thought to function as an

exclusion of unnecessary cells or as an anticancer mechanism. Senescent

cells usually exhibit morphological features including an enlarged size,

flattened shape, increased b-galactosidase activity, a senescence-asso-

ciated secretory phenotype, and the formation of senescence-associated

heterochromatin foci (SAHF) (Campisi & d’Adda di Fagagna, 2007;

Kuilman et al., 2010; Rodier & Campisi, 2011; Lopez-Otin et al., 2013;

Munoz-Espin & Serrano, 2014; Perez-Mancera et al., 2014; Salama

et al., 2014). Senescent cells also possess some dynamic functions that

together make up the metabolically active phenotype.

Several signaling pathways that activate the senescence program

have been identified in vitro, and a deficiency of these pathways is often

found in tumors in vivo (Collado & Serrano, 2010), suggesting that

bypassing cellular senescence could lead to tumorigenesis. Among such

pathways, the retinoblastoma protein (RB) has been shown to play a

pivotal role in the transcriptional repression of cell cycle genes in both

oncogene-induced senescence (OIS) and replicative senescence (RS)

(Ben-Porath & Weinberg, 2005). In senescent cells, RB represses E2F

target genes including cell cycle regulators (Narita et al., 2003), and this

repression is partly caused by the RB-mediated recruitment of transcrip-

tional repressors such as histone deacetylases to the regulatory sites of its

target genes (Brehm et al., 1998; Luo et al., 1998; Magnaghi-Jaulin

et al., 1998). Interestingly, RB is required for SAHF formation through

cooperation with histone chaperone proteins HIRA and antisilencing

function 1A (Narita et al., 2003; Ye et al., 2007). RB is also known to act

as a transcriptional activator in some contexts (Talluri & Dick, 2012),

although it remains unclear whether RB-mediated transcriptional acti-

vation contributes to senescent phenotypes. Thus, RB is likely to

orchestrate several senescence-associated phenomena and to contribute

to the stable maintenance of the senescence program.

Cellular metabolism produces energy and the materials required for

cell structure and function, and its regulation is necessary to meet the

energy demands of the cellular state. To generate ATP as a cellular fuel,

normal cells mainly use OXPHOS in the presence of oxygen and

anaerobic glycolysis in its absence. However, proliferative and cancer

cells typically show a bias toward aerobic glycolysis even in the presence

of oxygen because of their high energy demand for rapid growth.

Recently, the metabolic profiling of mouse embryonic stem cells (ESCs),

mouse epiblast stem cells (EpiSC), and human embryonic stem cells

(hESCs) found that EpiSCs/hESCs possess higher glycolytic and lower

OXPHOS activities compared with ESCs (Zhou et al., 2012). Regulation

of a set of mitochondrial IV COX genes was thought to be involved in

this phenomenon. Human-induced pluripotent stem cells also displayed

higher glycolytic rates relative to the original somatic cells, similar to

hESCs (Varum et al., 2011). Although it is still uncertain whether

metabolic remodeling is a cause or consequence of cellular reprogram-

ming, these studies clearly indicate that metabolic pathways can change

depending on cellular states.
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Recent studies have shown that cells undergoing OIS have higher

OXPHOS activities compared with growing cells (Quijano et al., 2012;

Dorr et al., 2013; Kaplon et al., 2013). However, the mechanisms

determining the OIS-associated OXPHOS activation are poorly under-

stood. RB is activated during cellular senescence induction and plays

crucial roles in senescence-associated phenotypes (Narita et al., 2003;

Ben-Porath & Weinberg, 2005). Given that RB has been shown to

modulate mitochondrial activity through regulating metabolic gene

expression (Takahashi et al., 2012), we examined the possibility that RB

is involved in the OIS-associated OXPHOS activation in this study. Using

oncogenic Ras-driven senescence in human fibroblasts, we show that RB

is involved in increasing both glycolysis and OXPHOS activities in OIS

cells. A combination of live metabolic monitoring, and metabolome and

gene expression analyses revealed that the RB-dependent upregulation

of metabolic genes at the RNA levels promotes glycolysis and

subsequent OXPHOS activities. Our findings demonstrate a novel

metabolic role for RB in OIS cells, suggesting that RB is a key molecule

linking metabolic remodeling and cell cycle control in the senescent

program.

