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ABSTRACT The extensive generation of RNA sequencing (RNA-seq) data in the last decade has resulted in a
myriad of specialized software for its analysis. Each software module typically targets a specific step within the
analysis pipeline, making it necessary to join several of them to get a single cohesive workflow. Multiple
software programs automating this procedure have been proposed, but often lack modularity, transparency or
flexibility. We present ARMOR, which performs an end-to-end RNA-seq data analysis, from raw read files, via
quality checks, alignment and quantification, to differential expression testing, geneset analysis and browser-
based exploration of the data. ARMOR is implemented using the Snakemake workflow management system
and leverages conda environments; Bioconductor objects are generated to facilitate downstream analysis,
ensuring seamless integration with many R packages. The workflow is easily implemented by cloning the
GitHub repository, replacing the supplied input and reference files and editing a configuration file. Although
we have selected the tools currently included in ARMOR, the setup is modular and alternative tools can be
easily integrated.
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Since the first high-throughput RNA-seq experiments about a decade
ago, there has been a tremendous development in the understanding of
the characteristic features of the collected data, as well as the methods
used for the analysis. Today there are vetted, well-established algorithms
and tools available for many aspects of RNA-seq data analysis (Conesa
et al. 2016; Van Den Berge et al. 2018). In this study, we capitalize on

this knowledge and present a modular, light-weight RNA-seq
workflow covering the most common parts of a typical end-to-
end RNA-seq data analysis with focus on differential expression.
The application is implemented using the Snakemake workflow
management system (Köster and Rahmann 2012), and allows the
user to easily perform quality assessment, adapter trimming, genome
alignment, transcript and gene abundance quantification, differential
expression analysis and geneset analyses with a simple command,
after specifying the required reference files and information about
the experimental design in a configuration file. Reproducibility is
ensured via the use of conda environments, and all relevant log files
are retained for transparency. The output is provided in state-of-
the-art R/Bioconductor objects, ensuring interoperability with a
broad range of Bioconductor packages. In particular, we provide a
template to facilitate browser-based interactive visualization of the
quantified abundances and the results of the statistical analyses with
iSEE (Rue-Albrecht et al. 2018).

Among already existing pipelines for automated reference-based
RNA-seq analysis, several focus either on the preprocessing and quality
control steps (He et al. 2018; Ewels et al. 2018; Tsyganov et al. 2018), or
on the downstream analysis and visualization of differentially expressed
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genes (Marini 2018; Monier et al. 2019; Powell 2018), or do not provide
a single framework for the preprocessing and downstream analysis
(Steinbaugh et al. 2018). Some workflows are based on predefined
reference files and can only quantify abundances for human or mouse
(Torre et al. 2018; Cornwell et al. 2018; Wang 2018). Additionally,
workflows that conduct differential gene expression analysis often do
not allow comparisons between more than two groups, or more com-
plex experimental designs (Girke 2018; Cornwell et al. 2018). Some
existing pipelines only provide a graphical user interface to design
and execute fully automated analyses (Hung et al. 2018; Afgan et al.
2018). In addition to reference-based tools, there are also pipelines that
perform de novo transcriptome assembly before downstream analysis
(e.g., https://github.com/dib-lab/elvers).

ARMOR performs both preprocessing and downstream statistical
analysis of the RNA-seq data, building on standard statistical analysis
methodsandcommonlyuseddatacontainers. Itdistinguishes itself from
existingworkflows in severalways: (i) Itsmodularity, reflected in its fully
and easily customizable framework. (ii) The transparency of the output
and analysis, meaning that all code is accessible and can be modified by
the user. (iii) The seamless integration with downstream analysis and
visualization packages, especially those within Bioconductor (Huber
et al. 2015; Amezquita et al. 2019). (iv) The ability to specify any
fixed-effect experimental design and any number of contrasts, in a
standardized format. (v) The inclusion of a test for differential tran-
script usage in addition to differential gene expression analysis. While
high-performance computing environments and cloud computing are

Figure 1 Simplified directed
acyclic graph (DAG) of the AR-
MOR workflow. Blue ellipses are
rules run in R, orange ellipses
from software called as shell com-
mands. Dashed lines and light-
colored ellipses are optional rules,
controlled in the configuration file.
By default all rules are executed.
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not specifically targeted, Snakemake enables the usage of a cluster
without the need to modify the workflow itself.

