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Down Syndrome (DS) is the most common genetic cause of intellectual disability in
which delays and impairments in brain development and function lead to neurological
and cognitive phenotypes. Traditionally, a neurocentric approach, focusing on neurons
and their connectivity, has been applied to understanding the mechanisms involved
in DS brain pathophysiology with an emphasis on how triplication of chromosome 21
leads to alterations in neuronal survival and homeostasis, synaptogenesis, brain circuit
development, and neurodegeneration. However, recent studies have drawn attention
to the role of non-neuronal cells, especially astrocytes, in DS. Astrocytes comprise a
large proportion of cells in the central nervous system (CNS) and are critical for brain
development, homeostasis, and function. As triplication of chromosome 21 occurs in all
cells in DS (with the exception of mosaic DS), a deeper understanding of the impact of
trisomy 21 on astrocytes in DS pathophysiology is warranted and will likely be necessary
for determining how specific brain alterations and neurological phenotypes emerge and
progress in DS. Here, we review the current understanding of the role of astrocytes
in DS, and discuss how specific perturbations in this cell type can impact the brain
across the lifespan from early brain development to adult stages. Finally, we highlight
how targeting, modifying, and/or correcting specific molecular pathways and properties
of astrocytes in DS may provide an effective therapeutic direction given the important
role of astrocytes in regulating brain development and function.
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GENERAL FEATURES OF THE DS BRAIN

Down Syndrome (DS) is a genetic condition found in approximately one in 400 births and
results from the presence of an extra copy of human chromosome 21 (Hattori et al., 2001).
Trisomy 21 alters gene expression in all cells of the body and results in characteristic facial
features, hypothyroidism, hearing and vision abnormalities, cardiac and gastric malformations,
and importantly, delayed brain and cognitive development (Baburamani et al., 2019; Vicente
et al., 2020). Neurodevelopment is atypical and extremely variable in DS. Notably DS individuals
present intellectual disability ranging from mild to severe [30–70 of intellectual quotient (IQ)]
(Maatta et al., 2006). Such intellectual disability manifests itself by disrupting working memory
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and verbal short-term memory (Chapman and Hesketh, 2000;
Lanfranchi et al., 2012). Analyses of the DS brain and animal
models have shown reduced brain volume, as well as, simplified
gyral appearance in human samples (Pinter et al., 2001).
Furthermore, in children with DS, the brain has reduced
cortical area but an increased cortical thickness (Lee et al.,
2016). Later, during early to middle adulthood, the DS brain
shows signs of premature aging and shrinkage of crucial
brain regions needed for learning and memory and executive
function, such as the hippocampus and prefrontal cortex (Koran
et al., 2014). During middle to late adulthood, essentially
all DS individuals develop AD neuropathology, including
ß-amyloid (Aß) plaques, tauopathy, neurodegeneration, and
neuroinflammation (Wisniewski et al., 1978, 1985; Mann and
Esiri, 1989).

The neurodevelopmental and intellectual deficits observed
in DS are strongly linked to alterations in brain connectivity.
Indeed, connectivity in the brain of DS individuals is reported to
be perturbed at multiple levels. MRI studies have shown that DS
individuals have altered functional connectivity and synchrony
(Anderson et al., 2013; Pujol et al., 2015; Figueroa-Jimenez et al.,
2021). However, disruptions in connectivity are not uniform
across the brain, but rather occur in areas where anatomical
alterations have been reported such as the hippocampus, anterior
cingulate cortex (ACC), and the frontal lobe (Aylward et al.,
1999; Carducci et al., 2013), and are consistent with the
cognitive deficits observed with DS. Excessive connectivity along
with increased inter-brain regional connectivity are thought to
contribute to poor adaptative behaviors and lower IQ (Anderson
et al., 2013; Pujol et al., 2015). At the cellular level, a reduction
in neuronal production and premature neuronal death are
observed in DS and implicated in the brain size reduction
(Contestabile et al., 2007; Guidi et al., 2008, 2011). Abnormal
dendritic arborization, dendritic spine density and morphology
are also reported in DS (Takashima et al., 1981; Wisniewski et al.,
1984; Becker et al., 1986), indicating disrupted formation and
maintenance of cellular connectivity.

