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Abstract: Metabolism and immune responses are two fundamental biological processes that serve
to protect hosts from viral infection. As obligate intracellular pathogens, viruses have evolved
diverse strategies to activate metabolism, while inactivating immune responses to achieve maximal
reproduction or persistence within their hosts. The two-way virus-host interaction with metabolism
and immune responses choreograph cytokine production via reprogramming metabolism of infected
cells/hosts. In return, cytokines can affect the metabolism of virus-infected and bystander cells to
impede viral replication processes. This review aims to summarize our current understanding of
the cross-talk between metabolic reprogramming and cytokine responses, and to highlight future
potential research topics. Although the focus is placed on viral pathogens, relevant findings from other
microbes are integrated to provide an overall picture, particularly when corresponding information
on viral infection is lacking.
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1. Introduction

Metabolic reprogramming of mammalian cells is part of adaptation to changes in the
environment [1]. Recently, it has been recognized as an immediate defense response to infection by
bacteria, viruses, and microbes [2–4]. The induction of innate immune responses demands significant
metabolic resources, including energy, enzymes (e.g., kinases), and intermediates of macromolecular
biosynthesis (e.g., transcription and translation) [5]. In addition, viral infection reprograms host
metabolism and causes metabolic dysfunction, while hosts implement metabolic changes to mount
effective defensive antiviral responses [1,5]. Findings from viral interference with cytokine regulation
also advance our understanding of molecular mechanisms governing innate immune response [6].
Therefore, it is of great interest to elucidate the crosstalk between metabolism and cytokine responses.

The innate immune system is the front line of host defense. Upon infection, the innate immune
system detects pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors
(PRRs), including Toll-like receptors (TLR), the retinoic-acid-inducible protein I (RIG-I)-like receptors
(RLRs), Nod-like receptors (NLRs) and other cytosolic sensors (e.g., cGAS, IFI16, DAI, DDX41) [7–9].
Unlike bacterial pathogens, which are often sensed via lipopolysaccharides (LPS) and other cell wall
components, viruses are frequently recognized by DNA, RNA, and glycoproteins. RIG-I and MDA5
sense double-stranded RNA (dsRNA) with 5′-triphosphate or di-phosphate, displaying specificity for
dsRNA of distinct lengths or dsRNA derived from distinct viruses [10,11]. In addition, TLRs also sense
diverse viral components. TLR3 detects viral dsRNA; TLR7 and TLR8 recognize viral single-stranded
RNA (ssRNA); TLR9 senses viral DNA; and TLR2 and TLR4 respond to viral glycoproteins [12–14].
Through cognate adaptor molecules, PRRs activate two closely-related kinase complexes, IKK and
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TBK-1, that induce NF-κB and interferon regulatory factors (IRFs), respectively [15–19]. NF-κB and IRF
collaborate with other transcription factors to up-regulate the expression and production of cytokines,
all together constituting a potent antiviral response in mammals [20].

Immunometabolism is emerging as a new inter-discipline that integrates and elucidates the
interplay between host metabolism and immune responses [21]. Pathogen infection is a common
denominator of both of these host processes. Thus, studies on the metabolism-inflammation circuit
in the context of viral infection, can provide valuable insights into the regulation of host immunity
and inform the development of innovative antiviral therapeutics. This review seeks to summarize the
regulatory role of metabolic events in the immune system upon viral infection and vice versa, and to
present imminent research questions yet to be answered.

2. Metabolic Reprogramming Regulates Cytokine Responses against Viral Infection

In general, infecting viral pathogens hijack and funnel the metabolic activity of host cells to
favor viral replication, thereby disturbing the “normal” homeostasis of cellular metabolism [5,22].
Such a perturbation of host metabolism results in the alteration of intracellular metabolites and
dysregulation of metabolic enzymes that can directly regulate or indirectly impinge on cellular immune
responses (Figure 1).