In general, we do not advocate fully automated analysis. All
rigorous data analyses need exploratory steps and spot checks at various
steps throughout the process, to ensure that data are of sufficient quality
and to spotpotential errors (e.g., samplemislabelings). ARMORhandles
the automation of ”bookkeeping” tasks, such as running the correct
sequence of software for all samples, and compiling the data and re-
ports in standardized formats. If errors are identified, the workflow can
re-run only the parts that need to be updated.

ARMOR is available from https://github.com/csoneson/ARMOR.

MATERIALS AND METHODS

Overview
The ARMOR workflow is designed to perform an end-to-end
analysis of bulk RNA-seq data, starting from FASTQ files with
raw sequencing reads (Figure 1). Reads first undergo quality con-
trol with FastQC (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) and (optionally) adapter trimming using
TrimGalore! (https://www.bioinformatics.babraham.ac.uk/projects/
trim_galore/), before being mapped to a transcriptome index using
Salmon (Patro et al. 2017) and (optionally) aligned to the genome
using STAR (Dobin et al. 2013). Estimated transcript abundances from
Salmon are imported into R using the tximeta package (Soneson et al.
2015; Love et al. 2019) and analyzed for differential gene expression and
(optionally) differential transcript usage with edgeR (Robinson et al.
2010) and DRIMSeq (Nowicka and Robinson 2016). The quantifica-
tions, provided metadata, and results from the statistical analyses are
exported as SingleCellExperiment objects (Lun and Risso 2019) ensur-
ing interoperability with a large part of the Bioconductor ecosystem
(Huber et al. 2015; Amezquita et al. 2019). Quantification and quality
control results are summarized in aMultiQC report (Ewels et al. 2016).
Other tools can be easily exchanged for those listed above by modifying
the Snakefile and/or the template analysis code.

Input file specification
ARMOR can be used to analyze RNA-seq data from any organism for
whicha reference transcriptomeand(optionally)anannotated reference
genome are available from either Ensembl (Zerbino et al. 2018) or
GENCODE (Frankish et al. 2019). Paths to the reference files, as well
as the FASTQ files with the sequencing reads, are specified by the user
in a configuration file. In addition, the user prepares a metadata file – a
tab-delimited text file listing the name of the samples, the library type
(single- or paired-end) and any other covariates that will be used for the
statistical analysis. The checkinputs rule in the Snakefile can be exe-
cuted to make sure all the input files and the parameters in the config-
uration file have been correctly specified.

Workflow execution
ARMOR is implemented as a modular Snakemake (Köster and
Rahmann 2012) workflow, and the execution of the individual steps
is controlled by the provided Snakefile. Snakemake will automati-
cally keep track of the dependencies between the different parts of
the workflow; rerunning the workflow will thus only regenerate
results that are out of date or missing given these dependencies.
Via a set of variables specified in the configuration file, the user
can easily decide to include or exclude the optional parts of the
workflow (shaded ellipses in Figure 1). By adding or modifying
targets in the Snakefile, users can include any additional or special-
ized types of analyses that are not covered by the original workflow.

Bydefault, all softwarepackagesthat areneededfor theanalysiswillbe
installed in an auto-generated conda environment, which will be auto-
matically activated by Snakemake before the execution of each rule. The
desired software versions can be specified in the provided environment
file. If the user prefers, local installations of (all or a subset of) the required
software can also be used (as described in Software management).

