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Several recent landmark papers 
describing N6-methyladenosine (m6A) 

RNA modifications have provided valu-
able new insights as to the importance 
of m6A in the RNA transcriptome and 
in furthering the understanding of RNA 
epigenetics. One endogenous enzyme 
responsible for demethylating RNA m6A, 
FTO, is highly expressed in the CNS and 
is likely involved in mRNA metabolism, 
splicing or other nuclear RNA processing 
events. microRNAs (miRNAs), a family 
of small, non-coding transcripts that 
bind to target mRNAs and inhibit subse-
quent translation, are highly expressed in 
the CNS and are associated with several 
neurological disorders, including epi-
lepsy. miRNAs frequently bind to recog-
nition sequences in the 3'UTR, a region 
that is also enriched for m6A. Certain 
specific miRNAs are upregulated by 
neuronal activity and are coupled to 
epileptogenesis; these miRNAs contain 
a consensus m6A site that if methylated 
could possibly regulate miRNA pro-
cessing or function. This Point-of-View 
highlights aspects from recent papers to 
propose a functional association between 
FTO, RNA epigenetics and epilepsy.

FTO is Important in the CNS

The gene fat mass and obesity-associated 
(FTO) was first identified in mice as one 
of the genes encoded by the 1.6 Mb dele-
tion that produced a phenotype with par-
tial syndactyly of forelimbs and extensive 
thymic hyperplasia.1 Subsequently, a com-
mon variant in the FTO gene was identi-
fied as a risk allele for type 2 diabetes and 
increased body mass,2 and many studies 
of FTO have focused on the association 
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with diabetes, obesity and metabolism.3 
In the course of conducting these large 
scale genotyping studies, the role of FTO 
in human disorders was expanded to 
include the central nervous system (CNS). 
Variants have been found to be associ-
ated with neurological disease conditions 
including depression4 and Alzheimer dis-
ease.5 FTO is highly expressed in brain 
tissue6 and is essential for normal devel-
opment of the CNS in human.7 The 
generation of mice that were specifically 
deleted only for neuronal FTO had a 
similar phenotype of growth retardation 
as the whole body FTO deletion, suggest-
ing that a major function of FTO occurs 
in the brain.8 The obesity-associated risk 
allele has been shown to have a poten-
tial pathological effect on brain volume: 
healthy elderly subjects with the risk allele 
had brain volume deficits (average dif-
ferences of 8% in frontal lobes and 12% 
in occipital lobes) compared with non- 
carriers.9 Recently, brain derived neuro-
trophic factor (BDNF) was identified as a 
candidate gene for functional coupling to 
FTO, leading the authors to speculate on 
a role of FTO in neuronal plasticity possi-
bly via interaction with CCAAT/enhancer 
binding protein β.10 These data provide 
strong evidence that FTO has a functional 
role in the CNS and, by implication, to 
CNS disorders.

Fto Demethylates m6A RNA

Most studies involving FTO have focused 
at the genome level and on correlation of 
variants with phenotypes. Evidence for the 
molecular action of the expressed protein 
(Fto) is more limited. Fto has been shown 
to localize to the nucleus and to catalyze 
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miRNA and Epilepsy

Recently, a connection has been made 
between RNA processing and epilepsy. 
MicroRNA (miRNA) is a major RNA 
regulatory gene family in eukaryotes of 
which hundreds have been identified. 
Mature miRNA forms base pairs with 
mRNA, often in the 3'UTR, to induce 
mRNA degradation, translational repres-
sion, or both. Since a single miRNA can 
target multiple mRNAs, and multiple 
miRNAs can act on a single mRNA, 
miRNAs are thought to operate highly 
complex regulatory networks that silence 
targeted genes.20 A recent review high-
lights the functions of miRNAs in CNS 
development and provides multiple 
examples in which misregulation of CNS 
miRNAs is associated with neurological 
disorders, including epilepsy.21 Specific 
miRNAs are also being investigated in 
the context of epilepsy. miRNA-146a 
has been shown to be upregulated in an 
animal model of temporal lobe epilepsy 
(TLE), as well as in hippocampal tissue 
from patients with TLE and hippocam-
pal sclerosis.22 Similarly, miRNA-134 
has been shown to be upregulated in an 
experimental model of epilepsy involv-
ing status epilepticus and also in tempo-
ral neocortex tissue from patients with 
TLE.23 These reports suggest that these 
miRNAs are neuronally activated and are 
coupled to epileptogenesis. Upregulation 
of miRNA-134 had a suppressive effect on 
a known target, LIM kinase 1 (Limk1). 
Antagomir silencing of miRNA-134 after 
status epilepticus caused a substantial 
reduction in the number of subsequent 
seizures, and the rescue of Lim1k was 
implicated in this protection.23 While the 
mechanism of this dramatic seizure sup-
pression could not be absolutely defined, 
an antiepileptogenic effect was a consid-
ered possibility. This paper clearly shows 
that silencing miRNA-134 has a neuro-
protective and seizure-suppressive effect 
and provides another avenue in which to 
study epileptogenesis.

