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Liver and tumor segmentation is an important technology for the diagnosis of hepatocellular 
carcinoma. However, most existing methods struggle to accurately delineate the boundaries of the 
liver and tumor due to significant differences in their shapes, sizes, and distributions, which leads 
to unclear segmentation of the liver contour and incorrect delineation of the lesion area. To address 
this gap, we propose a hybrid gabor attention convolution and transformer interaction network with 
hierarchical monitoring mechanism for liver and tumor segmentation, named HyborNet. Generally, 
the proposed HyborNet consists of a local and a global feature extraction branch. Specifically, the local 
feature extraction branch consists of several cascaded gabor attention convolutional blocks, each of 
which contains a multi-dimensional interactive attention module and a gabor convolutional module. In 
this way, fine-grained information about the liver and tumor can be extracted, which refines the edge 
details of the target area and accurately depicts the lesion area. The global feature extraction branch 
is constructed with a transformer model, which is capable of extracting coarse-grained information 
about the liver and tumor and accurately distinguishing them from similar tissues. Additionally, we 
propose a cross-attention-based dual-branch interaction module that adaptively fuses features from 
different perspectives to emphasize the target region, thereby enhancing the network’s segmentation 
performance. Finally, a hierarchical monitoring mechanism is employed in the decoding stage, which 
provides additional feedback from deeper intermediate layers to optimize the segmentation results. 
Extensive experimental results demonstrate that HyborNet significantly outperforms other state-of-
the-art models in liver and tumor segmentation tasks. The proposed model effectively enhances liver 
image segmentation accuracy, assisting doctors in making more precise diagnoses.

The liver is a major metabolic organ in the human body, playing an important role in digestion and excretion. 
Liver cancer is the most common disease worldwide1. Many people die from liver cancer every year2. Early 
detection, diagnosis and treatment of hepatocellular carcinoma are essential to improve survival and quality 
of life for patients. Advances in computer technology have led to the development of many medical imaging 
techniques. Among them, computed tomography (CT) is a widely used imaging tool3. It is widely used to detect 
the shape, texture and focal lesions of the liver4. Therefore, fast and accurate identification, localization and 
segmentation of focal areas from CT is an important prerequisite for physicians to make cancer diagnoses and 
treatment plans for their patients.

In recent years, Convolutional Neural Network (CNN) have gained widespread attention for their superior 
feature extraction capabilities5. By employing multiple filters across various layers, CNN demonstrate robust 
potential for nonlinear feature representation and are able to handle massive amounts of data efficiently. CNN 
have achieved impressive results in medical image segmentation tasks. Currently, the majority of effective 
segmentation architectures are based on the U-Net framework, which employs an encoder-decoder structure 
with skip connections. This architecture allows the network to simultaneously capture high-level semantic 
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features and low-level spatial details. The encoder progressively reduces the spatial dimensions of the image, 
extracting hierarchical features, while the decoder reconstructs the image through progressive upsampling of 
feature maps. The skip connections between corresponding layers in the encoder and decoder preserve fine-
grained details, which are essential for accurate pixel-level segmentation. With the development of U-Net, 
several high-performance medical image segmentation networks have been proposed. For example, Attention 
U-Net integrates attention mechanisms into the convolutional layers to selectively focus on important 
features and suppress irrelevant ones, thereby improving segmentation performance for regions with complex 
boundaries. U-Net++ introduces nested skip pathways to better capture multi-scale features and enhance the 
flow of information between layers. Additionally, Res-Net integrates residual networks into U-Net, allowing the 
network to extract deeper features from the target regions in medical images.

Transformer has achieved results in natural language processing (NLP) and computer vision (CV) by 
exploiting the properties of the self-attention mechanism to acquire global features6. One of the most famous 
is Visual Transformer7, which applies Transformer to CV and uses a self-attentive head to efficiently extract 
global information features in images. Many methods based on transformer are widely used for liver and tumor 
segmentation. Swin Transformer was introduced in U-Net in to enhance the global nature of the network8. To 
improve the perception of the network and the global understanding of the image journey, Transformer is used 
instead of down sampling and RDCTrans U-Net is proposed for liver segmentation9. To learn the features of 
different tumors, a dynamic hierarchical Transformer network is proposed using a hierarchical operation with 
different receptive field sizes10. In addition, the self-attention mechanism is used as the core of Transformer, and 
introducing this dot product attention into the model can also capture long-term contextual information and 
improve the accuracy of liver tumor segmentation11.

Although the above methods achieve good segmentation results, they still fail to take full advantage of the 
rich local and long-range dependent information contained in medical images. On the one hand, due to the 
sparse interaction nature of the convolution operation, the sensory field of the CNN-based method can only 
extract local semantic information of the image, resulting in the background region being recognized as a lesion 
region. On the other hand, Transformer utilizes the dispense convolution operator and the attention mechanism 
to map a series of image block sequences into an abstract continuous representation, thus obtaining a global 
dependence on the whole image and effectively avoiding erroneous segmentation results of the background in 
medical images. However, the structure of Transformer ignores the local information, and over-segmentation 
or under-segmentation of different lesion regions can occur. Therefore, there is an urgent need for network 
models that extract both local features and global information to improve the segmentation accuracy of liver 
and tumors.

In the process of designing the above model, we encountered three difficulties. The first is that it is more 
difficult to extract edge details of irregular liver and tumor. The second is how to realize the simultaneous 
extraction of local and global features. The third is how to achieve effective fusion of local features and global 
features and exploit their complementarity. We found that the shape, size, and distribution of liver tumors are not 
fixed. However, the convolution kernel uses the same parameters to extract information at different locations, 
which cannot emphasize the importance of each feature. In addition, the direction and scale of the convolution 
kernel are single. Therefore, it is difficult to accurately identify liver tumors and accurately extract the edge 
texture features of irregular tumors from abdominal CT with rich information. To solve the second problem, 
we employ a dual-coded branching structure. The local and global encoders extract features independently, thus 
extracting more comprehensive features from the image and improving the segmentation performance of the 
model. To address the third issue, we propose Dual-branch interactive module. There are two main challenges in 
the design of this module. The first challenge is that the features output by the local feature branch and the global 
branch are different. The second challenge is how to design a reasonable feature fusion scheme that exploits the 
complementary advantages between the two branches. To solve the above challenges. Firstly, we perform spatial 
attention and channel attention operations on local features and global features respectively to transform and 
enhance the output features. Secondly, we encode the corresponding position of the feature maps of different 
branches, and perform attention cross fusion by receiving the feature maps of their own branch and the feature 
maps of another branch. The complementarity of global branch and local branch is effectively played to improve 
the performance of the model.

The main contributions of this paper can be summarized as follows: 

	1.	� we propose a hybrid gabor attention convolution and transformer interaction network with hierarchical 
monitoring mechanism for liver and tumor segmentation, named HyborNet, which uses local encoder 
branch and global encoder branch to extract features independently. Capture more features from the image.

	2.	� We propose gabor attention convolution to form the local feature extraction branch to process the downsam-
pled medical images, retrieve the features of the local region, and perform fine-grained extraction of the local 
detail information of the liver and tumor.

	3.	� We propose dual-branch interactive module to achieve feature alignment and efficient fusion, and make full 
use of the complementary properties of CNN and Transformer to improve the quality of segmentation.

	4.	� We propose the hierarchical monitoring mechanism, which is integrated between different layers of the net-
work decoder to restrict the network weights to the target region and optimize the segmentation results.