While neuronal changes have been widely described in
DS, it is far less clear how trisomy 21 impacts non-neuronal
cells which are essential for brain development, function,
and homeostasis. Interestingly, recent studies analyzing the
transcriptome of human DS brains have revealed a dysregulation
of genes involved in oligodendrocyte differentiation, these genes
include TMEM63A, MYRF, PLD1, RTKN, ASPA, OPALIN,
ERBB3, and EVI2A (Olmos-Serrano et al., 2016). This is
consistent with defects in axonal myelination and altered
psychomotor development in DS individuals (Wisniewski and
Schmidt-Sidor, 1989). Alterations of oligodendrocytes are also
present in the Ts65dn mouse model [the most studied DS
mouse model which consists of a partial trisomy made
up of a distal portion of mouse chromosome 16 and a
centromeric portion of mouse chromosome 17 (Davisson
et al., 1993)], where defects in myelin are attributed to
impairments in oligodendrocyte maturation and an overall
reduction in the number of mature myelinating oligodendrocytes
(Olmos-Serrano et al., 2016). Thus, trisomy 21 appears to
impact non-neuronal cells including oligodendrocytes, an

important brain cell type that ensures the fidelity of axon
potential conduction.

ASTROCYTES IN
NEURODEVELOPMENTAL DISORDERS
AND NEURODEGENERATIVE DISEASES

In addition to oligodendrocytes, astrocytes are a highly abundant
non-neuronal types in the central nervous system (CNS)
(Herculano-Houzel, 2014) that play central roles in the healthy
and diseased brain at all stages of life. Astrocytes were originally
thought to create passive connective tissue within the brain
(Volterra and Meldolesi, 2005). However, we now know that
they are critical for numerous aspects of brain function
and possess sophisticated mechanisms to communicate with
other CNS cell types, especially neurons. Astrocytes provide
important metabolic and neurotrophic support to neurons
(Rouach et al., 2008; Belanger and Magistretti, 2009; Figley,
2011; Dezonne et al., 2013) and regulate key processes such as
synapse formation/plasticity, extracellular ion/neurotransmitter
homeostasis, and neurovascular coupling (Drejer et al., 1982;
Denis-Donini et al., 1984; Parpura et al., 1994; Zhang and
Barres, 2010; Farmer and Murai, 2017; Matias et al., 2019), thus
making them essential regulators of neurons across the lifespan.
During development, astrocytes make important contributions
to axon guidance and synapse formation and plasticity. Thus,
it is not surprising that astrocytes have been implicated
in neurodevelopmental disorders including Rett (RTT) and
Fragile X (FXS) syndromes and autism spectrum disorders
(ASD). Such disorders are characterized by abnormalities in
neuronal brain wiring and physiology, with many studies
focused on disruptions to neurogenesis, axon guidance, dendrite
development, and synaptogenesis. Recent studies have suggested
that astrocytes may directly participate in such disorders.
For example, increased levels of several glial proteins have
been identified including GFAP, EAAT1, and S100A3 in post
mortem brain samples from RTT individuals. RTT also causes
astrocyte reactivity (Colantuoni et al., 2001), in which the
structural, molecular, and functional profile of astrocytes is
significantly altered (Escartin et al., 2021). In vitro, RTT
astrocytes release factors into the culture medium which stunt
neurite outgrowth (Ballas et al., 2009). Astrocytes also are
implicated in FXS where dendritic arborization is delayed
in neurons co-cultured with FXS astrocytes (Jacobs et al.,
2010). In vivo studies in mice have also shown that selective
genetic deletion of Fmr1 (gene responsible for FXS) from
astrocytes reduces spine dynamics and impairs motor-skill
learning (Hodges et al., 2017). Astrocytic alterations have been
shown in non-syndromic ASD using human tissues and animals
models and has been reviewed recently (Petrelli et al., 2016).
Interestingly, the astrocytic glutamate transporters EAAT1 and
EAAT2, which regulate extracellular glutamate levels at the
synapse, are misregulated in the brain of ASD individuals
(Purcell et al., 2001). The importance of astrocytes in ASD has
recently been further supported by transcriptome analysis of
the ASD brain (Voineagu et al., 2011). These studies revealed
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an enrichment of reactive astrocytes (Voineagu et al., 2011)
which is supported by immunolabeling of post mortem ASD
brain tissue where reactive gliosis and glial proliferation are
observed (Vargas et al., 2005; Edmonson et al., 2014). While
much has been learned about the contribution of astrocytes
to neurodevelopmental disorders such as RTT, FXS, and ASD
[which is further described in this review (Cresto et al., 2019)],
further work is still required to pinpoint precisely how these cells
contribute to both morphological and functional changes of the
developing brain.