2.1. Metabolites

2.1.1. Carbohydrates

Citrate and succinate are two of major metabolic intermediates of the tricarboxylic acid (TCA)
cycle and have a direct impact on the function of innate immune cells, such as macrophages [23]. Citrate
and citrate carrier (CIC) are reported to accumulate in TLR4-activated macrophages [24], promote the
production of prostaglandins, NO and reactive oxygen species (ROS), and depletion of CIC in activated
macrophages reduces the production of these inflammatory mediators [25]. Succinate links the TCA
cycle and mitochondrial respiration, and has similarly been recognized as an inflammatory signal that
induces IL-1β production in a manner dependent on hypoxia-inducible factor-1α (HIF-1α) [24,26].
Furthermore, succinate dehydrogenase (SDH) can be inhibited by another mitochondrial metabolite,
itaconate, in LPS-activated macrophages [27]. Itaconate and its membrane-permeable derivative
dimethyl itaconate limit the production of inflammatory cytokines such as IL-1β, IL-18, IL-6 and IL-12,
to curtail inflammation, providing a negative feedback for host immune responses [3,27]. These studies
clearly indicate that metabolites of the TCA cycle can modulate cytokine production in host immune
responses. However, it remains unknown whether succinate and citrate regulate immune response via
similar mechanisms in viral infections.

Unlike viruses, most bacteria are extracellular pathogens that proliferate outside of host cells.
Thus, bacterial structural components (e.g., LPS) and metabolites can induce immune responses
and inflammation via cell surface receptors (e.g., TLR) or upon entering host cells in the form
of secreted vesicles (e.g., exosomes), respectively [28,29]. A recent seminal study discovered that
the bacteria-derived monosaccharide heptose-1,7-bisphosphate (HBP) activates the NF-κB signaling
pathway to induce cytokine production [30]. Interestingly, alpha-kinase 1 (ALPK1) serves as a cytosolic
innate immune receptor that directly senses ADP-β-D-manno-heptose (ADP-Hep), a metabolite of
HBP, resulting in autophosphorylation and activation. Activated ALPK1 further phosphorylates
TRAF-interacting protein with forkhead-associated domain (TIFA) and activates TRAF6-dependent
NF-κB signaling in host cytosol, increasing the expression of IL-8 [31]. These findings establish a new
paradigm whereby a microbial metabolite is sensed by a cellular kinase and pioneer a new research
field that calls for further investigation.
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Figure 1. Schematic illustration of interplay between host metabolism and cytokine induction.
Upon infection, pattern recognition receptors (such as Toll-like receptors (TLRs), retinoic-acid-inducible
protein I (RIG-I)-like receptors (RLRs) and cytosolic sensors (cGAS)) sense pathogen-associated
molecular pattern and dimerize with their cognate adaptor molecules to activate IKKαβ and
TBK-1/IKKε. These kinases in turn activate IRF3 and NF-κB, thereby promoting cytokine production.
Central metabolic pathways, including the glycolysis, tricarboxylic acid (TCA) cycle and lipid
metabolism, are crucial for cell proliferation and viral replication. The immune-modulating
effect of metabolism can stem from metabolites, metabolic enzymes and organelles. Conversely,
the metabolism-programming activity of cytokine response can originate from immune signaling
components or cytokine signaling thereof. Mitochondria serve as an excellent example that integrates
diverse players at the interface of immune response and metabolism. Metabolites, such as succinate
and citrate, directly or indirectly regulate NF-κB activation. Metabolic enzymes (e.g., mammalian
target of rapamycin (mTOR) and adenosine 5′-monophosphate–activated protein kinase (AMPK))
play regulatory roles in both metabolism and immune responses. Metabolic organelles, such as
mitochondria and lysosomes, deploy multiple strategies to interfere with pathogen replication and
reprogram metabolic activity for intrinsic immune defense, via modulating mitochondrial fission and
fusion (e.g., Mfn2) and activating the autophagy-lysosome degradative pathway. Blue arrows represent
cellular metabolic processes and orange arrows indicate innate immune signaling pathways.