Related works
Liver and tumor segmentation based on CNN
In recent years, deep learning models such as convolutional neural networks have shown exciting performance 
in the field of liver tumor segmentation. Long et al. proposed a full convolutional neural network (FCN) for 
semantic segmentation in the novel, which is based on the principle of CNN and has an encoder-decoder 

Scientific Reports |         (2025) 15:8318 2| https://doi.org/10.1038/s41598-025-90151-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


structure12. Christ et al. combined a cascading FCN model with a dense 3D conditional field to achieve automatic 
liver segmentation13. Liu et al. extracted spatial features from each convolutional block and fused them into the 
convolutional network to take advantage of multi-scale features14. To overcome the influence of different tumor 
sizes and shapes during liver tumor segmentation, the researchers developed the U-Net network. The U-Net 
architecture was originally developed for medical image segmentation. It consists of two parts, an encoder and 
a decoder, which are interconnected to form a U-shaped network structure. The encoder can be seen as the 
feature extraction part, while the decoder can be seen as the feature fusion part. Compared with traditional 
FCN, U-Net uses feature splicing to realize the fusion of shallow low-resolution information and deep high-
resolution information. Appadurai et al. used U-Net as an encoder and a pre-trained efficient network as a 
decoder for liver lesion segmentation15. Wu et al. proposed a cascaded U-Net in which two U-Nets are used 
sequentially to segment the target from coarser to finer. The cascaded U-Net is connected in an end-to-end 
manner by merging the internal nested connections between the two U-Nets16. However, the method requires a 
large number of model parameters, resulting in high computational effort and time overhead. To overcome this 
limitation, Zhu et al. cascaded U-ADenseNet for fully automatic segmentation using a coarse-to-fine processing 
strategy17. Inspired by the success of U-Net, many researchers have improved the network based on U-Net. Zhou 
et al. proposed U-Net++ based on nested and dense jump connections18. Dense blocks and convolutional layers 
were used to improve the accuracy of the segmentation results. Later, Kushnure et al. improved it by using the 
preactivated multiscale Res2Net as the backbone and adding a channel attention block (PARCA). Applying the 
channel attention block to long jump connections and applying the attention mechanism to the upsampling 
process reduces the loss of feature values in both processes to improve the performance of U-Net++19. Huang et 
al. used full-scale jump connections and deep supervision, fusing different levels of varying information from 
the feature maps at full scale while keeping the number of parameters low20. li et al. proposed a network EResU-
Net based on the combination of efficient channel attention and ResU-Net ++ to mitigate the effects of uneven 
sample distribution21.

Attention mechanisms can provide neural networks with the ability to focus on inputs, leading to improved 
model accuracy and efficiency22. To suppress irrelevant features in liver segmentation, Sun et al. proposed a 
U-Net model based on attention gating23. Meanwhile, Luan et al. proposed a spatial attention mechanism and 
a channel attention mechanism to encode semantic features over longer distances using long-hop connections 
between the encoder and decoder, and to fuse semantic information extracted from contraction and expansion 
paths24. Fan et al. proposed a multiscale attention U-Net consisting of a positional attention block (PAB) and 
a multiscale fusion attention block (MFAB). They integrated PAB and MFAB blocks into the bottleneck layer 
and coding paths to capture features relatively25. Lei et al. designed a Ladder-Aspace Pyramid Pooling (Ladder-
ASPP) module using multiscale expansion rates to learn better contextual information26 . Ozcan et al. proposed 
the Additive Inception-UNet (AIM-UNet) model for computer-aided automatic segmentation of liver and liver 
tumors, which learns more local features than the standard U-Net model27.

Despite achieving satisfactory segmentation results, the model is limited by the inherent local nature of 
convolution, which can only capture information from the pixel domain and lacks the ability to explicitly capture 
global dependencies. In the liver CT segmentation task, global dependencies are crucial for determining the exact 
location of the liver and tumors. Therefore, CNNs constructed with deeper encoders and active downsampling 
operations are required to extract more global features. However, successive downsampling operations lead to 
network redundancy and loss of location information. Therefore, in this paper, we propose dual-coded branching, 
construct distance dependent branching based on transformer to extract global information, identify the lesion 
region, and use dual-branching interactive module for high fusion of features to improve segmentation accuracy.

Liver and tumor segmentation based on Gabor
Gabor mimics the human visual system and can detect features in multiple directions and scales. It is suitable for 
texture representation and recognition28. It is a special kind of convolution, invariant to rotation, scale and shift, 
so it has been widely used in image processing. Some scholars use Gabor to extract texture features of different 
tissues and structures in images, which can realize accurate localization and segmentation of organ boundaries. 
Ashreetha et al. used Gabor to extract features from abdominal CT, and then used a classifier to segment liver29 
. Kazemi et al. used Gabor filter banks based on GLCM to extract features30. Bhagya et al. used Gabor filter to 
minimize noise to improve image quality, and then performed tumor segmentation on liver images31.

Gabor filters may not work well when processing images that are low in contrast, blurred, or contain a 
large number of artefacts. Therefore, the Gabor filter is combined with other feature extraction methods and 
segmentation algorithms to further improve the accuracy and robustness of the segmentation. Kinnikar et al. 
used Gabor as a pre-processing tool to generate Gabor features, which were then used as input to the CNN32. To 
reduce the complexity of CNN training and improve the robustness of the feature representation, Sarwar et al. 
used Gabor filters in the first or second convolution layer33 . Luan et al. proposed Gabor convolutional networks 
to improve the robustness of feature learning to changes in direction and scale34. Recently, Yoo et al. proposed an 
alternative to traditional pooled wavelets that can accurately reconstruct local information of images35. Based on 
Gabor, Diao et al. proposed the automatic pseudo-labelling (TAPL) module, which uses the texture information 
of tumors to enable the neural network to actively learn the texture differences between different tumors to 
improve the segmentation accuracy36. Mostafiz et al. used Gabor wavelet transform (GWT) and local binary 
mode (LBP) to combine features with a pre-trained deep CNN model to detect lesions in liver ultrasound and 
solve problems such as artifacts, speck noise and fuzzy effects in ultrasound37.

Although the above research on Gabor has produced impressive results, there are still two problems. On the 
one hand, the Gabor filter is sensitive to image quality and noise. If the image quality is poor or there is more 
noise, the accuracy and stability of the segmentation can be affected. However, Gabor only enhances the ability 
of the receptive field to extract semantic information such as local edges or textures, but it still cannot achieve 
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accurate segmentation of the target region. Therefore, this paper proposes that the Gabor attentional learnable 
convolution can effectively solve these problems. Under the guidance of the attention mechanism, the network 
can pay more attention to global information, and the Gabor-modulated convolution kernel can learn richer 
feature representations and improve the segmentation accuracy of liver and tumors.

Liver and tumor segmentation based on transformer
Transformers were first proposed in the field of NLP and have achieved state-of-the-art performance in machine 
translation (ML). Inspired by their great success in NLP tasks, many researchers have investigated the adaptability 
of transformers in computer vision and medical image analysis tasks. Dosovitskiy et al used Transformer’s 
recent work in the graphics domain, which is an iconic work38. SETR provides a new perspective where 
semantic segmentation is reconsidered as a sequence-to-sequence prediction problem for transformers39. Swin 
Transformer extracts local features within each split window and merges them by self-focusing in continuously 
moving windows40. Ni et al. proposed a region adaptive transformer (DA-Tran) network to segment liver tumors 
from each CT phase41. Li et al. proposed a dynamic layered transformer network, called DHT-Net, for liver 
segmentation. Di et al. fused transformer and directional information into the convolutional network to achieve 
automatic segmentation of CT images of liver tumors42. While Transformer has advantages in extracting global 
representations, self-attention at the image level rarely captures fine-grained details. Therefore, in this paper, 
Gabor attention convolution is used to form local feature extraction branches, extract local texture features, and 
extract local details of liver and tumors in fine grain to improve the segmentation accuracy of liver and tumors.