Beyond neurodevelopmental disorders, astrocytes also
participate in the pathological events following acquired CNS
injuries such as stroke, spinal cord injury, and traumatic brain
injury, where robust astrocyte reactivity is found near sites of
injury (Anderson et al., 2016; Burda et al., 2016; Adams and
Gallo, 2018). Astrocyte reactivity is also a prominent feature
in neurodegenerative conditions, such as Alzheimer’s disease
(AD), Parkinson’s disease (PD), multiple sclerosis (MS), and
amyotrophic lateral sclerosis (ALS) (Allan and Rothwell, 2003;
Belanger and Magistretti, 2009; Sofroniew and Vinters, 2010).
The role of astrocytes in these conditions is described in detail in
several reviews (Sofroniew and Vinters, 2010; Pekny et al., 2016;
Verkhratsky et al., 2016). With both acquired CNS injuries and
chronic neurodegenerative conditions, astrocytes significantly
change their communication with neurons and microglial cells,
the residing immune cells of the CNS, and participate in a variety
of non-cell autonomous processes through the production
of neuro-modulatory and inflammatory mediators (such as
cytokines), and growth factors. This gives rise to a complex
scenario where astrocytes can have both neuroprotective
and neurotoxic effects that are context-dependent (Burda
and Sofroniew, 2014; Hong et al., 2016; Kwon and Koh,
2020). Further discussion about astrocyte reactivity will come
later in this review as it is a prominent feature of the DS
brain and akin to what is seen in other neurodegenerative
diseases, especially AD.

DS ASTROCYTES AND BRAIN SIZE

As astrocytes play important roles in brain disorders and
diseases from early developmental to adult stages, it is important
to consider how astrocytes are affected by triplication of
chromosome 21. Although studies of astrocytes in DS are
few in number when compared to studies of neurons, recent
studies are providing insight into how trisomy 21 can directly
impact astrocytes to affect brain development and function
throughout the lifespan. A characteristic feature of the DS brain is
reduced brain volume which likely contributes to the intellectual
disability of DS individuals. This reduced brain volume has
been reported as early as in the second trimester of pregnancy
(Patkee et al., 2020) and is caused by a significant reduction
in neuronal number (Schmidt-Sidor et al., 1990). It should be
noted that cell counting in the brain is not an easy task and
can be associated with significant analytical artifact which is
described in this review (von Bartheld et al., 2016). Therefore,
additional and up to date studies performed in humans would