2.1.2. Lipids and Fatty Acids

One of the anabolic consequences of aerobic glycolysis in a viral infection is the inevitable increase
in lipid biosynthesis, particularly with enveloped viruses. Clinical studies revealed that the serum
concentration of low-density lipoproteins positively correlate with IL-6 in acquired immune deficiency
syndrome (AIDS) patients infected with human immunodeficiency virus (HIV) [32]. Not surprisingly,
IL-6 enhances lipid oxidation through an AMPK-dependent pathway in skeletal muscle [33], suggesting
that there is a cross-talk between lipid metabolism and cytokines. In support of the crosstalk between
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lipid metabolism and inflammation, non-esterified fatty acids (NEFA) were reported to amplify
cytokine secretion of TNF-α, IL-1β, IL-6 and IL-10 in human trophoblasts [34]. Unsaturated fatty acids,
such as oleic acid, linoleic acid, and arachidonic acid, upregulate the production of IL-1α to aggravate
inflammation in macrophages that are overloaded with cholesterol [35,36]. To reduce inflammatory
responses, fatty acid oxidation, a major pathway that prevents the accumulation of fatty acids, can shift
macrophage differentiation toward an anti-inflammatory state (M2), instead of a pro-inflammatory
state (M1) [21]. In addition, lipid-activated nuclear receptor peroxisome proliferator-activated receptors
(PPARs), such as PPAR-δ, were found to promote Janus kinase (JAK)-mediated phosphorylation of
signal transducer and activator of transcription (STAT) proteins, and thereby further enhance the
interferon (IFN) signaling in macrophages and B lymphoma cells [37,38]. Similarly, regulators of fatty
acid synthesis, such as acetyl-CoA carboxylase and lysophosphatidic acid (LPA), influence the function
of dendritic cells (DCs) and alter the production of cytokines, including IL-12, TNF-α and IL-10 [39,40].
However, the mechanistic detail of how these effectors control immune responses is still unknown.

2.1.3. Amino Acids

Amino acids are major building blocks for cell proliferation and play important roles in controlling
immune responses [21]. Glutamine is the most abundant amino acid in body fluid and cell culture
medium, supplying energy and nitrogen for cellular metabolism. Glutamine enters the TCA cycle via
the action of glutaminase (GLS) and glutamate dehydrogenase (GDH), and is an important alternative
carbon source for virus-infected cells [5,41–43]. Initially, glutamine was found to augment cytokine
responses and restrict microbial infection [44]. For example, the addition of glutamine to RAW264.7
macrophages stimulated with LPS elevated the production of IL-1α, IL-6, IL-10 and TNF-α [45].
Moreover, supplementing cultured T cells with glutamine up-regulated the expression of several IFN-γ
inducible genes, which inhibited the reactivation of HSV-1 and HSV-2 [46]. These studies support
the pro-inflammatory role of glutamine in immune responses by augmenting cytokine production.
Surprisingly, in a human intestinal mucosa study, the addition of glutamine to duodenum tissue
samples varied both pro- and anti-inflammatory immune responses. This is achieved via attenuating
the production of IL-6 and IL-8, while increasing anti-inflammatory IL-10 [47]. Glutamine was later
identified to regulate ubiquitin-conjugating enzymes, accelerating the ubiquitination and subsequent
proteosomal degradation of IκBα [48]. This result further supports the conclusion that glutamine
promotes NF-κB activation and inflammatory cytokine production. Findings from these studies further
our understanding of glutamine’s physiological role in host immune responses and offer several
examples that can be applied to studies of other amino acids and metabolites.

2.1.4. Nucleotides

Besides the high demand for protein and lipid synthesis, viral replication also requires nucleotides
and energy sources for synthesizing nucleic acids for transcription (messenger RNA) and translation
(ribosomal and transfer RNA), viral genome replication (DNA) and generation of nucleotide adenosine
triphosphate (ATP). ATP is the universal currency for energy in living cells, but is also a signaling
molecule that engages the purinergic P2 receptor to trigger the production of several cytokines,
including IL-12, IL-27, IL-13, IL-1β and IL-18 [49,50]. Similarly, a class of small non-coding RNA
(miRNA) was also found to exert post-transcriptional regulation of gene expression and interfere
with viral RNAs in plants, invertebrates and mammalian cells [51]. miRNA also regulates cytokine
gene expression via inhibiting binding proteins of AU-rich elements (ARE) that are frequently
found in regulatory regions of mRNA of inflammatory cytokines [52,53]. The recently discovered
cyclic dinucleotide cGAMP, an endogenous nucleotide synthesized by cGAS upon sensing dsDNA
in eukaryotic cells, serves as a secondary messenger that binds to stimulator of interferon genes
(STING) and induces innate immune activation, culminating in inflammatory cytokine production [54].
STING also senses cyclic di-GMP and cyclic di-AMP, derived from bacterial pathogens, to induce
IFNs [55,56]. In addition to regulating cytokine production, nucleotides can directly contribute to
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viral gene expression and genome replication by serving as targets sensed by PRRs. For example,
RNase L, activated by 2′-5′ oligoadenylate synthase (OAS), cleaves viral RNA to block further viral
replication and infection [57,58], while generating fragmented RNA to fuel RIG-I-dependent immune
responses [59]. Moreover, nucleotide methylenecyclopropane analogs that can be phosphorylated
by ppUL97 phosphotransferase, inhibit human cytomegalovirus DNA synthesis [60]. Nucleotide
analogs such as ribavirin and acyclovir or its derivatives potently suppress the replication of diverse
viruses [61]. These nucleotides can modify viral genetic materials allowing for the recognition of viral
PRRs and activate the downstream signal transduction cascade leading to cytokine production.