Method
In this section, we will introduce the HyborNet and the structure of the components in detail. Firstly, the overall 
structure of our network is presented, followed by describing the details of each component at a theoretical level 
including: the Gabor attention convolution, the dual-branch interactive module, optimization and the deep-loss 
monitoring mechanism.

Overview of the proposed network
A qualified model should be able to capture the intrinsic features in medical images. In abdominal CT, due to 
the imaging principle, the organ is not high contrast, the border is not obvious and it is difficult to distinguish it 
from other organs. In addition, liver and tumour segmentation is challenging because liver tumours are variable 
in size and shape. We believe that effective fusion of global and local features can ensure consistency between 
different features, further improving segmentation performance.

As shown in Fig. 1, HyborNet is based on the classical medical image segmentation network U-Net and 
adopts an asymmetric dual-flow encoder-decoder architecture. In particular, the network consists of two 
parallel branches of feature extraction, namely a local feature extraction branch using a CNN structure and a 
remote dependent feature extraction branch using a transform structure. The CNN branch uses Gabor attention 
convolution as its basic component, which can represent multi-scale features in fine granularity, enhance 

Figure 1.  Architecture of the proposed HyborNet for Liver tumor segmentation.
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the local feature extraction capability of the network, and refine the edge detail texture features. For remote 
dependent branches, we adopt the PVT17 framework in the transfer model. Due to its unique pyramid structure 
and space reduction attention mechanism, PVTv2 has stronger feature extraction capabilities and reduced 
resource consumption. Therefore, PVTv2 is used.

The overall segmentation process of HyborNet is as follows. For the input image I ∈ Rw×h×c, we first extract 
pixel-level detail features and object-level global features Ii ∈ R

W

2i+1 × h

2i+1 ×ci  using two trunk branches, 
respectively, where ci ∈ {64, 128, 256, 512} , i ∈ {1, 2, 3, 4}. Then, we subtract the global features extracted in 
the remote dependency branch from the local features extracted in the local feature branch of the corresponding 
stage to obtain the high-resolution edge profile features, and then perform the maximum pooling downsampling 
operation. Next, the final extracted local and remote-dependent features from the two branches are fed into 
the dual-branch interactive module, and the local and remote-dependent features are aggregated for feature 
aggregation. Secondly, the feature vectors aggregated to contain the local and global features are input to the 
decoder, while the features of the coding path and the decoder are fused using four jump connections, the first 
and second jump connections allow the information containing the high resolution texture features in the local 
feature branch to be obtained at a shallow level and fused into the decoder. The third and fourth bounds pass the 
deep edge information in the global dependency branch to the decoder. The feature vectors are designed to have 
high resolution texture and deep edge information to obtain accurate liver and tumour segmentation results. 
Finally, for each decoding block, a classifier is added to generate multi-scale segmentation maps at different 
stages for loss function calculation to optimise the segmentation results and improve the segmentation accuracy.

Gabor attention convolution
The Gabor Attention Convolution (GAC) is an important part of HyborNet. It is the smallest unit of the encoder 
and decoder. Although the traditional convolutional neural network uses convolution operations with common 
parameters, which greatly reduces the computational cost and complexity of the model, the shape, size, colour 
and distribution of objects at different locations in the image are variable, and the convolution kernel uses the 
same parameters in each sensor field to extract information without considering the difference information at 
different locations. Therefore, the performance of standard convolutional operations is limited. GAC proposed 
in this paper solves this problem well. The structure diagram of Gabor attention convolution is shown in Fig. 
2. Specifically, GAC consists of multi-dimensional interactive attention and Gabor learnable convolution. In 
this paper, the size of the convolution kernel for the Gabor convolution is 5 x 5. The convolution kernel in 
Fig. 2 has been magnified to more clearly illustrate the directionality of the Gabor convolution kernel. For 
multi-dimensional interactive attention, rich contextual information can be learned, and multi-scale feature 
information can be aggregated to remove noise that is not affected by the target region. It not only focuses on 
the discriminative features of the channel and spatial dimensions, but also establishes the multi-dimensional 
interaction relationship between the channel and spatial dimensions. In addition, the weighted parameters are 
adjusted to further blend the characteristics of each view.

Figure 2.  The structure of Gabor attention convolution.
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Multi-dimensional interactive attention can be divided into four parallel branches: channel dimension 
attention, channel and width dimension attention, channel and height dimension attention and space dimension 
attention. The first branch focuses on recalibrating channel level feature representation capabilities. First, we 
aggregate the spatial features of the input using maximum pooling and average pooling respectively, and define 
them as Xc&c

1(max) ∈ Rc×1×1, Xc&c
1(avg) ∈ Rc×1×1. Then, using a multi-layer perceptron (MLP) consisting of two 

1 × 1 onvolutional layers and an activation function (Rule), the size of the middle layer is set to R∈c/2×1×1 in 
order to maintain channel resolution and minimize the number of parameters, and the output of the MLP is 
summed at the element level. The sum output is then passed through the softmax activation function to get the 
channel-level attention weight Ac&c (X) ∈ Rc×1×1. It can be concluded that the mathematical calculation of 
the weight mapping of the channel-level attention of the first branch is as follows:

	

Ac&c(X) = θ (MLP(Maxpool(X)) + MLP(Avgpool(X)))
= θ

(
W2ξ

(
W1

(
Xc&c

1(max)
))

+ W2ξ
(
W1

(
Xc&c

1(avg)
)))� (1)

where θ is the sigmoid function, ξ is the ReLU function, W1 ∈ Rc/2×c and W2 ∈ Rc×c/2. Finally, the first 
branch output feature maps Xc&c

1  is generated by the following equation:

	 Xc&c
1 = Ac&c (X) X � (2)

The main role of the second branch is to focus on the interaction of channels and height dimensions. Firstly, X is 
rotated 90 degrees counterclockwise along the height scale to generate a new semantic feature Xc&h

2r ∈ Rw×h×c

, Next, feature aggregation of Xc&h
2r ∈ Rw×h×c is performed using maximum pooling and average pooling, 

Xc&h
2r(max) ∈ R1×h×c and Xc&h

2r(avg) ∈ R1×h×c, respectively.
These outputs are then concatenated with BN using a K × K  convolution operation, and then, using S-type 

activation function yields the weight mapping of cross attention between channels and height dimensions 
Ac&h

(
Xc&h

2r

)
∈ R1×h×c. In short, its calculation formula is as follows:

	

Ac&h(Xc&h
2r ) = θ

(
fk×k

[
Maxpool

(
Xc&h

2r

)
, Avgpool

(
Xc&h

2r

)])

= θ
(
fk×k

[
Xc&h

2r(max), Xc&h
2r(avg)

]) � (3)

where θ is the sigmoid function, fk×k  is the K × K  convolution operation with the BN.he second branch 
output feature maps Xc&h

2  s generated by the following equation:

	 Xc&h
2 = Roated

(
Ac&h

(
Xc&h

2r

))
Xc&h

2r � (4)

The third branch is mainly concerned with the interaction between the channel dimension and the width 
dimension. The process of calculating semantic features is similar to the process of calculating channels and high 
attention. Firstly, the input X is rotated 90 degrees counterclockwise along the width to obtain a new semantic 
feature Xc&w

3r ∈ Rh×c×w . After that, perform the same operation as the previous branch. The calculation 
process of the attention mechanism of channel dimension and width dimension can be summarized as follows:

	

Ac&w(Xc&w
3r ) = θ

(
fk×k

[
Maxpool

(
Xc&w

3r

)
, Avgpool

(
Xc&w

3r

)])

= θ
(
fk×k

[
Xc&w

3r(max), Xc&w
3r(avg)

]) � (5)

	 Xc&w
3 = Roated

(
Ac&w

(
Xc&w

3r

))
Xc&w

3r � (6)

The main function of the fourth branch is to focus on the characteristics of the target region in the spatial 
dimension. The calculation process of the spatial attention map and the output of spatial attention can be 
summarized as follows:

	

Ah&w(Xh&w
4 ) = θ

(
fk×k

[
Maxpool

(
Xh&w

4
)

, Avgpool
(
Xh&w

4
)])

= θ
(
fk×k

[
Xh&w

4(max), Xh&w
4(avg)

]) � (7)

	 Xh&w
4 = Ah&w

(
Xh&w

4
)

Xh&w
4 � (8)

Finally, in order to further improve the fusion ability of features, we add a learnable weight parameter to the 
back of the four branches, so the output in the multi-dimensional interactive attention can be summarized as:

	

wi = exp (ai)
4∑

j=1
exp (aj)

, i = 1, 2, ..., 4
� (9)

	 Y =w1
(
Xc&c

1
)

+w2
(
Xc&h

2
)

+w3
(
Xc&w

3
)

+w4
(
Xh&w

4
)

� (10)
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 where wi is the normalized weight coefficient and 
∑

wi = 1, ai and aj  are the initial weight coefficients.
Due to the limitation of receptive field, standard convolution cannot capture the information difference 

brought by different locations, which limits the performance of neural networks to some extent. Gabor filter can 
extract semantic features from medical images in multi-scale and multi-direction, refine texture features, and 
capture detailed feature information. Gabor’s learnable convolution inherits this ability well. One-dimensional 
Gabor function was first proposed by Gabor18. Then, Daugman proposed the two-dimensional Gabor function19, 
which can be expressed as a Gaussian kernel function modulated by sine-wave plane waves. The 2D Gabor 
function typically applied to 2D images is defined as follows

	
gr (x, y, λ, θ, ψ, σ, γ) = exp

(
−x′2 + γ2y′2

2σ2

)
cos

(
2π

x′

λ
+ ψ

)
� (11)

	
dx′

dθ
= x cos θ − y sin θ, � (12)

	
dy′

dθ
= −x sin θ + y cos θ� (13)

where, x and y represent the horizontal and vertical coordinates of a pixel in the image, λ represents the 
wavelength, 1

λ  represents the spatial frequency of the cosine function, and θ is the direction parameter. In 
addition, γ represents the aspect ratio of space, which determines the ellipticity of the receptive field. ψ s the 
phase offset and σ is the standard deviation of the Gaussian factor. the principle of Gabor learnable convolution 
is to combine a Gabor filter with the Hadamard product of a standard convolution kernel. The specific formula 
is as follows:

	 CG = C • G (λ, θ)� (14)

where, GC stands for Gabor learnable convolution, C for standard convolution kernel, and G (λ, θ) for Gabor 
filter. Accordingly, the scale and direction parameters are denoted by λ and θ, respectively. • Indicates the 
Hadamard product. The dashed line in the Fig. 2 is a schematic of Gabor’s structure.

Dual-branch interactive module
Dual-branch fine fusion is crucial for the success of HyborNet to capture features from two different views of the 
same image. In order to capture such interactive fusion features, we design a cross-attention based interactive 
fusion module, the dual-branch interactive module (DIM), as shown in Fig. 3. Specifically, this module aims to 
fuse feature information between local feature extraction branches and remote dependency extraction branches, 
and propagate the information interactively in a dynamically learnable manner. Compared to a simple merging 
of features from different perspectives, the DIM module facilitates an adaptive integration between the two 
feature representations, thus enabling a more informative feature representation.

The specific process of DIM is as follows: Firstly, for local feature extraction branch Ci, spatial attention is 
used as a spatial filter to eliminate feature noise, enhance local details and obtain output Ĉi. Channel attention 
mechanism is applied to remote dependent branch Ti respectively to promote the output of global information 
T̂i Meanwhile, interactive feature extraction is carried out for Ci and Ti. Secondly, the position coding of the 
same dimension will be embedded in two branches, two cross-interactive attention modules, by receiving their 
own branch feature map and another branch feature map to perform attention interaction fusion, producing two 
outputs cf  and tf . Finally, the participating feature cf , tf  and the interactive feature are connected and passed 
through the residual block to output the resulting feature fi. The specific formula is as follows:

	 T̂i = ChannelAttn(Ti) � (15)

	 Ĉi = SpatialAttn(Ci) � (16)

	 bi = Conv
(
TiW

i
1 ⊙ CiW

i
2
)

� (17)

	 cf = CrossAttn
(
Ĉi

)
� (18)

	 tf = CrossAttn
(
T̂i

)
� (19)

	 fi = Re sideual (cf , tf , bi) � (20)

where |⊙| is Hadamard product and Conv is a 3x3 convolution layer.
In DIM, the attention mechanism is the basic operation for designing the feature fusion interaction module. 

Taking eigenvector Q, K, V ∈ RN×C as an example, the general attention function (Att) mainly functions in the 
dot product operation after scaling. The formula is as follows:

	
Att(Q, K, V ) = softmax

(
QKT

√
C

)
V � (21)
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However, the implementation of the soft maximum logarithm and attention diagram requires O
(
n2)

 space 
complexity and O

(
n2c

)
 time complexity. Inspired by the study of self-attention linearization11, we factor the 

attention map using two functions ϕ (•), φ (•) and roughly estimate the attention map by calculating matrix 
multiplication of keys and values. The specific formula is as follows:

	 Att(Q, K, V ) = ϕ(Q)
(
φ (K)T V

)
� (22)

Factorization reduces the space and time complexity to O (NC) and O
(
NC2)

,respectively, which are linear 
functions of sequence length N.In our experiment, we developed an attention-oriented mechanism with φ as 
scale factor 1/

√
C  and φ as softmax:

	
Att(Q, K, V ) = Q√

C

(
softmax (K)T V

)
� (23)

Next, although this decomposition of attention is not an unbiased approximation of scaled dot product attention, 
it can still be considered a generalised attention mechanism that uses Q, K, and V to model feature interactions. 
Factorising the attention module reduces the computational burden of dot product attention proportionally. 
Furthermore, since we first compute S = softmax

(
(K)TV

)
∈ RC×C ,then S can be considered as a data-

dependent global linear transformation for each feature vector query Q mapping, which suggests that there may 
be two equivalent query vectors q1 and q2 in Q. Therefore, the associated self-attentive output can theoretically 
be defined as

	
Att (Q, K, V)1 = q1√

C
S = q2√

C
S = Att (Q, K, V)2 � (24)

Figure 3.  The structure of Dual-branch interactive module.

 

Scientific Reports |         (2025) 15:8318 8| https://doi.org/10.1038/s41598-025-90151-8

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


However, this property can lead to poor results for feature extraction. Specifically, based on this operation, 
the output will depend only on the structure of the input token, without noticing the differences in the local 
features. In other words, this property is disadvantageous for image tasks, especially for tasks as intensive as 
segmentation. To improve the relative relationship between the model tokens, we added a positional coding 
p =

{
pi, i = − M−1

2 , ..., M−1
2

}
 with window size M to capture the relative attentional mapping λQ ∈ RN×C.