Results

RB regulates metabolic remodeling during the induction of

senescence

To characterize senescence-associated metabolic changes, we used an

extracellular flux analyzer to assess the oxygen consumption rate (OCR),

which mainly reflects the levels of mitochondrial OXPHOS activity, in

human diploid fibroblasts IMR90 (growing) and the same cells under-

going OIS. OIS cells were prepared by 4-hydroxytamoxifen (4-OHT)-

inducible Ras (H-rasV12) for 6 days as described previously (Hirosue

et al., 2012). OIS cells showed significantly higher basal OCRs compared

with control growing cells (Fig. 1A, left), in agreement with previous

reports (Quijano et al., 2012; Dorr et al., 2013; Kaplon et al., 2013).

Furthermore, as indicated by the vertical arrows in Fig. 1A, the

maximum OXPHOS capacity was found to be dramatically increased in

OIS cells following the addition of carbonyl cyanide-p-trif-

luoromethoxyphenylhydrazone (FCCP), the proton gradient discharger

(Fig. 1A, right).

A comparable increase in the maximum OXPHOS capacity was found

in RS cells that were prepared by repeated proliferation and free from

Ras activation (Fig. 1B), indicating that senescent cells possess an

increased mitochondrial OXPHOS activity. To test the involvement of the

oncogenic signal, we removed Ras expression from already established

OIS cells. Interestingly, OIS cells maintained higher levels of OXPHOS

capacity even after a withdrawal of 4-OHT (Fig. 1C and Fig. S1A, +OHT/

�OHT). These results suggest that increased OXPHOS capacity in OIS

cells does not result from a direct action of the oncogene.

Because RB has a significant function in cellular senescence and plays

crucial roles in senescence-associated phenotypes (Narita et al., 2003;

Ben-Porath & Weinberg, 2005), we next examined whether it is

involved in the mitochondrial OXPHOS capacity of OIS cells. To deplete

the RB protein, cells were treated with a mixture of three small

interfering RNAs (siRNAs) against RB1 2 days after Ras induction

(Fig. 1D and Fig. S1B). RB knockdown of OIS (RB-KD OIS) reactivated

genes encoding cell cycle progression proteins (MCM3 and MCM5), and

inflammatory cytokines (IL6 and IL8) to a lesser extent, and moderately

diminished the population of SAHF-positive cells (Fig. S1C,D). DNA

replication, as measured by 5-ethynyl-20-deoxyuridine (EdU) incorpora-

tion, was partially recovered in RB-KD OIS cells, probably from the

activation of certain checkpoint pathways (Fig. S1E) (Chicas et al.,

2010).

As expected, RB depletion by a mixture or individual siRNAs canceled

the increase in OCR upon oncogene activation (Fig. 1E and Fig. S2A). To

further clarify the RB function, RB-KD was performed in already

established OIS cells (Fig. S2B). Under this RB-KD condition, the increased

mitochondrial OXPHOS was also reversed, suggesting that the effect of

RB-KD on OCR in OIS cells is not a consequence of incomplete

senescence induction. Moreover, RB-KD similarly reversed the activation

of the OXPHOS capacity in RS cells (Fig. S2C). Taken together, we

concluded that RB is required for the activation of mitochondrial

OXPHOS activity in senescent cells.

Metabolome profiling reveals the RB-dependent dynamics of

cellular metabolites

To further understand RB-mediated metabolic remodeling in cellular

senescence, we next carried out a metabolome analysis of each of three

independent samples from growing IMR90, Ctrl-KD OIS, and RB-KD OIS

cells (Fig. 2A and Table S1). We used capillary electrophoresis-time

of flight mass spectrometry/triple quadrupole mass spectrometry

(CE-TOFMS/QqQMS) to identify 103 metabolites in cellular metabolic

pathways. Consistent with previous reports (Quijano et al., 2012; Kaplon

et al., 2013), we detected increased levels of metabolites from glycolysis,

the pentose phosphate pathway, and the tricarboxylic acid (TCA) cycle in

Ctrl-KD OIS cells (Fig. 2B and Fig. S3). The increase in ATP in Ctrl-KD OIS

cells is highly compatible with the activated metabolic flow (Fig. S3C).

