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Abstract

Aging is associated with reductions in hippocampal volume (HV) that are accelerated by 

Alzheimer’s disease and vascular risk factors. Our genome-wide association study of dementia-

free persons (n=9,232) identified 46 SNPs at four loci with p-values <4.0×10-7. Two additional 

samples (n=2,318) replicated associations at 12q24 within MSRB3/WIF1 (discovery + replication, 

rs17178006; p=5.3×10-11) and at 12q14 near HRK/FBXW8 (rs7294919; p=2.9×10-11). Remaining 

associations included one 2q24 SNP within DPP4 (rs6741949; p=2.9×10-7) and nine 9p33 SNPs 

within ASTN2 (rs7852872; p=1.0×10-7) that were also associated with HV (p<0.05) in a third 

younger, more heterogeneous sample (n=7,794). The ASTN2 SNP was also associated with decline 

in cognition in a largely independent sample (n=1,563). These associations implicate genes related 

to apoptosis (HRK), development (WIF1), oxidative stress (MSR3B), ubiquitination (FBXW8), 

enzymes targeted by new diabetes medications (DPP4), and neuronal migration (ASTN2), 

indicating novel genetic influences that influence hippocampal size and possibly the risk of 

cognitive decline and dementia.
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Differences in hippocampal volume (HV) that appear with advancing age represent 

cumulative effects of early life factors, life-course events, and disease. Hippocampal atrophy 

is a recognized biological marker of Alzheimer’s disease (AD)1,2; however, it is influenced 

by various vascular and metabolic factors3,4. Because HV is a heritable5 widely measurable 

trait that exhibits meaningful detectable changes throughout the lifespan, it is a suitable 

endophenotype for aging-related physiological processes and presymptomatic diseases, 

improving power to detect genetic associations.

We explored genetic influences on HV by conducting a cross-sectional genome-wide 

association analysis in the Cohorts for Heart and Aging Research in Genomic Epidemiology 

(CHARGE) Consortium6 among 9,232 dementia-free persons from eight community-based 

studies whose mean age ranged from 56 to 84 years (weighted average, 67.1 years). Each 

study imputed to a common set of Phase II HapMap CEU SNPs using genotype data from 

Illumina or Affymetrix arrays; fit additive genetic models associating total hippocampal 

volume and genotype dosage with adjustment for age, sex, and familial relationships (if 

applicable, see Supplementary Note); and applied genomic control. Study-specific results 

were combined in an inverse-variance weighted meta-analysis.

We then conducted in-silico replication of our genome-wide significant associations and 

sought additional evidence for suggestive associations in a second-stage targeted meta-

analysis of 2,318 subjects from two community-based studies: the Three City study and an 

independent sample from the third expansion of the Rotterdam study. Characteristics of the 

discovery and replication samples are shown in Supplementary Table 1.

Figure 1 provides a Manhattan plot of -log10(p-values) from the discovery analysis, where p-

values for 46 SNPs at four loci (Supplementary Table 2) surpassed our replication threshold 

of p<4.0×10-7 —corresponding to one expected false positive. Of these, 18 SNPs at 2 loci 

surpassed a genome-wide significant threshold of p<5.0×10-8: 12q14, which included WIF1, 

LEMD3, and MSRB3, and 12q24, which included HRK and FBXW8. We found evidence of 

replication (p<0.01) for both associations. The remaining suggestive associations included 

SNPs on 2q24 within DPP4 and on 9p33 within ASTN2, which had consistent directions of 

association in the replication phase, but did not attain genome-wide significance in a 

combined analysis. Estimates for each stage are shown in Table 1; discovery GWAS results 

for the each signal’s surrounding region annotated with recombination rates and known 

genes are shown in Figure 2; and study-specific findings appear in Figure 3.

Below, we present association estimates for a meta-analysis combining the discovery and 

replication results for these four loci. To contextualize the magnitude of a SNP’s association 

with HV, we divided the regression coefficient for the allele by the mean decrease in HV for 

each year of chronological age (-27.4 mm3 per year, estimated within the Framingham Heart 

Study).

