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Abstract

Middle East respiratory syndrome coronavirus (MERS-CoV), an emerging infectious disease of growing global importance,
has caused severe acute respiratory disease in more than 1600 people, resulting in almost 600 deaths. The high case
fatality rate, growing geographic distribution and vaguely defined epidemiology of this novel pathogen have created an
urgent need for effective public health countermeasures, including safe and effective treatment strategies. Despite the
relatively few numbers of cases to date, research and development of MERS-CoV therapeutic candidates is advancing
quickly. This review surveys the landscape of these efforts and assesses their potential for use in affected populations.
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Introduction

Respiratory tract infections are the leading cause of mortality in
resource-limited settings, accounting for more than 4 million deaths
each year globally [1]. Epidemic- and pandemic-prone respiratory
viruses are the aetiological pathogens in many cases, and have
caused several of the most prominent infectious disease outbreaks
of the past two decades: these include H5N1 influenza in 1997,
severe acute respiratory syndrome (SARS) in 2003 and pandemic
H1N1 influenza in 2009. Most recently, Middle East respiratory
syndrome coronavirus (MERS-CoV) has emerged as a novel cause
of severe acute respiratory illness after first being identified in a
Saudi Arabian patient in 2012 [2]. Although initially restricted to
the Arabian Peninsula, this emerging pathogen has respectively
infected and killed more than 1600 and 580 people on four
continents across 26 countries [3,4]. Phylogenetically related to
SARS-CoV [5], MERS-CoV has a similar clinical presentation [6–9],
albeit with a higher case fatality rate (~40% versus 10%) [3–5].
Dromedary camels serve as the principal animal reservoir for this
virus; and zoonotic spillover from dromedaries to humans has, thus
far, driven the course of the epidemic [10–18]. Although human-
to-human transmission has been documented – particularly in the
context of nosocomial outbreaks [19–24] – the spread of MERS-
CoV is inefficient and unsustained, as reflected in an estimated
reproduction rate of no higher than 0.7 [25,26].

MERS-CoV is an enveloped, single-stranded, positive-sense RNA
virus that comprises a 30-kilobase genome that codes for four
structural proteins and an RNA polymerase [27], typical of the
Coronaviridae family (Figure 1). The most immunogenic of these
proteins is the virus‘ only surface glycoprotein, Spike (S)[28–30]
that mediates viral attachment and fusion via the host cognate
receptor, dipeptidyl peptidase 4 (DPP4) [31]. Although the broad
principles of the virus‘ life cycle and its mechanisms of
pathogenesis are beginning to be understood, this knowledge has
not yet translated to a licensed therapy or vaccine. Much of the
work to develop safe and effective MERS-CoV countermeasures
has centred on vaccines, but the relatively low prevalence of the
disease, the sporadic nature of the case clusters and the dearth
of detailed knowledge on chains of transmission highlight the need
for greater investments into the discovery of effective therapeutic
and secondary prophylactic regimens for infected and exposed
individuals.

Efforts to research and develop treatment strategies for MERS-CoV
are accelerating but remain limited in their scope and stage of
advancement. There are few novel compounds being studied that
are specific for MERS-CoV molecular targets, as most treatment
options, investigational and licensed, are being repurposed from
their use for other RNA viruses or other non-infectious diseases.
The current landscape of MERS-CoV therapies, therefore, is
dominated by an armamentarium of repositioned drugs with in
vitro activity against MERS-CoV replication, but is also speckled
with agents that are directed towards and derived from host
immunity. The current review surveys the landscape of therapeutic
products in each category and assesses their potential for advanced
testing and development.