be useful in order to calculate more precise numbers and ratios
of astrocytes and neurons in DS. However, considering the
large body of evidence reporting smaller brain volumes and
decreased neuronal numbers in humans and animal models
from in vivo and in vitro analysis, it is largely accepted that
this phenomenon occurs in the DS brain. New studies using
contemporary techniques would nevertheless allow for clarity
and preciseness in the exact numbers and ratios. It is suspected
that there are multiple causes of the reduction in neuronal
number, including a decrease in neuronal differentiation during
development and increased neuronal cell death throughout the
life of DS individuals (Contestabile et al., 2007; Guidi et al.,
2008, 2011). Notably, the reduction in neuronal differentiation
is believed to be caused by a gliogenic shift, meaning that
neuroprogenitor cells alter their differentiation ability in favor
of astrocytes rather than neurons (Guidi et al., 2008; Zdaniuk
et al., 2011; Chen et al., 2014). Several mechanisms can cause the
gliogenic shift in DS, among which is a decrease in progenitor
cell proliferation (Roper et al., 2006; Contestabile et al., 2007;
Trazzi et al., 2013) and deficits in the Sonic hedgehog signaling
pathway which have been directly shown to cause a reduction
in the production of neurons (Roper et al., 2006; Currier
et al., 2012; Das et al., 2013; Trazzi et al., 2013). Remarkably,
studies have shown that correcting these deficits can rescue
neuronal number in a DS animal model (Das et al., 2013).
Indeed, with a single injection of a Sonic hedgehog agonist in
newborn mice, the Reeves’ group restored neuronal number
as well as behavioral deficits in the DS model. Furthermore,
studies performed in vitro demonstrated that excessive levels of
AICD (amyloid intracellular domain), which results from the
cleavage of APP by γ-secretase were responsible for the increase
in expression of Ptch1 and therefore for the malfunctioning
of the Sonic hedgehog pathway. Importantly this study also
showed that the treatment of neuronal precursor cells with a γ-
secretase inhibitor normalized AICD and restored neurogenesis
and gliogenesis levels to normal levels in vitro (Figure 1;
Giacomini et al., 2015). Additional pathways have also been
suggested to induce a gliogenic shift in DS, such as an increase
in progenitor cell oxidative stress and apoptosis caused by the
simultaneous overexpression of S100ß and amyloid precursor
protein (APP) (both of which are genes located on chromosome
21) (Lu et al., 2011). Finally, overactivation of the JAK-Stat
pathway in progenitor cells due to Dyrk1a overexpression (also
a chromosome 21 gene) has been suggested to drive aberrant
gliogenesis in DS (Kurabayashi et al., 2015; Lee et al., 2019).
Overall, the gliogenic shift in DS and the pathways described
could potentially be targeted to rescue neuronal number deficits
and restore cell populations that are competent to form normal
brain cell number and connectivity.

DS ASTROCYTES AND THE
DEVELOPMENT OF BRAIN
CONNECTIVITY

In DS, neuronal connectivity is believed to be disrupted at
several levels from individual synapses to whole circuits.
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FIGURE 1 | APP overexpression in neuroprogenitor cells decreases Shh signaling and is believed to be responsible for an increase in astrogliogenesis and a
decrease in neurogenesis. Created with Biorender.com.

Alterations in synapse density and shape have been reported
in the brains of DS individuals, along with defects in dendritic
outgrowth and arborization (Marin-Padilla, 1976; Coyle et al.,
1986; Ferrer and Gullotta, 1990; Golden and Hyman, 1994;
Benavides-Piccione et al., 2004). The extensiveness of such
morphological abnormalities are correlated with the severity
of intellectual disability (Zdaniuk et al., 2011). Interestingly,
dendritic arborization and synaptogenesis are processes which
are regulated by astrocytes in the developing brain through
the expression and/or release of various neuroactive factors
(Mauch et al., 2001; Christopherson et al., 2005; Verkhratsky
and Butt, 2007). Interestingly, thrombospondin 1 (TSP-1), a
known astrocyte-secreted synaptogenic factor (Christopherson
et al., 2005), is expressed at lower levels in cultured DS
astrocytes (Garcia et al., 2010). Its lowered expression is
responsible for perturbations in dendritic spine morphology
and decreases in synapse number in co-cultures of human
DS astrocytes with rodent neurons (Figure 2). This deficit
can be mitigated by supplementation with recombinant
TSP-1 (Garcia et al., 2010). Future experiments, such as
those investigating TSP-1 in DS animal models, will be
important in assessing how lower TSP-1 levels contribute to
DS synaptic changes that impact neuronal connectivity and
circuit formation, and cognitive processes such as learning and
memory formation.

In addition to defects in synapse development, perturbations
in the effectiveness of GABA synaptic transmission are
also implicated in DS (Contestabile et al., 2017). GABA is
the main inhibitory neurotransmitter in the mature brain.
However, during development, GABA transmission is known
to be excitatory (Ben-Ari, 2002). During the postnatal period,
GABAergic responses in neurons switch from being excitatory
to inhibitory due to decreases and increases in the expression
of the chloride transporters NKCC1 and KCC2, respectively,
which regulate intracellular chloride concentration (Ben-Ari,

