Article
A Personalized Genomics Approach of the Prostate Cancer

Sanda Iacobas ! and Dumitru A. Iacobas %*

check for

updates
Citation: Iacobas, S.; Iacobas, D.A. A
Personalized Genomics Approach of
the Prostate Cancer. Cells 2021, 10,
1644. https://doi.org/10.3390/
cells10071644

Academic Editors: Chae-OK Yun and
A-Rum Yoon

Received: 16 May 2021
Accepted: 28 June 2021
Published: 30 June 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 Department of Pathology, New York Medical College, Valhalla, NY 10595, USA; sandaiacobas@gmail.com
Personalized Genomics Laboratory, Center for Computational Systems Biology,

Roy G Perry College of Engineering, Prairie View A&M University, Prairie View, TX 77446, USA

*  Correspondence: daiacobas@pvamu.edu; Tel.: +1-936-261-9926

Abstract: Decades of research identified genomic similarities among prostate cancer patients and
proposed general solutions for diagnostic and treatments. However, each human is a dynamic
unique with never repeatable transcriptomic topology and no gene therapy is good for everybody.
Therefore, we propose the Genomic Fabric Paradigm (GFP) as a personalized alternative to the
biomarkers approach. Here, GFP is applied to three (one primary—“A”, and two secondary—"B” &
“C”) cancer nodules and the surrounding normal tissue (“N”) from a surgically removed prostate
tumor. GFP proved for the first time that, in addition to the expression levels, cancer alters also
the cellular control of the gene expression fluctuations and remodels their networking. Substantial
differences among the profiled regions were found in the pathways of P53-signaling, apoptosis,
prostate cancer, block of differentiation, evading apoptosis, immortality, insensitivity to anti-growth
signals, proliferation, resistance to chemotherapy, and sustained angiogenesis. ENTPD2, AP5M1
BAIAP2L1, and TOR1A were identified as the master regulators of the “A”, “B”, “C”, and “N” regions,
and potential consequences of ENTPD2 manipulation were analyzed. The study shows that GFP can
fully characterize the transcriptomic complexity of a heterogeneous prostate tumor and identify the
most influential genes in each cancer nodule.

Keywords: apoptosis; ENTPD2; evading apoptosis; gene master regulators; genomic fabric; immor-
tality; proliferation; P53 signaling; tumor heterogeneity

1. Introduction

According to the 29-31 March 2021 release of the Harmonized Cancer Datasets Ge-
nomic Data Commons Data Portal [1], 33,288 mutations in 20,237 genes were identified so
far in 2355 cases of prostate cancer. The most frequently mutated genes in prostate cancer,
TP53 (tumor protein p53) and TTN (titin) are also among the most 10 frequently mutated
genes in almost all other cancers. Although its long DNA (304.814 kb [2]) makes TTN more
vulnerable to random alterations, TP53, with “only” 25.760 kb [3] is even more frequently
mutated. Anyhow, together with the blamed mutation, millions of others occur in each
individual, whose contributions to the cancer pathology are neglected without evidence
that they are really negligible.

Transcriptomic data from prostate tumors were compared to identify similarly reg-
ulated genes (e.g., [4,5]) whose restoration might provide therapeutic solutions. Again,
unrepeatable combinations of hundreds of other genes are regulated among patients, and
their contributions are unjustifiably neglected.

Several commercially available cancer diagnostic assays compare either the base
sequences or the expression levels of selected genes with corresponding “standard” muta-
tion panels (e.g., [6-10]) or “standard” transcriptomic signatures (e.g., [11-13]). However,
how universal is the “standard” derived from meta-analyses of gene sequences or/and
expression levels in large populations of healthy and cancer individuals (e.g., [14-19])?