2.2. Metabolic Enzymes

The complexity and plasticity of metabolism are the manifestation of the multi-functionality
of metabolic enzymes. Mammalian target of rapamycin (mTOR) is a central metabolic regulator of
immunity that integrates signaling events emanating from nutrient availability (e.g., amino acids)
and growth factors [21,62,63]. It was also reported that mTOR interacts with MyD88 to activate IFN
regulatory factor 5 and 7 (IRF5 and IRF7), thereby promoting cytokine production [64]. In addition,
proteomics and bioinformatics analyses revealed a collection of mRNA-binding proteins implicated
in regulating immune responses [65]. These RNA-binding proteins include many key metabolic
enzymes, such as glyceraldehyde 3-phosphate dehydrogenase (GAPDH) of the glycolytic pathway;
succinate-CoA ligase (SUCLG1) of the TCA cycle; and carbamoyl-phosphate synthetase 2, aspartate
transcarbamylase, and dihydroorotase (CAD) of the de novo pyrimidine synthesis pathway [66,67].
For example, GAPDH can bind to the AU-rich elements within the 3′ untranslated region (UTR) of
mRNAs of IFN-γ and IL-2 in CD4+ T cells [68]. The activation of glycolysis produces an excessive
amount of glyceraldehyde 3-phosphate (G3P) that occupies GAPDH for oxidation, thereby preventing
GAPDH from binding to IFN-γ and IL-2 mRNA to increase IFN-γ and IL-2 production. This study
elucidates an elegant molecular mechanism wherein glycolysis enables T cell activation. Additionally,
some DNA-binding proteins assume dual function in both metabolism and host immune responses.
Nuclear hormone receptors (NHRs) are ligand-responsive transcription factors and regulators of
mammalian lipid metabolism [69,70]. NHRs are also DNA-binding proteins and can interact with
cytokine receptors to modulate the expression and secretion of cytokines, such as IL-2, IL-4, IL-6 and
IL-7 [71]. However, the underlying molecular mechanism of the interaction between immune signaling
transduction and the metabolic activity regulated by NHRs remains poorly understood and calls for
further investigation.

Adenosine 5′-monophosphate-activated protein kinase (AMPK) is a metabolic regulatory enzyme
that senses the intracellular concentration of ADP and AMP, and serves as a rheostat of cellular
energy production [72]. A study on skeletal muscle regeneration reported impaired anti-inflammatory
responses in macrophages in the absence of AMPKα1 [73]. In human endothelial cells stimulated
with TNF-α, activated AMPKα2 phosphorylates IKKβ, which attenuates NF-κB activation [74].
Furthermore, AMPK directly phosphorylates JAK, thereby blocking activation of JAK-STAT signaling
induced by IL-6 and constraining the pro-inflammatory response [75]. Although IKKβ and JAK are
activated by autophosphorylation, their phosphorylation by AMPK appears to negatively regulate and
temper inflammation. Another nutrient sensor, the aryl-hydrocarbon receptor (AhR), is also highly
involved in innate immune signaling [76,77]. AhR is a ligand-activated transcription factor responsible
for activating cytochrome P450, which degrades xenobiotics [78]. In response to influenza virus
infection, AhR reprograms DCs’ differentiation, i.e., reducing CD103+ DCs and CD11b+ DCs in the
lung-draining lymph node, while promoting virus-specific CD8+ T cells [79]. In CD4+ T cells, activated
AhR increases the proliferation of TH17 cells that produce IL-17 and IL-22 [80]. Collectively, these
studies indicate that AhR can promote immune cell differentiation to modulate cytokine production
and program immune responses. A growing number of studies have unveiled new functions of
metabolism-associated effectors in immune responses, which may pave the way to formulate new
metabolic approaches to tailor antiviral immune responses.
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Glutamine Amidotransferases and Deamidases