2002). In DS, inhibitory GABA transmission in the adult
brain is altered and rendered excitatory. This is supported
by studies in the Ts65dn mouse model that have shown
that synaptic plasticity and memory deficits can be corrected
when inhibitory GABA transmission is restored (Deidda
et al., 2015). Intriguingly, astrocytes can regulate intracellular
GABA concentrations and the GABA excitatory-inhibitory
switch in vitro (Li et al., 1998). This is mainly through
the secretion of BDNF, which downregulates NKCC1 levels
(Eftekhari et al., 2014). Studies have demonstrated that both
BDNF and NKCC1 levels are altered in DS (Deidda et al.,
2015). Indeed the reduction in BDNF levels (Tlili et al.,
2012) and upregulation of NKCC1 cause excitatory GABAergic
transmission in the adult brain (Figure 3; Deidda et al.,
2015). Thus, astrocytes may alter the GABA switch in the
DS brain through their altered BDNF secretion and cause
cellular and circuit-level deficits in excitation/inhibition in the
developing brain.

Unlike neurons, astrocytes do not have action potentials.
Instead, they exhibit dynamic physiological changes visualized
through intracellular calcium elevations. Such communication
is coordinated by intracellular calcium transients which can be
driven by neuronal activity (Khakh and McCarthy, 2015). These
calcium events are thought to induce release of neuroactive
molecules including gliotransmitters which can alter neuronal
activity and the activity of neighboring astrocytes (Angulo
et al., 2004; Lee et al., 2010). In DS, aberrant calcium
dynamics have been reported both in rodent models (Muller
et al., 1997) and in one study using induced pluripotent stem
cell (iPSC)-derived human astrocytes in which spontaneous
calcium fluctuations were increased (Mizuno et al., 2018).
These aberrant calcium dynamics are believed to cause a
reduction in neuronal excitability when co-cultured with
neurons. Remarkably, S100ß overexpression causes aberrant
calcium signaling, and pharmacological intervention on this
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FIGURE 2 | Reductions in the astrocytic production and secretion of TSP-1 from DS cells causes abnormal dendritic spine shape and number in vitro. Created with
Biorender.com.

FIGURE 3 | Implication of astrocytes in the GABA switch in DS. Created with Biorender.com.

pathway restores calcium dynamics along with neuronal
excitability (Mizuno et al., 2018). Thus, targeting calcium
dynamics in DS astrocytes may improve aberrant neuronal
activity patterns in DS. However, a recent study performed by
our group did not detect similar alterations in spontaneous
or evoked calcium fluctuations in three different iPSC-derived
DS astrocyte lines (Ponroy Bally et al., 2020). The reason

for this discrepancy is unclear. However, it should be noted
that the two studies were performed using different iPSC
(Figure 5) cell lines and that in Mizuno et al. (2018), only
one isogenic line was used. Therefore, additional studies are
required using a larger number of iPSC lines in order to
better understand the impact of trisomy 21 on astrocyte
calcium dynamics.
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GENOME-WIDE TRANSCRIPTIONAL
ALTERATIONS IN DS ASTROCYTES

Until recently, it was believed that the DS phenotype was largely
caused by the altered gene dosage of a small number of genes
located in the DS critical region (DSCR) of chromosome 21
(Korenberg, 1990; Delabar et al., 1993). The DSCR extends for
approximately 5.4 Mb on HSA21q22 and was shown to be
necessary and sufficient to induce a DS phenotype. Many key
genes are in that region such as DYRK1A, APP, S100β and
SOD1 (Belichenko et al., 2009). However, studies now show
that trisomy 21 has broader and more complex effects well
beyond those directly associated with the DSCR (Korbel et al.,
2009; Lyle et al., 2009). A recent study reported changes to the
global chromatin architecture in DS, with potential genome-
wide effects on the transcriptome (Letourneau et al., 2014).
Other studies have reported global transcriptional alterations in
DS from analysis of a range of tissues including brain (Saran
et al., 2003; Mao et al., 2005; Lockstone et al., 2007; Olmos-
Serrano et al., 2016), heart (Mao et al., 2005), blood (Pelleri
et al., 2018), and thymus (Pelleri et al., 2018), as well as, in
individual cell types including fibroblasts (Pelleri et al., 2018),
fetal cells (FitzPatrick et al., 2002), lymphoblastoid cell lines
(Sullivan et al., 2016), iPSCs (Briggs et al., 2013; Weick et al.,
2013; Gonzales et al., 2018; Pelleri et al., 2018), and neurons
(Briggs et al., 2013; Weick et al., 2013; Gonzales et al., 2018;
Huo et al., 2018). With respect to astrocytes, microarray analysis
has detected dysregulation of many mRNAs in these cells (Chen
et al., 2014). A more recent study from our group using an Assay
for Transposase Accessible Chromatin sequencing (ATAC-seq)
on control and DS iPSC-derived astrocytes uncovered thousands
of differently accessible chromatin sites across the genome in
DS astrocytes, with an even split of increased and decreased
accessibility (Ponroy Bally et al., 2020). Concomitantly, RNA
sequencing (RNA-seq) revealed a global dysregulation of the
transcriptome of DS astrocytes that differed significantly from
DS neuroprogenitors (Ponroy Bally et al., 2020). As expected,
DS astrocytes showed an upregulation of genes on chromosome
21 such as DYRK1A, S100β, APP, SOD1 and SUMO3. However,
93% of dysregulated genes were found outside of chromosome 21
and were distributed across the genome. Interestingly, mRNAs
encoding cell adhesion and extracellular matrix (ECM)-related
genes were especially altered and led to impaired adhesive
properties of these cells. This is particularly interesting as
alterations in cell adhesion and the ECM have also been reported
in various cell types and tissues in DS (Conti et al., 2007;
Gonzales et al., 2018; Huo et al., 2018). Further investigation
into cell adhesion changes of astrocytes is needed to better
understand their relationship to neurodevelopmental and age-
related changes observed in the DS brain.