	
Re lAtt(X) = Q√

C

(
softmax (K)T V

)
+ λQ � (25)

	 λQ = DepthwiseConv(V) ◦ Q � (26)

where ◦ is the Hadamard Product. Each element λQ is a relative attention feature plot of the relation (q, v) 
representing the relation from qi to vi , and aggregating all related value vectors individually into qi. he process 
is shown in Fig. 3, in contrast, λQ is more efficient with O (NC) and O (NCM2) in time.

Optimization
In this section, we will show the process of parameter updating for Gabor convolution. the Gabor Convolutional 
Filters (GC) are constructed by applying the Hadamard product between the convolutional kernels and the 
Gabor filters:

	 GC(C, λ, θ) = C ◦ Gk(λ, θ)� (27)

where, GC  is the Gabor convolutional, C  is the convolutional kernel ,Gk(λ, θ) is the k-th Gabor filter with 
scale parameter λ and orientation parameter θ,◦ denotes the Hadamard product (element-wise multiplication).

Using the chain rule, the gradient of the loss function L with respect to the convolutional kernel C  is 
computed as:

	
∂L

∂C
= ∂L

∂GC

∂GC

∂C
� (28)

Substituting ∂GC
∂C

= Gk(λ, θ) from the previous step, we obtain the final gradient of the loss function with 
respect to the convolutional kernel:

	
∂L

∂C
= ∂L

∂GC
Gk(λ, θ)� (29)

Once we have the gradient of the loss function with respect to the convolutional kernel Cl
j , we use gradient 

descent to update the kernel. The update rule for the convolutional kernel is as follows:

	
C = C − ηC

∂L

∂C
� (30)

where, C  is the current convolutional kernel, ηC  is the learning rate for the convolutional kernel , ∂L
∂C  is the 

gradient of the loss function with respect to the convolutional kernel.
Substituting the gradient computed above, the update rule becomes:

	
C = C − ηC

(
∂L

∂GC
Gk(λ, θ)

)
� (31)

The Gabor filter is defined as a product of a Gaussian function and a sinusoidal plane wave. It is written as:

	
gr (x, y, λ, θ, ψ, σ, γ) = exp

(
−x′2 + γ2y′2

2σ2

)
cos

(
2π

x′

λ
+ ψ

)
� (32)

	 x′ = x cos θ + y sin θ � (33)

	 y′ = −x sin θ + y cos θ � (34)

where, σ controls the scale of the filter, λ is the wavelength, which controls the frequency, θ is the orientation 
angle, σ is the standard deviation of the Gaussian, γis the aspect ratio of the spatial field, ψ is the phase offset, 
x, y are the image coordinates.

The Gabor filter’s structure allows it to capture both local texture and edge information in an image by 
modulating sinusoidal components in the frequency domain, which is crucial for image segmentation tasks like 
liver and tumor delineation.

we calculate the gradients of the loss function with respect to the Gabor filter parameters (λ and θ) to update 
the filters and convolutional kernels during backpropagation.

The gradient of the Gabor filter with respect to the scale parameter λ is computed as:
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∂gr

∂λ
= 2π

x′

λ2 exp
(

−x′2 + γ2y′2

2σ2

)
sin

(
2π

x′

λ
+ ψ

)
� (35)

This gradient term ensures that during backpropagation, the Gabor filter adjusts its scale (λ) to better capture 
frequency components in the image.

The gradient of the Gabor filter with respect to the orientation parameter θ is more complex and is given by:

	

∂gr

∂θ
= − exp

(
−x′2 + γ2y′2

2σ2

) [
x′ dx′

dθ
+ γ2y′2

σ2 cos
(

2π
x′

λ
+ ψ

)
+2π

λ

dx′

dθ
sin

(
2π

x′

λ
+ ψ

)]
� (36)

	
dx′

dθ
= x cos θ − y sin θ, � (37)

	
dy′

dθ
= −x sin θ + y cos θ � (38)

This term ensures that the Gabor filter adapts its orientation (θ) to better align with the edges and textures in the 
image, improving segmentation performance.

	
δλ

k = 1
JN

J∑
j=1

N∑
n=1

cj,n
∂L

∂GCj, n

∂GCj,n

∂Gk(λ, θ)
∂Gk(λ, θ)

∂λ
� (39)

	
δθ

k = 1
JN

J∑
j=1

N∑
n=1

cj,n
∂L

∂GCj, n

∂GCj, n

∂Gk(λ, θ)
∂Gk(λ, θ)

∂θ
� (40)

During backpropagation, theGabor filters is updated. The scale and orientation parameters are updated as 
follows.

	 λk =λk − ηλδλ
k � (41)

	 θk =θk − ηθδθ
k � (42)

The aforementioned content delineates the update process of learnable parameters in Gabor convolution and 
Gabor attention convolution.

Hierarchical monitoring mechanism
In the training process, the loss function consists of using the binary cross-entropy loss LBCE  and the dice loss 
LDice, where Rgt and Rseg represent the real label value and the predicted result, respectively. Then LBCE  and 
LDice can be defined as

	 LBCE(Rgt,Rseg)=−(1−Rgt) log (1−Rseg)−Rgt log Rseg � (43)

	
LDice (Rgt, Rseg) = 1 − 2RgtRseg

Rgt + Rseg + ε
� (44)

The ε in the formula is a small constant set to avoid having a zero denominator. Therefore, the loss function in 
the experiment can be derived according to LBCE  and LDice.

	
LDice (Rgt, Rseg) = 1 − 2RgtRseg

Rgt + Rseg + ε
� (45)

where λ was set to 0.5 in this experiment.
In order to improve the stability of the training process, the proposed model applies Lseg  to both decoders 

in the second stage decoding process to establish a deep supervision loss function. Where MGT  represents the 
true segmentation result graph, so the loss Li

s of the i-th decoder can be defined as

	 Li
s

(
M i

GT, M i
s

)
= Lseg

(
M i

GT, M i
s

)
, i = 1, 2, . . . , 4 � (46)

In the above formula, M i
GT  is defined as

	
M i

GT =
{

MGT ↓2i−1 if i ≥ 2,
MGT if i = 1. � (47)

where ↓2i−1  represents the sub-sample of factor 2i−1. In addition, Lseg  is also applied to the output of the 
shallow decoding process, so the loss of the shallow decoding path can be defined as
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	 Lc(MGT, Mc) = Lseg(MGT, Mc) � (48)

Finally, the overall loss function during the training of this network can be defined as

	
Ltotal = Lc +

4∑
i=1

Li
s � (49)

Experiments
Experimental details and dataset
All models were based on the Pytorch framework and python 3.8, and all experiments were performed on a 
deep learning workstation equipped with an Intel(R) Core i7-13900K. In addition, it has 32 GB of DDR5 RAM 
and an NVIDIA GeForce RTX 4090 graphics processing unit (GPU) with 11 GB of RAM. Furthermore, the 
hyperparameters are set to the same for all models, Initial learning rate is 0.0003, Batch size is 16, Epoch is 200, 
Optimizer is Adam, Growth rate is 0.001.

The LiTS dataset is a public dataset from the Liver Tumor Segmentation Challenge held by ISBI 2017 and 
MICCAI 2017 and is currently the most commonly used dataset in liver and tumor segmentation research. The 
LiTS dataset consists of a training set of 131 CT scans. The number of CT sections contained in each scan ranged 
from 42 to 1026. the section spacing was 0.45 mm to 6.0 mm. Spacing was 0.45 mm to 6.0 mm. We constructed 
a training set and a validation set using 90 patients (43,219 axial sections) and 10 patients (1500 axial sections), 
respectively. The remaining 30 patients (15,419 axial sections) were then included as the trial set.