Host-directed/-derived therapies

Despite past efforts to develop coronavirus countermeasures, there
are still no licensed therapies of proven efficacy for MERS-CoV
or any other coronavirus infection. Supportive measures remain
the mainstay of MERS-CoV treatment strategies and include
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Figure 1. Figure 1. MERS-CoV structure and genomic organisation. Coronaviruses,
such as Middle East respiratory syndrome (MERS) and severe acute
respiratory syndrome (SARS) coronaviruses (CoV), are enveloped viruses
that contain a single-stranded, positive-sense RNA genome. In the case of
MERS-CoV the virion particle is approximately 120–160 nm in diameter and
contains a genome of 30 kilobases in length that codes for four structural
proteins (S: Spike, M: Matrix, N: Nucleocapsid, E: Envelope, ORF: Open
reading frame, UTR: Untranslated region) and 16 non-structural proteins
and two viral proteases (not shown here). (Adapted with permission from
Luis Enjuanes, National Center of Biotechnology, Campus Universidad
Autónoma de Madrid)
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respiratory and circulatory support, preservation of renal, hepatic
and neurological function, and prevention of secondary infections.
Beyond implementing basic principles of critical care medicine,
immune-based therapies have been used most commonly during
both the SARS-CoV pandemic of 2003 and the current MERS-CoV
epidemic, each time yielding equivocal results. There have been
some promising animal data where combination treatment with
ribavirin and interferon (IFN)-α2b improved clinical outcomes in
MERS-CoV-infected non-human primates (NHPs). However,
treatment was initiated very soon after viral challenge (~8 hours),
a window that is unlikely to be replicated in a real-world clinical
setting [32].

Various IFN regimens, in combination with ribavirin, have been
intermittently administered to severely ill patients, although
typically in an ad hoc manner and in the absence of systematic
evaluation [33–37]. Individual case reports and uncontrolled case
series not only limit determination of whether an intervention
works but if it is safe as well. Ribavirin, for example, is a potent
nucleoside analogue that has been used with varying measures
of success against a range of RNA viruses [38]. However, patients
can experience significant toxicities when given the drug alone
or in combination with an interferon, including but not limited
to haemolytic anaemia and metabolic abnormalities. Interferons
also can elicit systemic adverse effects, psychiatric disturbances
and neutropenia [39]. Thus, without the benefit of randomised
controlled trial data, it becomes difficult to assess whether the
treatment is worse than the disease. Certain strategies, however,
have been shown to worsen clinical outcomes in the setting of a
coronavirus infection. For example, studies during the SARS
pandemic showed that corticosteroids, when used early on
SARS-CoV infected patients, significantly increased viral load, ICU
admission and mortality [40,41]. The role for interferon therapies
has been less clear in the current MERS-CoV epidemic, as some
data show a positive impact on proximate outcomes, such as
oxygenation and inflammation, but no effect on more significant
outcomes like hospital stay and long-term survival [35,36,42].

Rapidly scaled treatments based on naturally occurring neutralising
antibodies such as convalescent plasma or hyperimmune globulin,
on the other hand, have been shown to be relatively safe and
potentially effective for reducing mortality from several infections
such as SARS-CoV and influenza [43–45], and may hold promise
for MERS-CoV as well. This strategy, however, relies on the rapid
identification of cases and contacts and immediate deployment
of products to have maximal impact. One study found that
convalescent plasma decreased mortality in SARS-CoV patients
only if administered within 14 days of illness [44]. A network for
the use of convalescent plasma for case clusters of MERS-CoV

is currently being assembled [43] to test its safety, efficacy and
feasibility. However, actualisation of this plan is limited by logistical
challenges, local technical capacity and donor supply.
Unfortunately, no host-derived experimental interventions have
yet demonstrated appreciable benefit in acutely ill, MERS-CoV-
infected patients in a consistent or controlled manner. This reality,
although, has not slowed down the discovery and advancement
of passive prophylactic products derived from vaccinated and
infected animals and humans.