DS ASTROCYTES AND NEURONAL
INJURY

Trisomy 21 is expected to impact astrocyte physiology
throughout the lifespan of DS individuals. Mitochondrial

dysfunction and oxidative stress may be particularly relevant in
this context given that these processes are associated with DS
and are a common feature of all DS cells and tissues including
astrocytes (Izzo et al., 2018). Consistent with this, DS astrocytes
contain a fragmented mitochondrial network that is composed
of mostly shorter mitochondria and few elongated mitochondria
(Helguera et al., 2013). This type of mitochondrial network
is correlated with reduced ATP production and increased
ROS production (Yu et al., 2006). This lowered mitochondrial
activity in DS astrocytes may be an adaptative and protective
mechanism. Indeed, DS astrocytes are able to increase their
mitochondrial activity if stimulated, but this exacerbates free
radical formation, lipid peroxidation, and cell death (Helguera
et al., 2013). Consistent with this, increased oxidative stress has
been reported in various DS cell types, including astrocytes, and
increases in iNOS and nitrite/nitrate concentrations have been
reported in the conditioned medium of iPSC-derived astrocytes.
Importantly, an increase in astrocytic oxidative stress can cause
an increase in neuronal cell death (Hu et al., 1997; Chen et al.,
2014). Thus, mitochondrial dysfunction and oxidative stress in
DS astrocytes may impact the health of neurons and contribute
to neuronal cell death observed within the DS brain (Figure 4).

ASTROCYTES AND ALZHEIMER’S
DISEASE PATHOLOGY IN DS

Improvements in health care systems and management of co-
morbidities in DS have led to a dramatic increase in life
expectancy for DS individuals from 12 years of age in 1949
to 60 years of age in 2004 (Bittles and Glasson, 2004). This
increase in life expectancy has also led to the discovery of age-
related conditions in DS, the main one being AD neuropathology.
Indeed, by age 40, most (if not all) DS individuals present AD
neuropathology including Aß plaques, neurofibrillary tangles,
neurodegeneration, and neuroinflammation (Mann, 1988; Mann
and Esiri, 1989; Motte and Williams, 1989; Zigman and Lott,
2007). The prevalence of dementia in DS-associated AD is similar
to sporadic AD (Oliver et al., 1998), although evaluating the
cognitive decline in DS is challenging due to the pre-existing
intellectual impairment. Novel cognitive tests are currently being
developed and deployed to better assess the abilities of DS
individuals (Sinai et al., 2016; Dekker et al., 2018). Importantly,
dementia is associated with the mortality of over 70% of DS
individuals making it the main cause of death in DS (Hithersay
et al., 2018). In familial AD, ∼10% of cases are caused by
mutations in the APP protein, which is a precursor to toxic Aβ

in plaques. The APP gene is found on chromosome 21 and its
overexpression is thought to be a primary cause of AD in DS
leading to a rapid accumulation of Aβ with age (Margallo-Lana
et al., 2004; Head et al., 2016).