3DIRCADb is a small dataset containing 22 3D data, in which the image size is 512×512, slice thickness is 
1–4 mm, pixel spacing is 0.56–0.86 mm, and slice number is 184–260. It was divided into 17 patients for training 
and 10 patients for testing.

To enhance the contrast between liver, tumor, and other tissues, the Hounsfield Unit (HU) value of CT 
images is set to [− 200, 250]. Next, noise equalizes each pixel in CT image according to the gray distribution of 
adjacent pixels, which further improves the visual quality and diagnostic accuracy of windowed medical images. 
Additionally, we employed random horizontal flips, random vertical flips, and random scale rotation shifts as 
data augmentation methods.

Evaluation metrics
To quantitatively analyze the segmentation results, we used five evaluation indicators. including Dice coefficient 
(DIC), Intersection over Union (IOU),Recall, relative volume difference (RVD), average symmetric surface 
distance (ASSD), maximum symmetric surface distance (MSD). Let Rgt and Rseg be the ground truth and 
predicted segmentation result. The mathematical formula for these indicators is as follows:

	
DIC = 2 (Rgt ∩ Rseg)

Rgt + Rseg
� (50)

	
IOU = |Rseg ∩ Rgt|

|Rseg ∪ Rgt|
� (51)

	
Recall = |Rseg ∩ Rgt|

|Rgt|
� (52)

	
RAVD = Rseg

Rgt
− 1 � (53)

	

ASSD = 1
|Rseg| + |Rgt|


 ∑

a∈Rseg

min
b∈Rgt

d(a, b) +
∑

b∈Rgt

min
a∈Rseg

d(a, b)


 � (54)

	
MSD =

(
max

i∈Rseg

(
min

j∈Rgt
d(i, j)

)
, max

i∈Rgt

(
min

j∈Rseg
d(i, j)

))
� (55)

Experimental results
In order to prove the superiority of HyborNet proposed in this paper, we discuss the segmentation results 
of HyborNet with state-of-the-art (SOTA) models. These state-of-the-art models can be grouped into two 
categories, CNN-based methods and CNN-Transformer based methods, where CNN-based methods contain 
DeepLabv3+43, U-Net44, Attention U-Net45, ResU-Net46, U-Net++47, Double UNet48. CNN-Transformer based 
methods containing nnformer49, Swim-UNet13, TransUNet50, Hiformer51.

In order to analyse the comparison quantitatively, in the first experiment, HyborNet and the state-of-the-art 
model are run separately on the LiTS dataset for quantitative analysis. The evaluation metrics of the experimental 
results include DIC, IOU,recall, RAVD, ASSD and MSD, as shown in Table 1. As can be seen from this table, 
HyborNet outperforms the state-of-the-art methods such as HiFormer, TransUNet, Swin- UNet ,nnformer and 
Double UNet in almost all metrics. In particular, our method achieves 92.5% and 91.34% for DIC and IOU in 
segmented liver, which is 0.93% and 0.47 better than HiFormer, which ranks second in most metrics.
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In the tumour segmentation task, our method obtains 55.51% in terms of DIC and 42.16% in terms of 
IOU, which is 0.08% and 1.52% better than HiFormer. In terms of functionality, the CNN-based method has 
a similar purpose to our GCA, which is to extract local semantic information, and the segmentation is more 
refined. Meanwhile, the Transformer-based approach shares the same function with our two-branch interaction 
mechanism, both aiming to expand the sensory field of the extended network and extract rich global features. A 
visual comparison of the segmentation results is shown in Fig. 4, and it is clear that the qualitative results of our 
liver and tumour segmentation also achieve the performance of SOTA. Compared to other methods, HyborNet 
can identify liver and tumour regions well and accurately, segment the edge regions of the liver accurately, and 
distinguish well tumours with blurred image edges, especially those in small and medium-sized regions of the 
liver, as well as tumours with similar colours and structures to liver tissues, which are often missed in liver CT 
readings. Overall, the predicted masks generated by HyborNet have almost the same boundary and shape as the 
real labels.

In addition, compared to the base model, we can see that two variants of U-Net, including Double UNet 
and Swim-UNet, achieve an improvement in DIC of 0.02% and 0.03%, respectively, over U-Net, demonstrating 
the positive impact of a well-designed architecture. In fact, some CNN-based models, such as U-Net++ and 
Double U-Net, achieve better performance than some transformer-based models, such as Swim-UNet. This 
phenomenon suggests that both CNNs and transformers can extract intrinsic features in the dataset to some 
extent. This also supports our idea of improving model performance by combining the two branches. Specifically, 
HyborNet has a DIC of 95.82%, IOU of 91.34%, recall of 93.14%, RAVD of 0.005, ASSD of 1.82 and MSD of 8.18 
for liver segmentation on the LiTS dataset. The DIC of 55.59%, IOU of 42.16%, recall of 49.24%, RAVD of 1.26, 

Figure 4.  Example of liver and tumor segmentation visualization on the LiTS dataset.

 

Methods

Liver Tumor

DIC IOU Recall RAVD ASSD MSD DIC IOU Recall RAVD ASSD MSD

DeepLabv3+ 90.62 83.02 86.34 0.012 2.7 10.48 45.64 36.31 39.26 0.41 1.76 36.66

U-Net 94.64 90.02 91.12 0.013 2.25 12.97 53.84 40.35 47.35 1.57 7.66 30.92

Attention U-Net 94.56 89.89 91.43 0.012 1.99 9.04 53.74 40.29 47.42 0.68 9.08 39.99

ResU-Net 94.78 90.22 91.76 0.01 2.05 9.25 47.22 35.32 40.61 1.03 7.06 23.85

U-Net++ 94.67 90.08 91.84 0.007 1.95 10.54 52.73 39.01 47.94 0.85 7.69 31.59

Double UNet 94.66 89.82 91.95 0.014 3.37 15.93 48.65 34.90 41.74 1.61 11.51 49.05

nnformer 94.61 90.14 92.32 0.009 3.23 18.23 49.42 35.25 45.65 1.59 11.94 37.65

Swin-UNet 94.18 90.37 92.48 -0.01 3.54 14.59 49.69 35.57 45.73 1.55 12.45 35.38

TransUNet 94.67 90.52 92.74 0.004 2.39 12.57 48.46 37.02 45.45 0.61 13.42 33.11

HiFormer 94.89 90.87 92.85 0.008 2.1 9.28 53.51 40.64 48.93 1.26 9.01 30.89

HyborNet 95.82 91.34 93.14 0.005 1.82 8.18 55.59 42.16 49.24 0.55 5.65 24.50

Table 1.  Comparison results of the HyborNet method with current popular methods on the LiTS dataset.
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ASSD of 9.01 and MSD of 30.89 are the best results for tumour segmentation. The MSD of 30.89 is superior to 
previous state-of-the-art competitors.

To further evaluate the excellent segmentation performance, generalizability and robustness of HyborNet 
proposed in this paper, we continue our experiments on 3DIRCADb. Table 2 shows the advanced state-of-the-
art model and the segmentation results of HyborNet. Again, the measurements are performed by DIC, IOU, 
recall, RAVD, ASSD and MSD. As can be seen from the table, our HyborNet outperforms the state-of-the-art 
CNN and Transformer-based methods in almost all evaluation metrics in both liver and tumor segmentation 
tasks. Specifically, HyborNet has a DIC of 96.86% and an IOU of 91.97 in the segmented liver task, which is an 
improvement of 0.91% in DIC and 0.15% in IOU compared to the second ranked hi former. In addition, other 
metrics were also top-ranked. In the tumor segmentation task, HyborNet has a DIC of 59.85% and an IOU of 
44.27%, which is an improvement of 0.3% in DIC and 0.24% in IOU over the second most advanced model. 
These data also show that the combination of local convolutional operations and remote attention dependency is 
positive for liver and tumor segmentation. HyborNet has excellent segmentation capabilities and can accurately 
segment liver and tumor regions in abdominal CT.