The strongest association was for rs7294919, located on 12q24 between HRK and FBXW8, 

where each copy of the T allele (allele frequency [AF] = 0.91) was associated with lower 

HV (β=−107.8 mm3, p=2.9×10-11), equivalent to 3.9 years of aging.
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HRK is expressed throughout the brain with highest levels in the amygdala, entorhinal 

cortex, and hippocampus7. It acts as a key regulator of apoptosis8, a complex pathway 

associated with aging, ischemia, and AD9 through its interaction with death-repressor 

proteins Bcl-2 and Bcl-X(L)10. In rat neuronal cell cultures, a homologous protein, DP5 

(72% identity), is induced during Aβ-mediated cytotoxicity, withdrawal of nerve growth 

factor (NGF)11, and induced global ischemia12. While treatment strategies aimed at 

modifying the apoptotic pathway have yet to achieve success13, our findings suggest this 

area of therapeutics might remain promising.

FBXW8 encodes the substrate-recognition component of an SCF (skip1, cullin1, F-box) E3 

ubiquitin ligase found in the golgi apparatus of neurons. Different E3 ligase complexes 

target specific substrates for polyubiquitination leading to proteosome degradation14, 

suggesting a role in clearing abnormal and potentially toxic protein aggregates, particularly 

hyperphosphorylated tau15. Its role in presynaptic development16, synapse formation, 

neurotransmitter release, and promotion of dendrite growth in hippocampal neurons makes a 

genetic association with HV plausible17. Whether one or both HRK and FBXW8 are 

involved in determining HV is unclear since rs7294919 is an eSNP associated with changes 

in both18-21.

At the 12q14 locus, the G allele for rs17178006, intronic within MSRB3 (AF=0.10), was 

associated with decreased HV (β=−123.8 mm3, p=5.3×10-11) equivalent to 4.5 years of 

aging. MSRB3 catalyzes the reduction of methionine R-sulfoxide residues in proteins and 

requires zinc or selenium as a cofactor. Thus, the association of lower selenium levels with 

elevated plasma homocysteine, which in turn has been associated with an increased risk of 

AD and hippocampal atrophy 22-24, may be mediated by suppression of MsrB in various 

organs including the brain25. Several SNPs in low linkage disequilibrium (r2=0.2) with 

rs17178006 were also associated with decreased HV, including rs6581612 (AF=0.27, β=

−63.3 mm3, p=7.2×10-11) between WIF1 and LEMD3. WIF1 inhibits extracellular signaling 

Wnt proteins, which play a role in embryonic development—along with β-catenin—and 

hippocampal aging26. Changes in Wnt signaling mimic the effects of environmental 

enrichment increasing hippocampal synaptic densities27. LEMD3 is a transforming growth 

factor-beta antagonist expressed in the hippocampus and upregulated protectively during 

ischemia and epileptogenesis28-30. Further, it interacts with progerin, the abnormal form of 

laminin A responsible for premature aging in progeria (Hutchinson-Gilford syndrome)31.

When testing for independent effects of these two SNPs in conditional models, both 

associations were attenuated, but only rs17178006 remained significant (p<0.05, 

Supplementary Figure 1), suggesting that the SNPs mark a single locus. Whereas MSRB3 

may be most influential, it remains possible that more than one gene in this region is 

associated with HV. For example, 8 eSNPs in the vicinity of this locus (Supplementary 

Table 3) were associated with HV at a p-value ≤5.3×10-4 and have been reported to modify 

LEMD3 expression.

In addition to the strong findings discussed above, SNPs at two additional loci showed 

suggestive evidence for association, but did not reach genome-wide significance in our 

combined meta-analysis. The first was rs6741949 in a DPP4 intron on chromosome 2q24, 

Bis et al. Page 3

Nat Genet. Author manuscript; available in PMC 2012 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where the G allele (AF=0.53) was associated with smaller hippocampal volume (β=−52.8 

mm3, p=2.9×10-7). Many bioactive peptides whose levels are altered in AD and vascular 

brain injury are substrates for DPP432, and DPP4 reduces extracellular β-amyloid 

deposition in mouse models of AD33. Further, DPP4 is an intrinsic membrane glycoprotein 

and a widely expressed serine exopeptidase34. It is also an adipokine over expressed in 

visceral adipose tissue of obese persons and those with diabetes35, conditions associated 

with smaller HV3,36. A novel class of antidiabetic medications (sitagliptin, and related 

incretin compounds) inhibits DPP4 to improve insulin sensitivity and glucose tolerance 

through increased levels of glucagon like proteins-1 and 2 (GLP-1, -2). Interestingly, 

endogenous incretin GLP-1 is also heavily expressed in some hippocampal neurons and has 

neuroprotective properties37-39.