In AD, chronic neuroinflammation is believed to exacerbate
Aβ burden and possibly neurofibrillary tangle formation related
to tau hyperphosphorylation, thus potentially linking two
hallmarks of AD pathology (Kinney et al., 2018). In DS, astrocyte
reactivity may be a major contributor to AD pathology given
that glial reactivity has been reported to occur as early as
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FIGURE 4 | Astrocytic oxidative stress and mitochondrial dysfunction in neuronal death. Created with Biorender.com.

2 days postnatally (Griffin et al., 1989). This early astrocytic
reactivity occurs prior to wide-spread Aß plaque formation
and neuronal degeneration, and hence is in a position to
play a primary role in AD pathology. Consistent with this,
early overexpression of S100ß in astrocytes and neuronal APP
overexpression have been shown to activate microglia and
increase IL-1β expression which, in turn, which exacerbates
APP production in neurons and glial cells (Goldgaber et al.,
1989; Barger and Harmon, 1997; Liu et al., 2005). These events
appear to be self-propagating, as IL-1β and S100ß have both
been reported to induce microglial cell activation and astrocyte
reactivity with overexpression of themselves, as well as, neuronal
APP (Goldgaber et al., 1989; Sheng et al., 1996). Notably, glial
activation and cytokine production occur during childhood in
DS, many years before the accumulation of Aβ plaques (Griffin
et al., 1989). Taken together, upregulation of neuronal APP and
astrocytic S100ß, and cytokines such as IL-1ß, may drive neuronal
stress, glial activation, and DS-related neuropathological changes
characteristic of AD (Figure 5).

A noticeable cellular feature accompanying AD pathology is
oxidative stress. Increased oxidative stress and ROS production
occur in various cell types in DS throughout the lifespan
including in astrocytes. Increased ROS production in the
aging DS brain is known to damage proteins, lipids, and
DNA which alters neuronal function and ultimately aggravates
neurodegeneration in DS (Busciglio and Yankner, 1995; Perluigi
and Butterfield, 2012; Di Domenico et al., 2013; Perluigi et al.,
2014a). Studies have demonstrated that increased ROS levels in
neurons leads to altered processing of APP and accumulation

of Aβ (Busciglio et al., 2002; Cenini et al., 2012; Coskun and
Busciglio, 2012; Perluigi and Butterfield, 2012). Interestingly, the
spread and extent of oxidative stress increases with age and
correlates with Aβ levels (Lott et al., 2006). The progressive and
chronically high level of oxidative stress is therefore implicated in
neuronal death and believed to contribute to neurodegenerative
processes and cognitive dysfunction in the DS brain (Perluigi
and Butterfield, 2012). Correcting oxidative stress early in DS
may help ameliorate premature aging and slow the progression
of AD neuropathology with which there are no therapies.
Consumption of vitamin-rich diets and vitamin supplementation
may also combat neurodegeneration, since vitamins are known
antioxidants and reduce oxidative stress (Bhatti et al., 2016).
Thus, targeting oxidative stress pathways may hold promise for
the future treatment of DS-associated AD.

Excitotoxicity is another major event which lead to neuronal
death and neurodegeneration and may be related to AD-related
neuropathology in DS. Astrocyte reactivity has been shown to
exacerbate excitotoxicity and neurodegeneration through the
overexpression of the metabotropic receptor mGluR5. mGluR5
is expressed in both astrocytes and neurons and is important for
neuron-glial cell communication in both the healthy and injured
brain (Aronica et al., 2003; D’Antoni et al., 2008; Bradley and
Challiss, 2012). mGluR5 is prevalent in the developing brain and
is involved in processes such as proliferation, differentiation, and
survival of neuronal progenitors (Di Giorgi Gerevini et al., 2004).
mGluR5 expression is lower in the adult brain, except in areas
with active neurogenesis (Catania et al., 1994; Romano et al.,
1996). Importantly, mGluR5 upregulation has been reported
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FIGURE 5 | Astrocytes as drivers of Aß pathology in the DS brain? Created with Biorender.com.