Glutamine amidotransferases (GATs) constitute a family of metabolic enzymes that catalyze the
synthesis of nucleotides, amino acids, glycoproteins and enzyme cofactors [81]. Thus, GATs are key
metabolic enzymes that are crucial for cell proliferation and, likely, viral replication. First reported more
than half a century ago, protein deamidation is regarded as a non-enzymatic process that is associated
with protein functional decay or “aging” in metazoans [82]. Studies on bacterial secreted effectors
indicate that protein deamidation can be enzyme-catalyzed and highly regulated [83,84]. Investigating
gamma herpesvirus’ immune evasion, our group discovered that gamma herpesvirus ORF75 proteins
recruit cellular phosphoribosylformylglycinamidine synthetase (PFAS or FGARAT) to deamidate RIG-I,
thereby preventing antiviral cytokine production [85,86]. Although they share homology with cellular
PFAS, gamma herpesvirus ORF75 proteins lack the catalytic triad required for glutamine hydrolysis.
Thus, they are referred to as viral GAT (vGAT) pseudoenzymes. The fact that gamma herpesviruses
encode vGAT pseudoenzymes to hijack a metabolic PFAS for immune evasion is quite surprising
and suggests that deamidation may provide an intrinsic link between metabolism and immune
response. How these vGAT proteins specifically impact cellular nucleotide synthesis and generally
affect metabolism remains unknown. In stark contrast to gamma herpesviruses, alpha herpesviruses
express the UL37 tegument protein that functions as a bona fide deamidase during lytic replication [87].
UL37 can deamidate RIG-I and cGAS, thereby inactivating the innate immune signaling pathway
provoked by both dsRNA and dsDNA [87,88]. Conversely, the deamidase-deficient HSV-1 more
potently induces antiviral cytokines than wild-type HSV-1 in vivo and ex vivo. Whether UL37
participates or influences nucleotide synthesis or other metabolic reactions related to amidotransferase
activity is an open question awaiting investigation. Nevertheless, these findings reveal a previously
unrecognized enzyme activity and function of a metabolic glutamine amidotransferase in regulating
innate immune responses, representing a potential link between metabolism and immune responses.
Whether GAT-mediated protein deamidation is ubiquitous in metazoans needs further interrogation.

Besides their protein-deamidating activity, gamma herpesvirus ORF75 proteins were found to
antagonize nuclear domain 10 (ND10)-mediated cell-intrinsic restriction, thus promoting viral lytic
replication [89]. Specifically, ORF75 can induce the degradation of the ND10 component ATRX and
relocate ND10 Sp100, dismantling the ND10 complex [89]. Whether ND10 is involved in cellular
metabolism with or without viral infection would be intriguing to examine. Moreover, MHV68 encodes
three vGAT homologues, including vGAT (ORF75c), ORF75b and ORF75a. vGAT protein deamidates
RIG-I to evade antiviral cytokine production [90], while ORF75a promotes the early stage of viral
replication and increases cell death by virtue of increasing TNF-α production [91]. Thus, viruses have
evolved diverse means to evade immune responses via multifunctional viral proteins that provide
molecular links between immune response and other cellular activities, such as metabolism.

2.3. Eukaryotic Organelles

2.3.1. Mitochondria

Mitochondria are core organelles of biosynthesis and energy production in eukaryotic cells,
but are also an essential compartment for regulating immune responses in mammalian cells [92].
For example, the oxidative phosphorylation (OXPHOS) activity of mitochondria is critical to activate
RLR-mediated signal transduction and interferon production [93]. Damage-associated molecular
patterns (DAMPs), similar to PAMPs, can initiate innate signaling to induce cytokines to repair
cellular damage [94]. TLR9 and formyl peptide receptor-1 (FPR-1) recognize mitochondrial DNA
and N-formyl peptides, respectively, to ultimately induce cytokine production [94]. In response to
microbial infection, mitochondria generate reactive oxygen species (ROS) to kill microbes directly.
Mitochondrial ROS (mtROS) can also serve as signaling molecules to further induce the production of
pro-inflammatory cytokines (e.g., IL-6 and TNF-α) and the activation of pyrin domain-containing 3
(NLRP3) inflammasome that processes IL-1 for secretion [95,96]. Furthermore, mtROS can activate
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mitochondrial antiviral-signaling protein (MAVS) and its downstream pathways through cytochrome
c oxidase (CcO) to produce IFNβ [97]. Apart from mtROS signaling, mitochondria also provide
a membranous platform for MAVS to assemble signaling complexes relaying innate immune activation
downstream of cytosolic dsRNA sensors RIG-I and MDA5 [98]. Upon activation by dsRNA, RIG-I
interacts with and induces the oligomerization of MAVS to form prion-like aggregates [98]. MAVS
aggregates recruit IKKα, IKKβand IKKε kinases via the C-terminal segment, leading to the activation
of IRF3 and NF-κB [99–102].