The second suggestive association was for rs7852872, located in an ASTN2 intron on 

chromosome 9 where the C allele (AF=0.63) was associated with lower hippocampal 

volume (β=−47.7 mm3, p= 1.0×10-7). ASTN2 is a cell adhesion molecule expressed in 

neurons, including those in the dentate gyrus and hypothesized to function in glial-guided 

neuronal migration40, 41.

We sought additional replication of our significant and suggestive associations by testing the 

lead (or proxy) SNP from each locus in the Enhancing Neuro Imaging Genetics through 

Meta Analysis (ENIGMA) consortium. Briefly, this group (n=7,794, mean age 39.9 years) 

combined multiple studies including normal older individuals, a developmental sample, and 

cases symptomatic for cognitive or affective diseases. Among the ENIGMA sample, we 

observed a consistent direction of association for all cross-study comparisons. For the loci 

where the lead SNP was available in ENIGMA, replication was strongest at HRK/FBXW8 

(rs7294919, p=1.6×10-7) and nominal at DPP4 (rs6741949, p=0.04). While the lead SNPs 

were not available at the other loci, one proxy SNP in weak (r2 = 0.3) linkage disequilibrium 

with rs17178006 (MSRB3) and another in strong LD with rs7852872 (ASTN2) both had p-

values< 0.05 in ENIGMA (Table 2).

Because the ENIGMA and CHARGE samples differed in two key aspects—ENIGMA’s 

inclusion of younger adults (8 of 13 studies had no participants older than 65 years) and of 

some persons with cognitive impairment and dementia (13% of the sample)—we examined 

the top loci in subsamples of healthy persons (n=5,775, mean age 34.8 years) and of 

cognitively intact older persons (n=816, mean age 67.2 years). Association estimates, were 

generally similar to those of the full sample (Supplementary Table 4).

Given the established relationship between hippocampal atrophy and AD, we investigated 

whether SNPs from published AD GWAS42-46 were associated with HV in our discovery 

meta-analysis (Supplementary Table 5). We found nominal associations of risk alleles in 

four AD genes with smaller HV: APOE (p=0.005), BIN1 (p=0.02), MS4A4E (p=0.001) and 

TOMM40 (p=0.01). However, in aggregate, various known AD SNPs explained less than 

1% of the observed variance in HV.

We also examined our five lead SNPs for associations with cognitive decline among 1,593 

participants (mean age 78.6 years) in the Religious Orders Study and Rush Memory and 
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Aging Project47 (described in Supplementary Table 6) and found that rs7852872 (ASTN2 

locus) was associated with an accelerated rate of global cognitive decline (p=0.009) and an 

accelerated rate of memory loss (p=0.01) (Supplementary Figure 2 and Supplementary 

Table 7). The magnitude of effect was comparable to that noted previously for a CR1 SNP 

(rs6656401) in the same sample 28, providing evidence for the potential importance of this 

region.

The strengths of the current study include the large population-based sample. In the 

discovery sample, our power to detect genome-wide significant associations on the order of 

0.2 standard deviations in HV (~128 mm3, in the largest single sample: the 

AGES_Reykjavik study) was modest for rare variants (68% for 0.05 MAF) and strong for 

more common variants (>99% for 0.10 MAF). Additional power estimates are shown in 

Supplementary Figure 3. The concordance of these associations in ENIGMA provides 

additional biological validation in a population that included younger persons, suggesting 

that these genes are developmentally important and may be related to maximal adult HV. 

ENIGMA also has a substantial proportion of persons with dementia, which indicates that 

these genes may remain important in regulating response to injury. The ability to explore the 

association of our lead SNPs with cognitive decline provided further context to our findings. 

Finally, we demonstrated modest associations between previously described Alzheimer’s 

disease risk SNPs and smaller HV in our samples.

The study also has limitations. A single cross-sectional assessment was used in all studies 

and MRI and reading protocols varied across participating studies: some studies used 

manually-traced boundaries (the gold standard) whereas others used computerized 

algorithms. Although correlation between these two methods is good (Pearson’s r=0.7)48, 

the heterogeneity of measurement techniques may have compromised our ability to detect 

small associations. Although our sample size was reasonably large, we may have missed 

associations with small effect sizes as well as rare variants not covered by commercial 

genotyping arrays.