miRNA and m6A

The methylation status of miRNA has 
been shown to affect stability and turn-
over.24 As mentioned above, the location 

modification is catalyzed by the methyl-
transferase like 3 (METTL3) enzyme, 
which is thought to be one component of 
a multi-component complex.14 A degen-
erate methylation consensus sequence, 
purine-purine-m6A-C-[A/C/U], has been 
known for many years.15 The presence of 
this consensus sequence does not guaran-
tee methylation, suggesting that this pro-
cess is regulated. There is also a report of 
another m6A methylase activity (toward 
U6 snRNA) that does not utilize this con-
sensus sequence and appears to be a sepa-
rate enzyme.16 Two recent independent 
studies utilizing m6A-specific antibodies 
and next generation sequencing provide a 
transcriptome-wide assessment of mRNA 
m6A methylation, substantially increasing 
knowledge of this modification.17,18 These 
papers clearly demonstrated that m6A 
methylation is a very prominent mRNA 
modification, identifying more than 7,000 
genes that contain m6A. They were in gen-
eral agreement on a recognition consensus 
sequence for the adenosine that is methyl-
ated, the overall distribution of m6A sites 
along the length of the transcripts and in 
the high conservation between human and 
mouse of major elements of this common 
RNA modification. These papers provide 
valuable new insights of m6A in the RNA 
transcriptome and further the understand-
ing of RNA epigenetics.19 One of these stud-
ies identified potential m6A-specific binding 
proteins, which may have functional sig-
nificance.17 Evidence was also presented 
that m6A affects RNA splicing. Using 
conditions that focused on differentially 
expressed isoforms, a positive relationship 
was seen between m6A and isoform switch-
ing. Further, differentially spliced exons 
and introns were significantly enriched with 
m6A.17 These data indicate a role for m6A in 
splicing, further supporting the role of the 
m6A demethylase, Fto, in this process.

the Fe(II) and 2-oxoglutarate-dependent 
demethylation of 3-methylthymine in 
ssDNA.11 One year later it was shown to 
catalyze the demethylation of 3-methy-
luracil in ssRNA with slightly higher effi-
ciency over that of 3-methylthymine in 
ssDNA.12 However, a recent article pro-
vides the strongest evidence to date on the 
enzymatic activity of Fto. Jia et al.13 pro-
vide evidence that Fto strongly prefers to 
demethylate N6-methyladenosine (m6A) 
in ssRNA (Fig. 1). By direct comparison 
with other substrates these authors con-
clude that m6A in ssRNA is the best sub-
strate discovered so far for Fto, having a 
greater than 50-fold preference for m6A 
over 3-methyluracil.13 Expected changes in 
levels of m6A in mRNA were found when 
human cells were manipulated to either 
overexpress Fto (which caused a decreased 
level of m6A) or underexpress Fto (which 
caused an increased level of m6A). These 
authors further showed that Fto partially 
co-localizes with nuclear splicing speckle 
factors (SART1 and SC35) and with RNA 
polymerase II phosphorylated at Ser2, but 
not with markers for other nuclear subre-
gions such as telomeres, replication site, 
Cajal body, cleavage body or P-body.13 
These authors conclude that m6A in 
nuclear RNA is the physiological substrate 
of Fto, and that the function of Fto likely 
affects the processing of pre-mRNA and/
or other nuclear RNAs. This report pro-
vides strong evidence that Fto is involved 
in the processing of nuclear RNAs and in 
RNA epigenetic modifications. As such, 
Fto is the first m6A RNA demethylase that 
exhibits significant regulatory functions.

m6A and RNA Epigenetics

m6A is the most common mRNA modifi-
cation in eukaryotes and also in the RNA 
of viruses that replicate in eukaryotes. The 

Figure 1. FTO catalyzes the conversion of N6-methyladenosine in RNA to adenosine.



1096	 Epigenetics	 Volume 7 Issue 10

epilepsy, and several have been implicated 
in epileptogenesis. Certain m6A sites may 
play a role in miRNA stability, processing 
or regulation. Thus, the recently discov-
ered m6A RNA demethylation activity 
of Fto places it in the heart of RNA epi-
genetics with subsequent regulatory roles 
on critical CNS processes.
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