Software management
First, the user needs to have a recent version of Snakemake and conda
installed. There is a range of possibilities to manage the software for
the ARMOR workflow. The recommended option is to allow conda and
the workflow itself tomanage everything, including the installation of the
neededRpackages. Theworkflow is executed thiswaywith the command

snakemake ‐‐use-conda
The first time the workflow is run, the conda environments will be

generated and all necessary software will be installed. Any subsequent
invocations of the workflow from this directory will use these generated
environments. An alternative option is to use ARMOR’s envs/environ-
ment.yaml file to create a conda environment that can be manually
activated, by running the command

conda env create ‐‐name ARMOR \
‐‐file envs/environment.yaml

conda activate ARMOR
The second command activates the environment. Once the envi-

ronment is activated, ARMOR can be run by simply typing

Figure 2 The files and directory structure that make up the ARMOR
workflow.
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snakemake
Additionally, the user can circumvent the use of conda, and make

sure that all software is already available and in the user’s PATH. For
this, Snakemake and the tools listed in envs/environment.yaml need
to be manually installed, in addition to a recent version of R and the
R packages listed in scripts/install_pkgs.R.

For either of the options mentioned above, the useCondaR flag in
the configuration file controls whether a local R installation, or a conda-
installed R, will be used. If useCondaR is set to False, the path to a
local R installation (e.g., Rbin:,path.) must be specified in the
configuration file, along with the path to the R package library
(e.g., R_LIBS_USER=“,path.”) in the .Renviron file. If the spec-
ified R library does not contain the required packages, Snakemake will
try to install them (i.e., write permissions would be needed). ARMOR
has been tested on macOS and Linux systems.

Statistical analysis
ARMORuses the quasi-likelihood framework of edgeR (Robinson et al.
2010; Lun et al. 2016) to perform tests for differential gene expression,
camera (Wu and Smyth 2012) to perform associated geneset analysis,
and DRIMSeq (Nowicka and Robinson 2016) to test for differential
transcript usage between conditions. All code to perform the statistical
analyses is provided in Rmarkdown templates (Allaire et al. 2018; Xie
et al. 2018), which are executed at runtime. This setup gives the user
flexibility to use any experimental design supported by these tools, and
to test any contrast(s) of interest, by specifying these in the configura-
tion file using standard R syntax, e.g.,

design:“� 0 + group”
contrast:groupA-groupB
Arbitrarily complexdesigns andmultiple contrasts are supported. In

addition, by editing the template code, users can easily configure the
analysis, addadditionalplots, or evenreplace the statistical test if desired.
After compilation, all code used for the statistical analysis, together with
the results and version information for all packages used, is retained in a
standalone html report, ensuring transparency and reproducibility and
facilitating communication of the results.

Output files
The output files from all steps in the ARMOR workflow are stored in
a user-specified output directory, together with log files for each step,

including relevant software version information. A detailed summary of
the outputfiles generated by theworkflow, including the shell command
that was used to generate each of them, the time of creation, and
information about whether the associated inputs, code or parameters
have since been updated, can be obtained at any time by invoking
Snakemake with the flag -D (or ‐‐detailed-summary). Using the
benchmark directive of Snakemake, ARMOR also automatically gen-
erates additional text files summarizing the run time and peak memory
usage of each executed rule.

The results from the statistical analyses are combined with the
transcript- andgene-level quantificationsandsavedasSingleCellExperi-
ment objects (Lun and Risso 2019), ensuring easy integration with a
large number of Bioconductor packages for downstream analysis and
visualization. For example, the results can be interactively explored
using the iSEE package (Rue-Albrecht et al. 2018) and a template is
provided for this.