Prior studies have suggested that cognitive, neuropathological, and MRI endophenotypes of 

AD might be early and more sensitive markers of genetic risk than clinical dementia. Hence, 

it could be argued that genes associated with AD risk should also be associated with HV, 

even in our dementia-free sample. Although four AD genes were associated with HV, 

several were not; so in this study HV was not a more sensitive measure than clinical AD. It 

is clear that genetic analysis of MRI endophenotypes within a healthy older community-

based cohort study is not an ideal study design to identify all the genes associated with 

clinical AD. Our aim, however, was to identify genetic influences on hippocampal 

development and response to aging and not AD per se.

In summary, we detected four genetic loci associated with HV in a large, population-based, 

dementia-free sample. Two of these loci replicated in independent community-based 

samples as well as in ENIGMA, a mixed age sample that included some participants with 

cognitive impairment indicating that these loci may have broad implications for determining 

the integrity of the hippocampus across a range of ages and cognitive capacities. Findings 

from this study identified a series of relevant and potentially important genes associated with 
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HV during development, with aging, and in the presence of Alzheimer’s disease. 

Exploration of these genomic regions with dense genotyping, expression, and translational 

studies will be required to understand the role of these genes in determining HV.

Online Methods

Participating studies

Our analyses were performed among dementia-free participants within the setting of the 

Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium.6 

The ten discovery samples included the Aging Gene-Environment Susceptibility—

Reykjavik Study (AGES), the Atherosclerosis Risk in Communities Study (ARIC), the 

Austrian Stroke Prevention Study (ASPS), the Erasmus Ruchphen Family study (ERF), the 

Framingham Heart Study (FHS), the Religious Order Study & Rush Memory and Aging 

Project (RUSH), three independent phases of the Rotterdam Study (RS I, RS II, RS III), and 

the Tasmanian Study of Cognition and Gait (TASCOG). The two second stage replication 

samples included the Three City Study (3C) and another independent sample of the third 

expansion of the Rotterdam Study (RS R). Details on the discovery samples and second 

stage studies can be found in the Supplementary Note. Each study has an Institutional 

Review Board that approved the consent procedures, examination components, data security 

processes, genotyping protocols and current study design. All participants gave written 

informed consent for study participation and for use of DNA for genetic research.

Hippocampal Volume Phenotypes

Each study evaluated the total hippocampal volume using 1T, 1.5T or 3T MRI and either 

operator-defined, manually traced boundaries drawn on serial coronal sections or automated 

methods according to previously described reading protocols. For these analyses, we used 

data from the baseline examination or the first examination in which an MRI measurement 

was obtained. Specific details for each study’s MRI protocol are provided in the 

Supplementary Note.

Genotyping and imputation

The studies in these analyses used commercial genotyping platforms available from Illumina 

or Affymetrix. Each study performed genotyping quality control checks and imputed the 

approximately 2.5 million polymorphic autosomal SNPs described in the HapMap CEU 

population for each participant using available imputation methods. Details of per-study 

genotyping, imputation, and quality control procedures are available in Supplementary Note.

Statistical analysis within studies

Each study independently implemented a predefined GWAS analysis plan. For the 

continuous measure of hippocampal volume, we evaluated cross-sectional associations of 

hippocampal volume and genetic variation using linear regression models (or linear mixed 

effects models, in FHS and ERF to account for family relatedness). For each of the 2.5 

million SNPs, each study fit additive genetic models, regressing trait on genotype dosage (0 

to 2 copies of the variant allele). In our primary analyses, all studies adjusted for age and 

sex. Some studies made additional adjustments including study site, familial structure, or for 
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whether the DNA had been whole genome amplified. Additional details of the statistical 

analyses are available in the Supplementary Note.

Discovery meta-analysis

We conducted a meta-analysis of regression estimates and standard errors using an inverse-

variance weighting approach as implemented in METAL49. After verification of strand 

alignment across studies, QC, filtering, and imputation within each study, we restricted our 

meta-analysis to autosomal SNPs that were reported in at least 2 studies and that had an 

average minor allele frequency of at least 1%. Prior to meta-analysis, we calculated a 

genomic inflation factor (λgc) for each study to screen for cryptic population substructure or 

undiagnosed irregularities that might have inflated the test statistics. Inflation was low, with 

λgc below 1.05 in all studies. We applied “genomic control” to each study whose genomic 

inflation factor was greater than 1.00 by multiplying all of the standard errors by the square 

root of the study-specific λgc. We express the association of each SNP and hippocampal 

volume as the regression slope (β), its standard error [SE(β)] and a corresponding p-value. 