Notably, we found that RB depletion largely attenuated the OIS-

associated increase in the levels of these metabolites. Several metabolic

intermediates in glycolysis (fructose 1,6-diphosphate, dihydroxyacetone

phosphate, and glyceraldehyde 3-phosphate) showed a remarkable

reduction in RB-KD OIS cells compared with Ctrl-KD OIS cells. This

suggests that RB mediates activation of the glycolytic pathway, which

may lead to the increased mitochondrial OXPHOS capacity.

To test RB-dependent glycolytic activation in OIS cells, we further

measured the extracellular acidification rate (ECAR) under glucose

starvation and subsequent addition, an index of glycolytic activity

(Fig. 3A). The loss of RB in OIS cells decreased the ECAR compared with

the OIS control. We then performed a kinetic analysis of glucose uptake,

using 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose

(2-NBDG), a fluorescent glucose analog (Fig. 3B). The Ctrl-KD OIS cells

showed a marked increase in glucose uptake compared with growing

cells, while RB-KD OIS cells showed a similar uptake to Ctrl-KD OIS cells.

This suggests that RB regulates the glycolytic pathway rather than

glucose uptake.

RB upregulates glycolytic genes at the RNA levels in OIS cells

To examine how RB regulates metabolic gene expression, we performed

genome-wide expression microarray analysis in growing, Ctrl-KD OIS,

and RB-KD OIS cells. Gene set enrichment analysis (GSEA) using Kyoto

Encyclopedia of Genes and Genomes gene sets was performed to

identify RB-dependent biological pathways (Fig. 4A and Table S2). We

found that the ‘glycolysis and gluconeogenesis’ gene set was uniquely

upregulated in Ctrl-KD OIS but not RB-KD OIS cells, indicating that

activation of the glucose metabolism pathway is RB-dependent in OIS

cells. By contrast, some gene sets, such as ‘cytokine and cytokine

receptor interaction’, were upregulated in both Ctrl-KD OIS and RB-KD

OIS cells. This suggests that activation of the cytokine pathway is

RB-independent.
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To further elucidate the RB-mediated transcriptional regulation of

metabolic genes,we performed a K-means clustering of the 14 042 genes

on the microarrays. This analysis revealed 20 gene clusters with distinct

patterns of up- and downregulation in each cell state (Fig. 4B). Cluster 20

contained a set of genes that were upregulated in Ctrl-KD OIS cells but

downregulated in RB-KD OIS cells (Fig. 4C). Based on gene ontology (GO)

analysis, 307 of the 1748 genes in this cluster were involved in cellular

metabolic processes (Table S3). Reverse transcription (RT)–PCR of glyco-

lytic andmetabolic genes validated themicroarray results (Fig. 4D and Fig.

S4). According to previous chromatin immunoprecipitation coupled with

deep sequencing (ChIP-seq) data (Chicas et al., 2010), RB enrichment

occurred in association with 36% (109/307) of the metabolic genes in

Cluster 20 (Fig. S5 and Table S4), suggesting that both direct and indirect

actions of RB are involved in upregulation of a set of metabolic genes.