Multiple project management
When managing multiple projects, the user might run ARMOR in
multiple physical locations (i.e., clone the repository in separate places).
snakemake ‐‐use-condawill create a separate conda environment
in each subdirectory, which means that the installed software may be
duplicated. If disk space is a concern, building and activating a single
conda environment (using the conda env create command as
shown in the Software management section), and activating this
before invoking each workflow may be beneficial. It is also possible
to explicitly specify the path to the desired config.yaml configuration
file when snakemake is called:

snakemake ‐‐configfile config.yaml
Thus, the same ARMOR installation can be used for multiple

projects, by invoking it with a separate config.yaml file for each project.
By taking advantage of the Snakemake framework, ARMOR

makes file and software organization relatively autonomous. Al-
though we recommend using a file structure similar to the one used

n Table 1 Metadata table for the Wnt signaling data

Names type condition

Q10-Chir-1_R1 SE d4Tcf__chir
Q10-Chir-2_R1 SE d4Tcf__chir
Q10-Chir-3_R1 SE d4Tcf__chir
b-cat-KO-Chir-1_R1 SE dBcat__chir
b-cat-KO-Chir-2_R1 SE dBcat__chir
b-cat-KO-Chir-3_R1 SE dBcat__chir
WT-Chir-1_R1 SE WT__chir
WT-Chir-2_R1 SE WT__chir
WT-Chir-3_R1 SE WT__chir
Q10-unstim-1_R1 SE d4Tcf__unstim
Q10-unstim-2_R1 SE d4Tcf__unstim
Q10-unstim-3_R1 SE d4Tcf__unstim
b-cat-KO-ustim-1_R1 SE dBcat__unstim
b-cat-KO-ustim-2_R1 SE dBcat__unstim
b-cat-KO-ustim-3_R1 SE dBcat__unstim
WT-unstim-1_R1 SE WT__unstim
WT-unstim-2_R1 SE WT__unstim
WT-unstim-3_R1 SE WT__unstim

Figure 3 The suggested structure for the set of files that need to be
organized to run ARMOR on a new dataset. The structure can deviate
from this somewhat, since the location of the files can be specified in
the corresponding config.yaml file.
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for the example data provided in the repository (Figure 2), and
managing all the software for a project in a conda environment,
the user is free to use the same environment for different datasets,
even if the files are located in several folders. This alternative is more

of a “software-based” structure than the “project-based” structure
we present with the pipeline. Either structure has its advantages and
depending on the use case and level of expertise, both can be easily
implemented using ARMOR.

Figure 4 The set of output files from the workflow. This
includes log files for every step and all the standard
outputs of all the tools, such as R objects and scripts,
BAM files, bigWig files and quantification tables. Note
that the outputs for only one RNA-seq sample are
shown; ... represents the set of output files for the
remaining samples or contrasts. Directories ending in /
contain extraneous files and are collapsed here.
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Code availability
ARMORisavailable(underMITlicense) fromhttps://github.com/csoneson/
ARMOR, together with a detailed walk-through of an example analysis.
The repository also contains a wiki (https://github.com/csoneson/ARMOR/
wiki), which is the main source of documentation for ARMOR and con-
tains extensive information about the usage of the workflow.

Data Availability
Supplemental fileDataS1.html contains theMultiQC report for the data
used in the Real data walk-through section (ArrayExpress accession
number E-MTAB-7029). Supplemental material available at FigShare:
https://doi.org/10.25387/g3.8053280.

RESULTS AND DISCUSSION

The ARMOR skeleton
Figure 2 shows the set offiles containedwithin theARMORworkflow, and
what is downloaded to the user’s computer when the repository is cloned.

The example_data directory represents a (runnable) template of a
very small dataset, which is useful for testing the software setup and the

system as well as for having a structure to copy for a real project. The
provided config.yaml file is pre-configured for this example dataset.We
recommend that users prepare their own config.yaml and a similar
directory structure to example_data, with the raw FASTQ files and
reference sequence and annotation information in subfolders, perhaps
using symbolic links if suchfiles are alreadyavailable inanother location.
We present an independent example below in the Real data walk-
through section.

Once everything is set up, runningsnakemake, which operates on
the rules in the Snakefile, will construct the hierarchy of instructions to
execute, given the specifications in the config.yaml file. Snakemake
automatically determines the dependencies between the rules and will
invoke the instructions in a logical order. The scripts and envs directo-
ries, and the Snakefile itself, should not need to be modified, unless the
user wants to customize certain aspects of the pipeline.