Monoclonal antibodies (mAbs)
Despite intensive efforts to develop a MERS-CoV vaccine, the
prevalence and transmissibility of this emerging pathogen are both
relatively low [3,26], making it difficult to define a target population
for vaccination. mAbs, on the other hand, can be administered in
the setting of an outbreak without the need to discriminate who
might be at greatest risk for infection. They can be used to treat
cases early in their natural history and for post-exposure prophylaxis
of case contacts. mAbs also carry the benefits of higher potency,
greater specificity, more extensive pre-licensing evaluation and
consequently a more vetted safety profile. Additionally, mAbs can
help define immunogenic epitopes through crystallographic analysis,
thereby providing atomic-level detail for the design of better
immunogens. They also have been proven as effective therapies in
the areas of cancer treatment and autoimmune disease management.
Although there is only one pathogen, respiratory syncytial virus, for
which a mAb is licensed for use, there are a number of other infectious
disease indications—such as Ebola virus disease treatment and human
immunodeficiency virus primary and secondary prevention—for which
mAbs are being tested in advanced phase clinical trials
(www.clinicaltrials.gov). Despite all of these advantages, the timelines
and costs of mAb research and development (R&D) are respectively
longer and higher than that for polyclonal antibody preparations.

In spite of the requirements for greater upfront investments and a
more rigorous testing and approval process, several groups have
identified highly potent MERS-CoV mAbs and are advancing them
through preclinical stages of development (Table 1). Some
have been isolated from immunised animals (mice/humanised
mice/NHPs) [46–54], while others have been identified from either
an antibody human phage library [55] or memory B cells of infected
and recovered human survivors [56].Almost all of the published mAbs
and all of those in development target the S receptor-binding domain
(RBD), which contains the most immunogenic epitopes on the virus.
Many bind to the RBD, expressed both on a recombinant S and on
the surface of live virus, with picomolar affinity and neutralise
MERS-CoV at a half maximal inhibitory concentration (IC50) of
10 ng/μL or less. Additionally, several groups have demonstrated

Table 1. Middle East Respiratory Syndrome Coronavirus (MERS-CoV) monoclonal antibodies (mAbs) in various stages of research and development (R&D).
Several groups have identified monoclonal antibodies that have at least shown potent neutralisation against MERS-CoV and in some cases have
protected transgenic mice and non-human primates (NHPs) from MERS-CoV disease after viral challenge

Institution Name Source Target R&D Reference

Chinese Academy of Sciences 4C2, 2E6 RBD immunised mice RBD Mouse efficacy [48]

Dana-Farber Cancer Institute and AbViro LLC 3B11 (AV-3) Human antibody library RBD NHP efficacy [55]

HUMABS BioMed LCA60 Human survivor RBD Mouse/NHP efficacy [56]

New York Blood Center Mersmab1 S1 imunised mouse RBD In vitro [46]

NIH National Cancer Institute M336, m337, m338 Human antibody library RBD In vitro [52]

NIH NIAID D12, F11, G2, G4 S/S1 immunised mouse RBD, S1, S2 NHP efficacy [51]

Regeneron REGN3048/REGN3051 Humanised mouse RBD Mouse/NHP efficacy [49]

Tsinghua University MERS-4, MERS-27 Human antibody library RBD In vitro [47]

RBD: receptor binding domain; S: Spike glycoprotein; S1: Spike domain containing RBD; S2: Spike domain containing fusion machinery.
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protective efficacy in pre- and post-exposure prophylaxis animal
models. Because most of the antibodies target the RBD, there is a
potential for viral escape from any one mAb. Thus, there may be a
need to develop antibodies against other vulnerable sites on S or to
investigate the use of combination mAbs to overcome the potential
emergence of therapeutic resistance. It is likely that mAbs directed
at other sites on the S glycoprotein have already been recovered
but are not as potent neutralisers, as is the case in one report [51].
A more efficient search for potent neutralising antibodies that target
epitopes outside the RBD could be facilitated by a more detailed
understanding of the atomic-level structure of the entire S glycoprotein,
as has already been resolved for the RBD. The successes thus far in
isolating potent and protective mAbs, although significant, are likely
to be tempered by the challenges of advancing these products to
licensing and full-scale production at affordable costs for as of yet
undefined populations in a relatively short timeframe. Thus, mAbs
should be advanced along a development pipeline in parallel with
a program of rational drug design and discovery.