in brains of AD and DS individuals (Oka and Takashima,
1999; Dolen and Bear, 2008; Kumar et al., 2015). This mGluR5
upregulation is specific to astrocytes in DS and occurs as early
as mid-gestation and persists postnatally (Iyer et al., 2014b).
Aged DS individuals with AD pathology also present even higher
levels of mGluR5 in astrocytes, especially in astrocytes in close
vicinity to Aβ plaques. This suggests that Aβ may stimulate
upregulation of mGluR5 expression in astrocytes (Iyer et al.,
2014a). Interestingly, astrocytic mGluR5 is activated by soluble
Aβ in sporadic AD which has been found to generate calcium
oscillations and the release of glutamate, thus enhancing neuronal
excitotoxicity (Shrivastava et al., 2013; Kumar et al., 2015).

The mammalian target of rapamycin (mTOR) pathway is
also known to be altered in DS astrocytes. The mTOR pathway
is an important signaling pathway which responds to a large
variety of environmental stimuli and regulates essential processes
such as cell growth and proliferation, metabolism, protein
synthesis, synaptogenesis, and apoptosis (Dazert and Hall, 2011;
Laplante and Sabatini, 2012; Wong, 2013). Dysregulation of
this pathway has a major impact on the nervous system and
has been reported to occur in various neurological diseases
such as tuberous sclerosis (Orlova and Crino, 2010), ASD
(Tsai et al., 2012), and DS. This pathway has also been
identified as a molecular link between Aβ accumulation and
cognitive dysfunction in sporadic AD. Intriguingly, mTOR
inhibitors can reverse cognitive dysfunction and reduce Aβ

load in a mouse model of AD (Caccamo et al., 2010; Ma
et al., 2010; Spilman et al., 2010) and hyperactivation of the
mTOR pathway has been identified both in the developing
and aged DS brain (Iyer et al., 2014a; Perluigi et al., 2014b).
A recent study showed that iPSC-derived DS astrocytes cause
mTOR hyperactivation in control neurons and exacerbate the

hyperactivation in DS neurons (Araujo et al., 2018). Targeting
mTOR hyperactivation in astrocytes and neurons may therefore
be a plausible target for mitigating some aspects of AD
pathology in DS.

FINAL PERSPECTIVE ABOUT
ASTROCYTES AND DS

New discoveries are challenging the neurocentric view of
DS and leading to a more complete understanding of the
contributions of other brain cell types including astrocytes
to DS pathophysiology. Recent studies have revealed myriad
ways astrocytes can participate in DS across the lifespan.
Although these studies still remain relatively few in number,
they provide an important launching point for investigating
how trisomy 21 alters their properties which may have
profound effects on the developing and aging DS brain. Since
astrocyte development largely occurs postnatally, there may
be an attractive therapeutic window for correcting genetic or
molecular alterations in DS to improve brain function and
prevent cellular changes including AD-related neuropathology.
Harnessing new technologies such as single cell RNA-seq to
investigate transcriptional profiles and cellular heterogeneity in
DS will allow additional detailed characterization of astrocytes in
the DS brain. This technology has been used in other diseases
such as in Huntington’s disease where several transcriptional
states of astrocytes were identified (Al-Dalahmah et al.,
2020). Use of patient-derived iPSCs is also a relatively new
technology allowing the study of human DS cells. This
approach is compatible with high-throughput screening methods
that can be used to identify new compounds that correct
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aberrant cellular pathways caused by trisomy 21. However, a
current limitation of iPSC research is the limited availability of
independent DS cell lines. Many studies have used the same
iPSC lines, and it is clear that genetic background can have an
important impact on cellular phenotypes observed, especially
in DS. New patient-derived iPSC lines need to be created and
shared among the scientific community in order to take full
advantage of this powerful approach. Finally, establishing new
animal models of DS is an important future direction for the
field to help validate findings in vivo and test new hypotheses.
DS is a particularly challenging to model in mice as it requires
the triplication of genes of a whole human chromosome which
are spread over several chromosomes in mice. There are many
different animal models of DS which all have their strengths
and weaknesses and summarized in this review (Herault et al.,
2017). Access to new models and application of innovative
technologies such as single-cell RNA-seq and iPSCs will help
build a more complete picture of the cellular changes occurring
in DS and provide further optimism that effective therapies for
DS can be found.
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