Promoter sequence analysis of RB target genes identified several potential

transcription factors (Table S5), some of which are known to cooperate

withRB in transcriptional activation (Talluri &Dick, 2012). For example, SP1

has been shown to physically interact with RB and stimulate dihydrofolate

reductase gene expression in CHO-K1 cells (Noe et al., 1998). We also

identifiedputative binding sites for CCAAT/enhancer-binding protein beta

(C/EBPß), which is known to cooperate with RB in the activation of

transcription (Chen et al., 1996). Among these genes, phosphofructoki-

nase, muscle (PFKM) and aldolase C, fructose-bisphosphate (ALDOC) are

involved in the production of fructose 1,6-diphosphate and dihydroxyac-

etone phosphate, respectively, whichwere significantly reduced by RB-KD

(Fig. 2B, PFK and ALDO). We re-evaluated the previously published gene

expression profiles of human SAOS-2 cells in which RB had been

reintroduced into a RB�/� background (Lopez-Bigas et al., 2008). This

data set indicated that the RB reintroduction increased mRNAs of

metabolic genes shown in Fig. 4D, while it decreased the mRNA levels

of cell cycle genes such as MCM3 and MCM5 (Fig. S6). This suggests a

conserved role of RB in the upregulation of metabolic genes in different

cellular contexts.

Finally, we performed a knockdown of these RB target genes. The loss

of glycolytic genes (PFKM and ALDOC) resulted in decrease in glycolytic

activity (ECAR) and mitochondrial OXPHOS (OCR) in OIS cells (Fig. 5).

PFKM-KD reduced glycolytic activity more significantly than ALDOC-KD,

possibly resulting in the observed effect on downstream OXPHOS

capacity. These data suggest that PFKM rather than ALDOC plays an

important role in the metabolic remodeling of OIS cells. In addition, we

examined the effect of the gene knockdown on the cellular level of

dihydroxyacetone phosphate (DHAP), which is generated by aldolases.

RB-KD or ALDOC-KD expectedly showed a decrease in the DHAP

content in OIS cells, while PFKM-KD was less effective (Fig. S7). This data

may suggest that PFKM has multiple effects on the glycolytic pathway.

Indeed, fructose 1,6-diphosphate that is generated by PFKM is known to
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Fig. 1 RB is required for increased

mitochondrial OXPHOS activity in OIS cells.

(A) Oxygen consumption rate (OCR) in

growing and oncogene-induced

senescence (OIS) cells. OIS was induced in

IMR90 cells expressing oncogenic Ras

(H-rasV12) following treatment with

4-hydroxytamoxifen (4-OHT) for 6 days.

OCR was measured as the mitochondrial

OXPHOS activity, using the extracellular flux

analyzer (normalized to cell number).

Respiratory chain inhibitors were added to

the culture at the indicated time points.

Values are means � SE of at least three

technical replicates at each time point (see

Experimental procedures for details). Data

are representative of two independent

experiments. Basal OCRs are shown by

subtracting the rotenone-/antimycin-

treated values from the initial values (prior

to oligomycin addition) (left). Vertical

arrows indicate the maximum OXPHOS

capacity determined as the difference

between the FCCP- and rotenone-/

antimycin-treated OCR values. (B) OCR in

growing and replicative senescence (RS)

cells. (C) The effect of oncogenic Ras

removal on OCR in established OIS cells. OIS

cells were established in the presence of

4-OHT for 6 days and further cultured in

the presence (+OHT/+OHT) or absence of

4-OHT (+OHT/�OHT) for 4 days (Fig. S1A).

(D) RNA interference-mediated knockdown

of RB (RB-KD). Control siRNA or siRNAs

against RB1 were introduced to

OIS-inducing IMR90 cells (Fig. S1B). (E) The

effect of RB-KD on OCR in OIS cells.
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stimulate formation of highly active tetrameric pyruvate kinase M2

(PKM2), thereby promoting the glycolytic pathway (Mazurek, 2011).

Collectively, RB appears to mediate OIS-associated metabolic remodeling

at least in part through the upregulation of glycolytic genes. Additionally,

throughout this study, we observed that RB was present exclusively in the

nuclei but not the cytoplasm of IMR90 and OIS cells (data not shown).

It has been reported that fatty acid oxidation contributes to the

increased OXPHOS activity in OIS cells (Quijano et al., 2012). Consis-

tently, by treating with etomoxir, a CPT-1 inhibitor, the enhancement of

OCR was reduced in OIS cells, compared with the growing (Fig. S8A).