Mitochondria are dynamic organelles, constantly undergoing fission and fusion to adapt to
cellular metabolic needs or in response to environmental cues. Fission and fragmentation are promoted
to eliminate damaged mitochondria and maintain normal metabolic function; whereas fusion and
elongation enrich metabolites and energy sources (e.g., ATP) in the presence of external stressors,
such as viral infection [103]. For example, Dengue virus infection induces mitochondrial elongation by
the viral NS4B protein, which antagonizes the fission effector dynamin-related protein (Drp1) [104].
Elongated mitochondria reshape mitochondria-associated membranes (MAMs), which impairs RIG-I
translocation to MAMs and further quenches innate immune responses [104]. Interestingly, hepatitis
C virus (HCV) promotes mitochondrial fission by inducing phosphorylation of Drp1, resulting in its
mitochondrial translocation to promote fragmentation. HCV-induced mitochondrial fission disrupts
the interaction between MAVS and RIG-I, impairing IFN induction [105]. Influenza A viral protein
PB1-F2 can translocate into the mitochondrial inner membrane through Tom40 channel, induces
mitochondrial fission and further impairs the RIG-I-mediated interferon induction by decreasing
the mitochondria membrane potential [106,107]. Furthermore, emerging evidence also revealed
that mitochondrial mitofusin-2 (Mfn2) can directly interact with MAVS to fragment mitochondria,
resulting in the inactivation of IRF-3 and NF-κB downstream of RIG-I [108,109]. Supporting the
significance of mitochondria in innate defense against HCV, proteolytic cleavage of MAVS from
the mitochondrial membrane potently diminishes RIG-I-mediated innate immune activation in
hepatocytes infected with HCV [105,110]. Collectively, these studies demonstrate that mitochondria
participate in a broad spectrum of immunological functions to restrict microbial invaders via the
activation of MAVS-mediated immune pathways, production of ROS and modulation of fission and
fusion dynamics.

2.3.2. Lysosome

Lysosomes are the primary organelles responsible for the degradation of large protein aggregates
or damaged organelles, thereby recycling amino acids, fatty acids and nucleotides to maintain cellular
homeostasis [111]. Lysosomes can also regulate the induction of inflammatory cytokines in response
to pathogen-associated molecules, such as microbial peptidoglycan and LPS [112]. The hydrolysis
of peptidoglycan by lysosomes converts peptidoglycan into a “mature” form that is recognized by
its cognate receptor, thus inducing TNF-α in monocytes and IL-8 in neutrophils [113]. The activity
of lysosomes can impact viral infectivity directly. For example, the inhibition of lysosome greatly
promotes HIV-1 infection due to the blockade of lysosomal degradation of HIV virions [114].

Autophagy, a lysosome-dependent degradative process, is an important cellular defense
machinery to dispose of xenobiotic substances and intracellular microbes [115]. To limit viral
replication, autophagy targets newly assembled viral particles, and processes viral nucleic acids
to activate endosomal TLRs, initiating type I IFN immune responses [116]. Autophagy-related protein,
ATG5, together with ATG12, bind to RIG-I and MAVS to prevent CARD-mediated signal transduction
under physiological conditions, thereby limiting excessive inflammatory responses [115,117]. Indeed,
loss of Atg5 in mouse embryonic fibroblasts (MEFs) increased the production of type I IFN in response
to vesicular stomatitis virus, demonstrating negative regulation of antiviral responses by ATG5 [118].
Therefore, the autophagy-lysosome degradative pathway plays a pivotal role in balancing a sufficient,
but not excessive, cellular inflammation.
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3. Cytokine Responses Guiding Host Metabolic Activity

Cytokines are a group of signaling polypeptides that modulate a broad spectrum of biological
processes via cell surface receptors [119]. Functionally, cytokines are classified into three groups:
adaptive immunity, such as IL-2 and IL-4; pro-inflammatory signaling, including interferons (Type I,
II, III), interleukins (e.g., IL-1, IL-6, TNF, IL-17); and anti-inflammatory signaling, such as IL-12
and IL-10 [120]. In response to external microbial infections or internal stress stimuli (e.g., cancer),
host cells secrete cytokines to reprogram cellular metabolism as a defense mechanism. Although
cytokines are traditionally studied in immune responses, the metabolism-modulating activity of
cytokines is increasingly recognized [21]. Research into the versatile functions of cytokines and related
signaling events can advance our understanding of immune regulation and related processes (such as
metabolism), paving the way for the development of innovative therapeutics for infectious diseases.