Antivirals

Although intensive, supportive care still serves as the primary
treatment option for MERS-CoV and mAbs are the focus of the most
advanced R&D efforts, antiviral therapies are being actively
investigated for use in severely ill patients. There are two main
pathways for drug discovery: de novo development and repurposing
licensed medications. There are few new antivirals for MERS-CoV;
however, the Ebola epidemic has had an unanticipated consequence
of facilitating their development. One in particular, GS-5734
developed by Gilead Sciences, is an adenine analogue that is
incorporated into viral RNA to disrupt replication [57]. It has shown
survival benefit in NHPs inoculated with Ebola virus and is now
advancing through a Phase I dose escalation trial. It has been claimed
to have in vitro activity against MERS-CoV as well, but publication
of these data is pending. Similarly, BCX4430 is a nucleoside analogue
that is being developed by Biocryst Pharmaceuticals for potential
treatment of filoviruses, coronaviruses and other RNA viruses [58].
Additionally, small interfering RNA molecules and peptide inhibitors
are being investigated for their ability to disrupt MERS-CoV
replication, although these products are still in very early phases of
investigation [59,60].

As the life cycle and genetic sequence of this new coronavirus
has become better elucidated, the rational design and development
of novel and approved agents with potent antiviral activity have
become possible. The advent of high-throughput screens of
licensed compounds and small molecules has also allowed
researchers to efficiently evaluate large libraries of drugs for their
in vitro antiviral activity against novel targets [61–66]. To date,
several dozen licensed drugs have been reported to inhibit
MERS-CoV replication. Using slightly different screening
technologies, different groups have converged on some common
classes of compounds, including nucleoside analogues, antibacterial
protein synthesis inhibitors, kinase signalling modifiers,
antimetabolites and antiprotozoal agents.

Mycophenolic acid, an inhibitor of both T an B lymphocytes, has
also been found to have strong activity against MERS-CoV, as it
does against other RNA viruses such as West Nile, hepatitis C and
dengue [63]. Only one of the drugs to show in vitro activity against
MERS-CoV, lopinavir, however, has been tested in an animal model.
MERS-CoV-challenged marmosets that were treated with this
protease inhibitor had better clinical, pathological, virological and
radiological outcomes than controls or those treated with
mycophenolate mofetil [67]. Additionally, two peptides, HR1P and
HR2P are being developed as potential fusion inhibitors [59]. By
acting on the six-helix bundle core of the MERS-CoV S protein

to prevent protein-mediated cell-to-cell fusion, this class of
compounds may hold potential beyond MERS-CoV towards a
long-term objective of a pan-coronavirus antiviral. Given some
of the common life cycles and pathways of pathogenesis for RNA
viruses and homologies in protein structures across different
coronaviruses, there may be economies of effort and investment
in developing antivirals that have activity against more than one
virus or family of viruses. Irrespective of the breadth of these novel
or repurposed compounds, treatment studies should be carried
out prospectively according to protocols that plan for the collection
of quality controlled data and serial biological sampling to assess
viral evolution and biomarkers of favourable clinical outcomes.

Summary
Recent infectious disease outbreaks such as the 2009 H1N1 influenza
pandemic, the H7N9 influenza epidemic in China, the Ebola crisis
in West Africa and now the MERS-CoV outbreak have highlighted
the need for better R&D preparedness and improved coordination
of clinical testing in the face of the accelerating number of emerging
and re-emerging infectious diseases. The ability to have an
armamentarium of countermeasures and clinical trial infrastructure
in the early phases of an outbreak is critical for mounting an effective
public health campaign. For example, the SARS-CoV pandemic
caused more than 8000 cases of severe acute respiratory illness and
nearly 900 deaths but few prospective, controlled studies were
undertaken to determine the optimal management of the disease.
Consequently, treatment options for SARS-CoV were never defined
clearly and thus difficult to adapt for MERS-CoV. Although global
coordination has resulted in the advancement of some urgently
needed, novel countermeasures for MERS-CoV, they will have to
be developed along faster timelines than before, with greater
investments earlier in the preclinical development pipeline that can
generate products for more timely efficacy testing in affected
populations. As the global community takes lessons from the most
recent outbreak and prepares for the potential of another regional
epidemic or broader pandemic, stakeholders in MERS-CoV R&D must
set out a sound strategy now for where to best target their
investments in anticipation of the changing dynamics of the current
and future outbreaks.
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