Moreover, OCR was increased by the exogenously added free-fatty acid

palmitate in Ctrl-KD OIS but not in RB-KD OIS cells (Fig. S8B), suggesting

that RB is involved in the regulation of fatty acid oxidation in OIS cells.

Thus, our result, together with the previous reports (Quijano et al.,

2012; Kaplon et al., 2013), indicates that both glycolytic and fatty acid

oxidation pathways contribute to maintaining the increased OXPHOS

capacity in OIS cells.

Discussion

In this study, we report on the RB mediation of metabolic remodeling in

OIS cells. Based on live metabolic monitoring, and metabolome and gene

expression analyses, our findings indicate that RB upregulates a series of

glycolytic genes, resulting in increased glycolysis and subsequent

mitochondrial OXPHOS activities in OIS cells. Thus, OIS cells have

activated metabolic flow, in comparison with other cell states.

RB has been found to transcriptionally downregulate some metabolic

genes as well as cell cycle genes (Hsieh et al., 2008; Blanchet et al.,

2011; Reynolds et al., 2014). For example, the glutamine transporter

SLC1A5 was reported to be a direct target of RB transcriptional

repression in mouse embryonic fibroblast cells (Reynolds et al., 2014). By

contrast, our study indicated that RB upregulates glycolytic genes and

establishes high activities of glycolytic and mitochondrial OXPHOS

pathways in OIS cells (Fig. 6). Although the degree of RB-mediated

transcriptional activation was found to be relatively weak (Fig. 4C,D), the

RB-dependent upregulation of multiple metabolic genes may synergis-

tically support a metabolically activated phenotype in OIS cells (Fig. 4D

and Table S3). Considering that mRNA levels do not always correlate

with protein levels, further study may be necessary to address whether

the increased mRNAs from metabolic genes are linked to the control of

enzymatic activities. A previous study showed that upregulation of the

pyruvate dehydrogenase phosphatase 2 gene (PDP2) led to enzymatic

activation of pyruvate dehydrogenase (PDH), which catalyzes the

conversion of pyruvate into acetyl coenzyme A, and thereby promotes

a flux from glycolysis to the TCA cycle in OIS cells (Kaplon et al., 2013).

However, details of the upstream pathways regulating PDP2 levels are

currently unknown. Interestingly, the PDP2 promoter was bound by RB

(Table S4), suggesting that RB participates in the regulation of the PDP2–

PDH axis. Thus, RB can contribute to the activation of multiple metabolic

pathways. Indeed, the OXPHOS gene set also appears to be upregulated

in an RB-dependent manner (Table S2.). Our data strongly suggest that

RB regulates a set of metabolic genes at the transcriptional level.

However, it is also possible that loss of RB resulted in the stabilization of

target mRNAs via unknown mechanisms, which could be a cause of the

increased mRNA level.

What is the role of high metabolic potentials in OIS cells? Oncogene

signaling is thought to induce metabolic remodeling to support the rapid

proliferation and survival of transformed cells. For instance, it has been

shown that activation of the K-Ras (Kirsten rat sarcoma viral oncogene

homolog) induces the transcriptional upregulation of glycolytic genes

(Ying et al., 2012). Cancer cells typically utilize glycolysis to produce ATP

while relying to a lesser extent on OXPHOS, which is known as the

Warburg effect (Warburg, 1956; Vander Heiden et al., 2009). Consid-

ering that OXPHOS produces reactive oxygen species (ROS) (Orrenius

et al., 2007), a potential source of cellular damage, the suppression of

mitochondrial OXPHOS in cancer cells could be advantageous for

survival. Thus, the high glycolytic rates induced by oncogenic activation

are not directly linked to OXPHOS capacity in cancer cells. Conversely,
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glycolytic activation in normal cells with an intact mitochondrial function

could stimulate downstream OXPHOS and ROS production. Because OIS-

inducing cells are likely to maintain intact mitochondrial potentials, the

resulting activation of the energy production by RB may have roles in the

initiation and maintenance of cellular senescence (Fig. 6).