The Warburg effect was initially defined in cancer cells. It is the metabolic shift from
oxidative phosphorylation (OXPHOS) to glycolytic metabolism (aerobic glycolysis) even with
sufficient oxygen supply, providing intermediates for macromolecule synthesis needed during cell
proliferation [121,122]. Although the net ATP production efficiency of aerobic glycolysis is much lower
than that of OXPHOS, the pentose phosphate pathway (PPP) and serine/glycine pathway shunt
glycolytic intermediates to support the production of purines, pyrimidines and amino acids that
are crucial for viral replication and cell proliferation [121]. In addition, recent studies have revealed
several mechanisms employed by viruses to reprogram host metabolism to complete viral life cycles [5].
For instance, Kaposi’s sarcoma-associated herpesvirus (KSHV) utilizes miRNA to hinder mitochondrial
biogenesis and facilitate the installment of an aerobic glycolysis program to establish and maintain viral
latency [123]. Dengue virus (DENV) infection upregulates the expression of both glucose transporter 1
and hexokinase 2 to switch glucose metabolism to aerobic glycolysis [124]. Thus, viruses funnel cellular
metabolic activity to favor their infection, but cells may still be able to revert these changes to restrict
viral infection. Infection-induced cytokines indeed play a vital role in metabolic reprogramming,
as summarized in Table 1.

Table 1. Role of important cytokines in metabolism.

Cytokine Effects on Metabolism References

TNF-α Induces Insulin resistance; increase glycolysis, adenosine triphosphate (ATP)
production, and lactate export; reduce vitamin metabolism [125–127]

IL-2 Increases glucose metabolism via Akt-mTOR signaling to promote
T cell differentiation

[128]

IL-4 Up-regulates the expression of glucose transporter 4 (GLUT4); enhance glucose
and lipid metabolism

[129,130]

IL-6 Reduces vitamin metabolism; enhance lipolysis [127,131]

IL-10 Promotes insulin sensitivity; inhibits aerobic glycolysis and promotes
oxidative phosphorylation.

[132,133]

IFNs Induce fatty acid oxidation; reduce lipid biosynthesis [2,134]

Pro- and anti-inflammatory cytokines produce functionally opposing metabolism-modulating
activities and consequences in response to microbial infection. Anti-inflammatory IL-10 was found
to impede glycolysis switch by inducing an mTOR inhibitor, DDIT4, to prevent glucose uptake [132].
However, a recent report revealed that IL-2 increased glucose metabolism via the Akt-mTOR signaling
pathway, promoting proliferation of T helper 1 (Th1) cells and enabling a Th1-skewed immune
response [128]. Moreover, ATP production and lactate export are accelerated in response to TNF-α,
glycolysis, which correlates with increased cellular glucose uptake through up-regulation of the
expression of glucose transporter GLUT1 [125]. However, the effect of inflammatory cytokines on
cellular metabolism is also context-dependent on the current physiological condition. For example,
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TNF-α is able to induce insulin resistance by antagonizing tyrosine phosphorylation of the insulin
receptor and its major cytosolic substrate, insulin receptor substrate 1 (IRS-1) [126]. TNF-α and IL-6
were reported to suppress vitamin D metabolism in colonic epithelial cells by down-regulating the
vitamin D-activating enzyme CYP27B1 [127]. Studies on obese individuals showed that IL-6 modulates
glucose metabolism in myeloid cells and induces M2 polarization via up-regulating the expression
of IL-4 receptor in macrophages, which further exacerbates insulin resistance [135,136]. IL-4 was
also identified to promote the expression of glucose transporter 4 (GLUT4), enhancing lipogenesis
and reducing lipolysis, which results in fat accumulation in mature rat adipocytes [129]. However,
an opposite phenotype was reported in a similar study using 3T3-L1 pre-adipocytes [130], suggesting
that anti-inflammatory IL-4 cytokine function may be tissue specific and reflect the metabolic plasticity.