Standardized gene and SNP annotations were created using a PERL program.50

For follow up, we decided a priori on a significance threshold of p < 4×10-7, which 

corresponds to not more than one expected false positive finding over 2.5 million tests.

Replication meta-analysis

Replication samples were drawn from external studies with available genetic data and 

measures of hippocampal volume. We provided each collaborating second stage study a list 

of signal SNPs that attained a p-value of p < 4×10-7 and combined the results from these 

studies using a fixed-effects meta-analysis as described above.

Combined meta-analysis

Finally, we combined results from the discovery and second stage analyses using inverse 

variance weighting, as described above, and considered SNPs with a p-value < 5×10-8 as 

genome-wide significant.

External Validation

We sought external replication for our significant and suggestive loci in the ENIGMA 

consortium, details can be found in the companion paper. The international ENIGMA 

consortium comprises a wide variety of studies that all have GWAS and hippocampal 

volume measures (http://enigma.loni.ucla.edu). The sample includes case-control studies of 

AD and depression, family-based and sib-pair samples as well as population based samples 

of varying ages and ethnicities (European, African and Hispanic). ENIGMA assesses brain 

volumes using Freesurfer/FSL-FIRST protocols in most samples but also uses other 

protocols in a few samples. Hence we chose to compare the results from ENIGMA and 

CHARGE in a qualitative manner as these two studies vary in the composition of the study 

sample participants as well as in the methods used to assess HV. We considered replication 

as a p-value of < 0.05 and consistent direction of association.
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Exploration of loci for eQTLs and functional variants

We examined the 4 loci identified as associated with HV for the presence of cis-eQTL 

associations using the website http://eqtl.uchicago.edu/cgi-bin/gbrowse/eqtl/eQTL. We also 

searched for functional SNPs in LD with the 5 index SNPs. We identified over 70 SNPs 

with an r2 >0.4 that were within 500kb of each index SNP using the SNAP proxy tool 

(http://www.broadinstitute.org/mpg/snap/) and annotated these SNPs using GeneCruiser 

(http://genecruiser.broadinstitute.org/genecruiser3/); none of these SNPs were exonic, non-

synonymous coding SNPs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Genome-wide Manhattan plot for hippocampal volume
The plot shows the individual p-values (based on discovery meta-analysis) against their 

genomic position for hippocampal volume. Within each chromosome, shown on the x-axis, 

the results are plotted left to right from the p-terminal end. The dashed line indicates the 

threshold for follow-up, p<4 ×10-7 and the solid line indicates the threshold for genome-

wide significance, p<5×10-8. The nearest genes are indicated above points that surpassed our 

significance threshold for follow-up.
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Figure 2. Regional plots for hippocampal volume SNPs
Plots are centered on the most significant SNP at a given locus along with the meta-analysis 

results for SNPs in a region surrounding it (typically ± 100kb). All SNPs are plotted with 

their discovery meta-analysis p-values against their genomic position, with the most 

significant SNP in the region indicated as a diamond and other SNPs shaded according to 

their pairwise correlation (r2) with the signal SNP. The light blue line represents the 

estimated recombination rates. Gene annotations are shown as dark green lines.
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Figure 3. Forest plots for hippocampal volume SNP associations
Plots show the study-specific association estimates (β) and 95% confidence intervals for the 

discovery and replication stage studies, presented as rectangles and bars. Arrowheads 

indicate confidence intervals that span beyond the x-axis. Study specific results are indicated 

by: AGES, Aging Gene-Environment Susceptibility—Reykjavik Study; ARIC, 

Atherosclerosis Risk in Communities Study, ASPS, Austrian Stroke Prevention Study; ERF, 

Erasmus Ruchphen Family study; FHS, Framingham Heart Study; RUSH, Religious Order 

Study & Rush Memory and Aging Project; RS I, RS II, RS III, RS R, independent phases of 

the Rotterdam Study; TASCOG, Tasmanian Study of Cognition and Gait; 3C, Three City 

Study. Estimates from the replication phase (3C, RS R) are indicated by open rectangles. 

The scale is mm3. The association estimate and confidence interval for the meta-analysis 

combining discovery and second stage results is presented as a diamond. Blank spaces 

indicate occasions in which a particular study was not able to provide results for a given 

SNP.
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