In addition, we also show a visual comparison of the segmentation results for HyborNet and other models in 
Fig. 5. The first and second columns represent the original abdominal CT sections and the real labels, respectively. 
The qualitative segmentation results of the proposed HyborNet network and the comparison network are shown 
below. It can be clearly seen that the predicted masks generated by HyborNet are very similar to the boundaries 
and shapes of the real labelled values. The segmentation results of HyborNet segment the edges more finely 
than those of the CNN and Transformer-based methods, and there is no recognition of the background as a 
target region. This is due to the Gabor Attention Convolution proposed in this paper to extract detailed texture 
information, as well as the Dual Coding branch to extract rich local and global feature information.

In order to demonstrate more intuitively that the HyborNet proposed in this paper has superior ability to learn 
features, we show the segmentation effect with 3D confusion matrices of two datasets. The diagonal histogram 
shows the corresponding category of each pixel point, the percentage of correct classification, and the others are 
the percentage of misclassification. From the Fig. 7, it is easy to see that the HyborNet segmentation can well 

Figure 5.  Example of liver and tumor segmentation visualization on the 3DIRCADb dataset.

 

Methods

Liver Tumor

DIC IOU Recall RAVD ASSD MSD DIC IOU Recall RAVD ASSD MSD

DeepLabv3+ 90.07 89.89 91.13 0.014 2.58 12.46 55.44 36.73 45.34 0.014 10.76 35.76

U-Net 94.27 90.16 92.25 0.015 1.89 10.23 56.23 40.63 48.53 0.369 7.66 30.66

Attention U-Net 94.96 90.02 92.23 0.011 1.95 9.15 57.18 40.77 49.56 0.246 9.08 29.08

ResU-Net 94.47 89.84 92.35 0.012 1.84 9.42 57.46 41.66 50.14 0.126 7.06 35.06

U-Net++ 95.09 90.43 93.42 0.016 1.62 8.25 58.02 41.28 50.25 0.242 7.69 32.69

Double UNet 95.75 90.33 93.74 0.004 1.66 7.59 56.83 41.94 51.03 0.240 11.51 41.51

nnformer 95.53 90.41 94.12 0.004 1.65 7.32 57.74 42.16 51.12 0.157 11.21 35.42

Swin-UNet 95.27 90.55 94.35 0.005 1.69 7.74 58.91 42.54 52.34 0.009 12.45 32.45

TransUNet 95.43 90.63 94.43 0.004 1.81 8.14 59.26 43.66 52.56 0.104 13.42 33.42

HiFormer 95.95 91.97 94.62 0.007 1.77 8.15 59.55 44.03 53.62 0.118 9.01 29.01

HyborNet 96.86 92.12 95.14 0.006 1.46 6.19 59.85 44.27 53.74 0.015 5.65 25.65

Table 2.  Comparison results of the HyborNet method with current popular methods in the 3DIRCADb 
dataset.
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segment the liver and tumour in liver CT. This is benefited from the dual-branch deconstruction proposed in 
this paper, where the local branch extracts the rich detail information in liver CT well, corresponds to the pixel 
points of each category, and classifies them correctly as far as possible; and the global-dependent branch extracts 
the global features, grasps the global categories, and avoids the background misclassification as liver and tumour. 
Meanwhile, dual-branch interactive module fully integrates local features and context-dependent features to 
avoid ambiguity of semantic features and improve segmentation accuracy.

Ablation studies
In this section, we have designed a comprehensive ablation study to evaluate the effectiveness of each component 
in the HyborNet network. The proposed HyborNet network consists of two branch encoders. Therefore, we 
first designed different combinations of encoders and decoders and conducted experiments on the LiTS 
dataset. Furthermore, in the ablation study, each comparison model is run in the same data augmentation 
and computational environment for a fair comparison. We used the U-Net model as the baseline model to 
incrementally add modules. The experimental results are shown in Table 3, where, for simplicity, U is the 
benchmark U-Net model, G is the proposed Gabor attention convolution, T is the coding path of the transference, 
D is the two-branch interactive module proposed in this paper, L denotes the deep loss monitoring mechanism, 
DG stands for the HyborNet proposed in this paper, and - stands for deletion.

To analyze the effectiveness of GCA, we replace the standard convolution in U-Net with GAC. From the 
comparison of the experimental data results of U and U+G in Table 3, it can be seen that the performance of 
U-Net on the LiTS dataset is significantly worse than U+G. In liver segmentation, the DIC and IOU of U+G 
are increased by 0.05% and 0.04%, respectively, and in tumor segmentation, the IOU is increased by 0.24%. In 
addition, from Fig. 6, the segmentation of U+G for edges is more refined and the texture is clearer.

In order to analyze the impact of the two-branch Transformer, we improve the single encoder of U-Net 
into a two-branch encoder, one branch uses GAC, the other branch uses Transformer, and the element-wise 
addition is performed directly at the end of the encoding stage. In addition, the GAC branch is skip connected 
with the decoder. From the experimental data results of U+G and U+G+T in Table 3, we can see that U+G+T 
has significantly higher performance than U+G in both liver segmentation task and tumor segmentation task. In 
addition, it can be clearly seen from the figure that U+G is easy to mispredict the liver in the normal area as the 
tumor area, and it is also easy to miss the recognition of the tumor.

In order to analyze the effectiveness of the deep loss monitoring mechanism, the deep loss monitoring 
mechanism in HyborNet is removed in this paper, and only the real value of the segmentation result is used for 
the loss function calculation. The experimental results are shown in DG-L and DG in Table 3. DG is superior to 
DG-L in both liver segmentation and tumor segmentation. Meanwhile, from Fig. 6, it can also be seen that the 
visualization of the segmentation results of DG is slightly better than that of DG-L. This also verifies that the 
deep loss monitoring mechanism has a guiding effect on the segmentation results

Method Params (M) Flops (G) Inference time (s)

DeepLabv3+ 58.03 0.01747 5.62

U-Net 8.64 0.00260 2.40

Attention U-Net 8.73 0.00263 2.57

ResU-Net 31.56 0.00953 2.38

U-Net++ 36.63 0.01103 2.99

Double UNet 29.29 0.00882 3.75

nnformer 58.32 0.02854 4.12

Swin-UNet 27.17 0.00818 3.36

TransUNet 105.28 0.03169 4.45

HiFormer 25.51 0.00768 3.51

HyborNet 28.55 0.01522 4.31

Table 4.  Comparison of computational complexity.

 

Methods

Liver Tumor

DIC IOU Recall RAVD ASSD MSD DIC IOU Recall RAVD ASSD MSD

U 94.64 90.02 91.12 0.013 2.25 12.97 53.84 40.35 47.35 1.57 7.66 30.92

U+G 94.69 90.06 91.35 − 0.008 6.89 10.26 53.49 40.59 47.56 1.23 7.63 35.28

U+G+T 94.71 90.10 91.84 0.007 2.41 10.48 53.69 40.66 47.85 1.19 10.79 37.47

U+G+T+D 94.83 90.17 92.56 0.126 1.96 8.64 53.97 40.95 48.54 1.82 9.28 39.79

DG-L 95.15 90.38 92.94 0.01 2.73 8.693 54.6 41.42 48.87 0.97 7.15 28.03

DG 95.82 91.34 93.14 0.004 1.82 8.18 55.59 42.16 49.24 0.55 5.65 24.5

Table 3.  Results of the ablation study of the proposed method on the LiTS dataset.
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In addition, the above models built to verify the effectiveness of Dual-branch interactive module and deep loss 
monitoring mechanism, respectively, happen to be able to demonstrate the impact of skip connection between 
decoder and encoder of the proposed model. From the results of U+G+T+D and DG-L in Table 3, it can be seen 
that the results of DG-L are better than U+G+T+D, which also shows that the skip connection of HyborNet 
makes the feature vectors in the decoding stage have high-resolution texture and depth edge information, and 
improves the accuracy of segmentation.