Senescence-associated heterochromatin foci (SAHF) are formed by the

spatial repositioning of the genome and is correlated with repressive

marks such as trimethylated histone H3 on lysine 9 (H3K9me3) and

H3K27me3 (Chandra et al., 2012). Although the involvement of epige-

netic marks in the OIS state remains poorly understood, alterations in the

distribution of histone modifications were previously observed in OIS cells

(Chicas et al., 2012; Shah et al., 2013). Recently, there has been

increasing evidence of cross talk between the cellular metabolism and

epigenome through cellular metabolites (Hino et al., 2013). This is

supported by the fact that many epigenetic modifiers utilize metabolites

as cofactors or substrates for their enzymatic reactions. Therefore, the

levels of cellular metabolites are likely to influence the activity of

modifying enzymes at local and whole genomic regions. Indeed, a-KG, an
intermediate of the TCA cycle, is required for oxidative lysine demethy-

lation by the Jumonji C domain-containing histone demethylases. In this

study, we found that the observed increase in a-KG was RB-dependent in

OIS cells (Fig. S3). Additionally, Jumonji/ARID domain-containing protein

1A (JARID1A) and JARID1B, in cooperation with RB, are required for

global H3K4me3 demethylation and the silencing of cell cycle gene

expression in OIS cells (Chicas et al., 2012). Collectively, RB may therefore

coregulate the a-KG increase and H3K4me3 demethylation by JARID1A/

1B proteins in the initiation and maintenance of a senescent state.

Finally, we discuss the relationship between cellular metabolism and

cell cycle progression in OIS cells. It has been reported that the oscillation

of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 levels is

mediated by targeted degradation by the ubiquitin ligase anaphase-

promoting complex/cyclosome and Skp1–Cullin1–F-box com-

plex, together with an increase in lactate production during late G1

phase (Colombo et al., 2011; Tudzarova et al., 2011), suggesting that

the cell cycle condition affects metabolism. On the other hand, our

present study showed that RB-KD completely reduced mitochondrial

OXPHOS activity to the levels seen in growing cells (Fig. 1E) and partially

rescued OIS-associated cell cycle arrest (Fig. S1E). Because some

metabolic genes are direct targets of RB (Fig. S5 and Table S4), we

assumed that OIS-associated metabolic remodeling is not simply a

consequence of cell cycle arrest. For future studies, it would be of great

interest to determine whether RB-mediated upregulation of metabolic

genes occurs in senescent cells in vivo. Enzymes involved in cancer-

specific metabolism are potential therapeutic targets, and some inhib-

itors of these enzymes have been successful in clinical trials (Cheong

et al., 2012). Thus, the RB-mediated metabolic remodeling pathway

described here could represent a valuable marker and therapeutic target

for the prevention of aging-related diseases.

Experimental procedures

Cell culture

IMR90 cells expressing 4-OHT-inducible ER:Ras (H-rasV12) were main-

tained in Dulbecco’s modified Eagle’s minimal essential medium F12

(045-30665, Wako, Osaka, Japan), supplemented with 10% (v/v) heat-

inactivated fetal bovine serum (Young et al., 2009). To induce OIS, the

cells were treated with 100 nM 4-OHT for 6 days as described previously

(Hirosue et al., 2012). IMR90 cells which arrested their growth after 8–

10 weeks of culture were used as RS cells. The following siRNAs were

transfected using RNAiMax (Life Technologies, Carlsbad, CA, USA):

siRB1 (Santa Cruz Biotechnology, Santa Cruz, CA, USA, sc-44273A

[designated as #1], B [#2], and C [#3]), siPFKM (Life Technologies,

Silencer Select, 10370), siALDOC (Life Technologies, Silencer Select,

s1263), and the control siCon (siRNA targeted to luciferase GL3) (Hino

et al., 2012). For RB-KD, a mixture of three siRB1 (A, B, and C) was used

at a concentration of 10 nM unless otherwise indicated.