Real data walk-Through
Here, we illustrate the practical usage of ARMOR on a bulk RNA-seq
dataset from a study onWnt signaling (Doumpas et al. 2019). For each

Figure 5 Screenshot of visualization of data and results from the real data walk-through using the iSEE R/Bioconductor package. The interactive
application was configured to display an MDS plot colored by the sample condition (top left), a custom panel showing the observed read
coverage of a selected gene (top right), a volcano plot for a specified contrast (bottom left, the selected genes are shown in the adjacent table)
and an overview of the log-CPM expression values for each sample, for a gene selected in a second table (bottom right).
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of three genetic backgrounds (HEK 293T, dBcat and d4TCF) and two
experimental conditions (untreated and stimulated using the GSK3
inhibitor CHIRON99021), three biological replicates were measured
(18 samples in total). The number of sequenced reads for each indi-
vidual sample ranges from 12.5 to 41million. Amore detailed overview
of the dataset is provided in the MultiQC report generated by the
ARMOR run (Supplemental File DataS1.html). An R script (down-
load_files.R, which can be found at https://github.com/csoneson/
ARMOR/blob/chiron_realdataworkflow/E-MTAB-7029/download_
files.R) was written to download the FASTQ files with raw reads from
ArrayExpress (https://www.ebi.ac.uk/arrayexpress/experiments/
E-MTAB-7029/), and create a metadata table detailing the type
of library and experimental condition for each sample (Table 1). This
table was saved as a tab-delimited text file named metadata.txt.

The raw data and reference files were organized into a directory,
E-MTAB-7029, with the structure according to Figure 3. The default
config.yaml downloaded with the workflow was copied into a new file
called config_E-MTAB-7029.yaml and edited to reflect the location of
these files. In addition, the read length was set and the experimental
design was specified as “� 0 + condition”, where the condition
information will be taken from metadata.txt. Then, a set of contrasts of
interest (e.g., conditiond4Tcf__chir-conditiond4Tcf__
unstim) were specified, as well as the set of genesets to use. The final
configuration file can be viewed at https://github.com/csoneson/
ARMOR/blob/chiron_realdataworkflow/config_E-MTAB-7029.yaml.

The set of files (not including the large data and reference files,
whichwould be downloaded using the download_files.R) used in this
setup can be found on the chiron_realdataworkflow branch of the
ARMOR repository: https://github.com/csoneson/ARMOR/tree/
chiron_realdataworkflow.

After downloading the data, generating the metadata.txt file and
editingtheconfig.yamlfile, the fullworkflowwas runwith thecommand:

snakemake ‐‐use-conda‐‐cores 20 \
‐‐configfile config_E-MTAB-7029.yaml

and upon completion of the workflow run, the specified output
directory was populated as shown in Figure 4. The MultiQC directory
contains a summary report of the quality assessment and alignment steps.
In the outputR directory, reports of the statistical analyses (DRIMSeq_
dtu.html and edgeR_dge.html), as well as a list of SingleCellExperiment
objects (in shiny_sce.rds) are saved. The latter can be imported into R and
used for further downstream analysis. Using the template run_iSEE.R
(available from https://github.com/csoneson/ARMOR/blob/chiron_
realdataworkflow/E-MTAB-7029/run_iSEE.R) and shiny_sce.rds
(available from https://doi.org/10.6084/m9.figshare.8040239.v1), an
R/shiny web application can be initiated, with various panels to allow
the user to interactively explore the data and results (Figure 5).

Figure 6 shows the run time and maximal memory usage for gen-
erating each output file. Note that the ncores parameter in the con-
figuration file was kept at 1, and thus each rule was run using a single
thread. The most memory-intensive parts of the workflow, due to the
large size of the reference genome, were the generation of the STAR
index and the alignment of reads to the genome. The most time con-
suming parts were the generation of the STAR index and the DTU
analysis with DRIMSeq. However, both of these can be executed using
multiple cores, by increasing the value of the ncores parameter.
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