Complexity calculation
Model computational complexity is an important aspect in evaluating the performance of a model, Moreover, 
computational complexity also affects the effectiveness of the model in real clinical diagnosis. We also conducted 
experiments on LiTS to quantify the computational complexity using the well-known floating-point operations 
(GFLOPs), inference speed, and number of parameters, and the specific experimental results are shown in Table 
5. From the table, it can be seen that the excellent segmentation results achieved by the HyborNet model are 
realized at the expense of the efficiency of the model. The need for a large number of parameters for the model is 

Figure 7.  Confusion matrix visualization.

 

Figure 6.  Visualisation of proposed ablation results on the LiTS dataset.
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one of the main drawbacks of HyborNet, which is mainly due to the existence of two branching coding paths for 
the network. Specifically, HyborNet outperforms DeepLabv3+ and TransUNet in terms of number of parameters, 
Flops, and inference time, but not HiFormer, which has the second highest segmentation accuracy.In terms 
of parameters, the improvement of HyborNet compared to the other models is significant, with a substantial 
increase in segmentation accuracy, and the model’s parameters are fewer or equivalent, and the inference speed 
is improved. Overall, our future research will focus on developing lighter, faster segmentation networks while 
ensuring similar performance. In addition, in the feature fusion stage, the two-branch prioritization and feature 
alignment during fusion deserves more effort, which has great potential for both performance improvement and 
model compression.

Discussion
With the development of medical imaging devices and deep learning algorithms, more and more neural 
networks have been proposed for automated analysis of various cancers in various imaging modes. The 
automatic segmentation of liver and tumor is of great significance in liver disease diagnosis, treatment planning, 
surgical planning, liver cancer treatment and tumor treatment planning. The liver has complex structural and 
pathological features, and its shape and structure are highly dependent on the surrounding abdominal organs. In 
addition, most of the existing liver tumor segmentation methods are unable to comprehensively extract the local 
and global context features of liver CT, and the segmentation results still appear unclear edge segmentation and 
wrong segmentation of lesion areas. Automatic liver segmentation has become a challenging task for researchers.

In this work, different from the traditional deep learning methods based solely on CNN and Transformer, we 
combine the ability of CNN to extract local features with the ability of Transformer to extract global information, 
and innovatively propose HyborNet on the basis of existing research. In addition, GCA is based on Gabor filter, 
which can refine the edge information features, make the boundary of target and lesion area clearer, and make 
the segmentation more accurate. We have conducted extensive validation studies on LiTS17 and 3DIRCADb 
datasets to evaluate the performance of our method, and the qualitative and quantitative experimental results 
show that the proposed method not only outperforms the current popular methods in accuracy, but also has 
strong robustness compared with the current popular methods. The main reasons that the designed HyborNet 
model is superior to other methods are as follows: (1) CNN branches aggregate multi-scale feature information 
to remove noise that is not affected by the target region. It not only pays attention to the distinguishing features of 
channels and spatial dimensions, but also establishes multidimensional interaction between channels and spatial 
dimensions, while refining texture information and precise boundary segmentation. (2) Establish an interactive 
fusion mechanism between CNN and Transformer, effectively coupling the feature information between the 
two, and interactive information transmission in a dynamic and learnable way.

In this paper, target regions are segmented in LiTS17 dataset and 3DIRCADb respectively. Judging from the 
qualitative and quantitative results of the two visual tasks, the method in this paper is superior to the current 
popular methods, and the segmentation results are indeed of clinical value. From the above experimental results, 
it can be seen that in the segmentation experiment on LiTS17, our method not only achieves excellent results 
in the evaluation of indicator data, but also outperforms the current popular methods in the visualization of 
segmentation results. At the same time, the experiments conducted on the 3DIRCADb dataset also achieved 
better results than the current popular methods, which also proved the robustness of the proposed method from 
the side. Doctors can accurately locate the lesion area according to the size and shape of the partitioned liver and 
tumor, and judge the benign and malignant tumors.

Although HyborNet performs well in the segmentation task of liver and tumor, the network only performs 
the segmentation of liver and tumor on two-dimensional abdominal CT sections, and has not utilized the 
3-dimensional Z-axis information, and the segmentation task is single. Second, the approach includes a large 
number of component models, including a full Transformer branch, Gabor attention convolution-based 
branches, and Dual-branch interactive modules. A parallel dual-branch CNN-Transformer joint mechanism is 
established to achieve accurate segmentation of lesions from both boundary and regional perspectives. However, 
it is worth investigating whether these component models can still effectively achieve the design goals and 
whether they can still achieve the same performance for more complex background environments (such as the 
target area being submerged in water). In addition, complex component models may lead to excessive number of 
model parameters and long calculation time. Therefore, the direction of our future work is, first of all, to explore 
lightweight network architecture, adjust network parameters to balance model complexity and recognition 
accuracy, and effectively improve network performance. Secondly, the deep learning method of multi-modal 
medical image segmentation is explored, and different medical images are applied to image segmentation and 
recognition tasks, so as to classify diseases and segment diseased areas to assist the diagnosis of clinical diseases.

Conclusion
In this paper, we propose HyborNet, which is capable of simultaneously extracting rich local feature information 
and remote dependency information to perform liver and tumor segmentation in abdominal CT. The proposed 
network can be trained in an end-to-end manner while achieving better segmentation and classification results. 
The core idea of the method integrates the CNN and Transformer architectures into a unified architecture with 
the proposed local feature extraction branch and remote dependency branch. The local feature extraction branch 
consists of Gabor attention convolution, which is able to extract fine-grained local detail information of liver 
and tumor. The remote dependency branch is based on Transformer composition, which is capable of modelling 
remote contextual information between regions. Meanwhile, we propose a dual-branch interactive module to 
fully integrate local features and context-dependent features to improve the segmentation accuracy of multi-
category target regions. In addition, we use a deep loss supervision mechanism to optimize the segmentation 
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results. Finally, we compare HyborNet with other state-of-the-art methods on our public datasets LiTS and 
3DIRCADb, and demonstrate that the method proposed in this work achieves good results in liver and tumor 
segmentation.

Data availibility
The links to the datasets analyzed in this study are listed below: The LiTS dataset: ​h​t​t​p​s​:​​/​/​w​w​w​.​​k​a​g​g​l​e​​.​c​o​m​/​d​​a​t​
a​s​e​​t​s​/​a​n​d​​r​e​w​m​v​d​​/​l​i​v​e​r​​-​t​u​m​o​r​-​s​e​g​m​e​n​t​a​t​i​o​n​/​d​a​t​a. 3DIRCADb dataset: ​h​t​t​p​s​:​​​/​​/​w​w​​w​.​k​a​g​g​l​​e​.​c​​o​m​​/​d​a​t​a​s​​e​​t​s​/​p​​r​i​y​a​
m​s​​a​h​​a​1​7​​/​3​d​i​r​c​​a​d​b​-​d​a​t​a​s​e​t. The experimental data are available upon request from the corresponding author.
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