Interferons are major antiviral cytokines secreted by diverse host cells in response to viral
infection [137]. Type I IFNs can induce fatty acid oxidation in plasmacytoid dendritic cells by increasing
the expression of PPAR-α [2]. In addition, IFN-mediated innate immune responses alter the lipid
supply in macrophages by reducing intracellular lipid biosynthesis while promoting extracellular lipid
import [134]. The decrease in lipid biosynthesis suppresses viral assembly as viral replication requires
lipid levels that exceed normal cellular supply. Moreover, cholesterol 25-hydroxylase, identified as an
antiviral interferon-stimulated gene (ISG), transforms cholesterol into 25-hydroxycholesterol, which
restricts viral replication [138]. IFN-γwas found to inhibit the central metabolic regulator mTORC1
and repress mRNA translation to reshape macrophage metabolism in favor of host defense [139].
IRFs also play pivotal roles in regulating cellular metabolism. IRF3 inhibits the expression of
retinoid X receptor α, leading to hepatotoxicity associated with viral infection [140]. Suppressor
of cytokine signaling (SOCS) proteins are a group of inhibitors of cytokine signaling [141]. To prevent
excessive inflammatory responses, SOCS1 negatively regulates a number of glycolytic enzymes, such
as hexokinase, lactate dehydrogenase A and GLUT1, in macrophages during sepsis [142]. In this sepsis
model, macrophage metabolic reprogramming is dependent on the STAT3/HIF1α/glycolysis axis and
inhibition of glycolysis ameliorates susceptibility to sepsis. Hence, interferons and their effectors have
indirect antiviral activity by reprogramming cellular metabolism. These findings on how cytokines
govern the host metabolism advance our knowledge of the molecular link between immune response
and metabolism during viral infection.

4. Perspectives

Metabolism is a complex and systematic biological process, comprising an enormous number
of interconnected cellular biochemical reactions and signaling transduction pathways. Advances
in immunology unveil the critical role of host metabolism in antimicrobial responses and of
immune responses in metabolic reprogramming. Here, we highlight a few imminent questions
in immunometabolism in the context of viral infection that may further illuminate the interaction of
metabolism and cytokine responses.

4.1. Molecular Mechanism of Virus-Induced Metabolic Reprogramming

As viruses demand high metabolism to meet rapid viral replication, they likely deploy their gene
products to reprogram host metabolism, while impeding host immune defense (e.g., the production
of cytokines). Identification and functional characterization in immunometabolism of these viral
gene products will likely elucidate new molecular mechanisms by which metabolism is programmed
and immune response is regulated. The vGAT pseudoenzymes of gamma herpesviruses and their
functional homologues of herpes simplex viruses provide a system in which innate immune activation
and metabolism may be intrinsically coupled via protein deamidation [85–87], although the role
of these viral enzymes in metabolic control remains to be determined. To date, a limited number
of viral gene products have been implicated in modulating cell metabolism [5,22,143], while much
more is known about viral immune manipulation. More importantly, these two processes are often
independently studied in the context of viral infection. The growth of the interdisciplinary field of
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immunometabolism is expected to foster cross fertilization of these two subjects and unravel exciting
molecular links between them.

4.2. Metabolic Reprogramming by Anti- and Pro-Inflammatory Cytokines

Viral infection can trigger the production of both anti- and pro-inflammatory cytokines,
which systemically exert their effects on immune response and metabolism [144]. Even though
our understanding of metabolic reprogramming by various cytokines in cultured cells is rapidly
progressing, the ultimate goal remains to define the metabolic profile at the tissue, organ and body
level during immune response against viral infection. Innovative systems, entailing novel engineered
animal models and metabolite detection approaches or techniques, are urgently needed to monitor the
dynamic changes of immune response and metabolites in real time. Clustered Regularly Interspaced
Short Palindromic Repeats (CRISPR) technology and evolving imaging techniques may be leveraged
in the future to fill this gap.

4.3. Immunometabolism in the Context of Inter-Kingdom Microbial Infections

Current studies of immunology mainly concentrate on either bacterial or viral infection on host
cells, while co-infection studies with multiple species of the same kingdom or trans-kingdom are
burgeoning [145]. The human microbiome contains bacteria, fungi and viruses, and this poly-microbial
consortium likely render a distinctly different immune-metabolic profile than those endowed by any
individual player [146]. Moreover, these pathogens may extensively collaborate to evade immune
responses. For example, bacterial quorum-sensing molecules have been found to inhibit RIG-I induced
antiviral innate immunity, which facilitates viral replication [147]. In return, viruses may play a role in
bacteria- and fungi-induced immune signaling transduction, but this needs to be explored to further
understand immune signaling pathways that interface between bacteria, viruses and mammalian cells.
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