Reverse transcription–PCR

Total cellular RNA was isolated from cells using the RNeasy kit (Qiagen,

Valencia, CA, USA) according to the manufacturer’s instructions. cDNA

was synthesized with the ReverTra Ace� qPCR RT Master Mix (Toyobo,

Osaka, Japan), and quantitative reverse transcription (RT)–PCR per-

formed by the SYBR green method using Thunderbird reagents (Toyobo)

and an ABI 7300 Sequence Detector (Applied Biosciences, Foster City,

CA, USA). The primer sets used in this study are given in Table S6.

Microarray analysis

Total cellular RNA from two independent experiments was reverse-

transcribed and hybridized to the Affymetrix U133 Plus 2.0 microarray,
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Fig. 3 OIS cells enhance RB-dependent glycolytic properties. (A) Extracellular

acidification rate (ECAR) in growing and OIS cells. ECAR was measured as the

glycolytic activity using the extracellular flux analyzer (normalized to cell number).

Real-time monitoring of ECAR was performed under glucose starvation and re-

addition (25 mM), completed by adding 2-deoxy-D-glucose (2-DG), a glycolytic

inhibitor, at the indicated time points. Values are means � SE of at least three

technical replicates at each time point. Data are representative of two independent

experiments. (B) Effect of RB-KD on glucose uptake in OIS cells. Glucose

incorporation rate was determined by flow cytometry using 2-NBDG, a fluorescent

glucose analog, in growing, Ctrl-KD OIS, and RB-KD OIS cells. Cells that were

untreated with 2-NBDG were used as a negative control. From the histograms of

biological triplicate samples (left), mean fluorescence intensities were calculated

and shown in the right panel (means � SD). Statistical analysis was performed

using Welch’s t-test (**P < 0.01; ***P < 0.001).
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as described previously (Hino et al., 2012). Gene set enrichment analysis

was performed using GSEA ver. 2.0 software provided by the Broad

Institute of MIT and Harvard (http://www.broadinstitute.org/gsea/)

(Subramanian et al., 2005). K-means clustering with the Euclidean

distance was performed using MeV 4.8.1 (Saeed et al., 2003), and GO

term analysis was carried out with the DAVID functional annotation tool

(Dennis et al., 2003). RB enrichment in association with Cluster 20 genes

(�2 kb from the transcription start site) was determined using PAVIS

(Huang et al., 2013), based on previously reported RB ChIP-seq data in

OIS IMR90 cells (Chicas et al., 2010).

Immunoblot analysis

Cell lysates with sample buffer (50 mM Tris–HCl, pH 6.8, 2% sodium

dodecyl sulfate (SDS), 6% b-mercaptoethanol, 10% glycerol, 0.05%

bromophenol blue) were separated by SDS-polyacrylamide gel electro-

phoresis and transferred to nitrocellulose membranes. Anti-RB rabbit

polyclonal antibody (554136, Becton Dickinson, Franklin Lakes, NJ, USA)

diluted 1:500 and anti-b-tubulin mouse monoclonal antibody (T4026,

Sigma, St. Louis, MO, USA) were used as primary antibodies.

Metabolome analysis

Metabolome analysis was performed at Human Metabolome Technolo-

gies (HMT, Tsuruoka, Japan, http://humanmetabolome.com). In brief, cells

(growing IMR90, Ctrl-KD OIS, and RB-KD OIS) were washed with 5%

mannitol solution, and cellularmetaboliteswere extracted usingmethanol

containing HMT Internal Standard Solution 1 at room temperature.

Metabolome analysis was performed by CE-TOFMS/QqQMS. Metabolite

peaks were quantified and normalized according to the cell number.

Measurement of dihydroxyacetone phosphate

Dihydroxyacetone phosphate content was determined using PicoP-

robeTM Dihydroxyacetone Phosphate Fluorometric Assay Kit (BioVision,

Milpitas, CA, USA), according to the manufacturer’s instructions.
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Data are shown as means � SD of three

independent experiments. Statistical

analysis was performed using Welch’s t-test
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assembly protein; FLAD1, flavin adenine

dinucleotide synthetase 1.

Metabolic role of RB in cellular senescence, S.-i. Takebayashi et al.694

ª 2015 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

http://www.broadinstitute.org/gsea/
http://humanmetabolome.com


Assessment of glucose incorporation rate

The fluorescent glucose analog 2-NBDG (Peptide Institute Inc., Osaka,

Japan) was used to monitor the glucose incorporation rate. Cells

cultured in medium containing 100 lM 2-NBDG for 2 h were collected

using the Accumax reagent (Innovative Cell Technologies, San Diego,

CA, USA), and fluorescence was measured by fluorescence-activated cell

sorting with a Canto flow cytometer (Becton Dickinson).

Real-time measurement of glycolytic and OXPHOS activities

Real-time monitoring of cellular metabolic activities was performed using

an XF24 extracellular flux analyzer (Seahorse Bioscience, North Billerica,

MA, USA), according to the manufacturer’s instructions. Control and

siRNA-treated cells were cultured on the assay culture plate for 24 h

before the assay. Before loading the assay culture plate on to the XF24

extracellular flux analyzer, cells were cultured in unbuffered DMEM

(DMEM with 25 mM glucose, 1 mM sodium pyruvate, 2 mM L-glutamate,

pH 7.4) and incubated in a non-CO2 incubator for 1 h at 37 °C.

Maximum OXPHOS capacity was determined as previously reported with

some modifications (Hino et al., 2012). In brief, during the real-time

measurement, inhibitors of respiratory chain components were serially

added to the culture: the complex V inhibitor oligomycin (1 lM), the
respiratory uncoupler FCCP (1.5 lM), and the complex I/III inhibitors

rotenone (1 lM) and antimycin A (1 lM). After each addition, the OCR

was measured four times. The addition of FCCP accelerates oxygen

consumption to a maximum level, whereas complex I inhibitors

completely abolish mitochondrial respiration. Thus, the difference in

OCR between FCCP- and rotenone/antimycin-treated states indicates

the maximum OXPHOS capacity. To test for glycolytic activities, cells

were starved in glucose-free medium for 3 h, after which glucose was

reintroduced (25 mM). Cells were then treated with 100 mM 2-DG, a

glycolytic inhibitor. Real-time OCR and ECAR data in all the figures are

representative of at least two independent biological replicates. Values

are means � SE of at least three technical replicates at each time point.

For technical replicates, Ras induction and siRNA treatment were
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Fig. 5 Effect of glycolytic gene knockdown on glycolytic and mitochondrial OXPHOS activities. (A, B) The RB-targeted glycolytic genes PFKM and ALDOC were depleted

using specific siRNAs in OIS cells (left). Data are shown as means � SD of three independent experiments. ECAR and OCR were measured as described in Figs 3A and 1A,

respectively (right). Statistical analysis was performed using Welch’s t-test (*P < 0.05; **P < 0.01).
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Fig. 6 Schematic model for RB-mediated activation of both glycolysis and

mitochondrial OXPHOS in OIS cells. In response to oncogenic signals, RB either

directly or indirectly upregulates the mRNA levels of target genes such as glycolytic

genes. Glycolytic stimulation promotes a metabolite flux into the TCA cycle,

leading to OIS-driven mitochondrial OXPHOS activation. Consequently, OIS cells

are metabolically activated under growth arrest, compared with normal cells and

proliferative cancer cells.
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performed using at least three independent cultures for each experi-

ment. Briefly, control OIS and knockdown cells from the same original

culture were pooled and plated on three-to-six-well SeaHorse microplate

for the measurement. To examine the contribution of fatty acid

oxidation to OCR in OIS cells, cells were treated with 100 lM etomoxir,

a CPT1 inhibitor. To prepare a fatty acid complex that can be

incorporated into cells, palmitate was conjugated with BSA in a 6 to 1

molar ratio as described previously (Zhang et al., 2012). Palmitate-BSA

conjugate (100 lM) was added to the cells just prior to the OCR

measurement (t = 0).
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