Many papers, including ours, proved that gene expression profiles depend on the
genetic background [20], sex [21], age [22], hormones [23], disease and treatment [24,25],
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and environmental conditions [26-29]. Owing to the astronomic number of potential
combinations, it is impossible to find two individuals with the same combination of regu-
latory factors and identical influences of these factors. Thus, the same cancer phenotype
may be associated with distinct transcriptomes in different individuals as we reported for
two cases of metastatic prostate cancers [30]. Although histologically similar, the unre-
peatable combination of the “other” regulated /mutated genes makes the cancer of each
individual unique. Therefore, whenever possible, one should refer the gene expression
profile in cancer nodules to that of the surrounding cancer-free tissue of the same tumor
(e.g., [31-33]).

In recent years, highly cited papers documented that tumors have not only heteroge-
neous histology but also heterogeneous gene expression profiles [34-36] as proved also by
us in a case of clear cell renal cell carcinoma [37]. If this is true within one tumor, what
justifies comparing the average gene expression profiles in large groups of phenotypically
similar but distinct cancer patients with healthy counterparts as reported by thousands
of papers?

Several specialized software text-mined the literature to select the genes that may
have a role in prostate cancer. For instance, the Kyoto Encyclopedia of Genes and Genomes
(KEGG, [38]) selected 97 genes involved in the prostate cancer (PRC) pathway [39] out of
which we quantified 84.

2. Materials and Methods
2.1. Genomic Fabric Paradigm

Almost all cancer genomists limit their analyses to identifying what gene was up-
/down-regulated in cancer with respect to normal tissue. Rather, we adopted the Genomic
Fabric Paradigm (GFP) [40] that considers the transcriptome as a multi-dimensional mathe-
matical object subjected to dynamic sets of transcripts’ abundances controls and expression
correlations among the genes. Instead of the most frequently regulated biomarker genes
in large populations of cancer patients, GFP looks for genes with commanding roles in
the cancer of THIS person NOW. Being a personalized approach, GFP is not based on
meta-analyses, and instead of universal gene targets, it identifies what should be done for
the current patient.

GFP makes full use of profiling tens of thousands of transcripts at a time in several
biological replicates. It characterizes every gene by average expression level (AVE), Relative
Expression Variability (REV) across biological replicas, and expression correlation (COR)
with each other gene from the same region and with any gene from other regions. Compar-
ing the AVE values in two regions determines what gene was significantly regulated.

The separately profiled biological replicas are like instances of the same system sub-
jected to slightly different environmental conditions. Thus, the expression variability
among biological replicas provided an indirect estimate of how much the stability of tran-
scripts” abundances are controlled by the cellular homeostatic mechanisms [30]. Genes
whose right expression is critical for the cell’s normal behavior are kept under stricter
control and protected against environmental fluctuations, while genes empowering the cell
adaptation to the environmental irregular changes are left to adjust.

The simultaneous quantification of thousands of genes across biological replicas
allows determining how much expression of one gene is coordinated with the expression
of any other gene from the same or from another region. The expression correlation
analysis is based on the “Principle of Transcriptomic Stoichiometry” [41], a generalization
of Proust’s Law of Definite Proportions and Dalton’s Law of Multiple Proportions from
chemistry [42], requiring the expression coordination of all genes whose encoded products
are involved in a functional pathway. Expression correlation of genes does not stop
at the cell boundary, the transcellular transcriptomic networks being essential for the
integration and synchronization of multi-cellular structures as proved by us in the brain
pan-glial transcriptomic continuity [43]. The use of these three independent groups of
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features increases the workable information provided by a high throughput gene expression
experiment by several orders of magnitude [44].

Moreover, GFP establishes the gene hierarchy of that region based on their Gene
Commanding Height [37]. The topgene, termed Gene Master Regulator (GMR), is the
gene whose strictly controlled expression level regulates the major functional pathways
by coordinating the expressions of most of their genes. Therefore, altered expression of
the GMR has the largest consequences for cell physiology and can be used to selectively
suppress the phenotype it commands.

2.2. Prostate Tissues

This study is based on expression data obtained by profiling the primary tumor
(hereafter denoted as region “A”), two secondary tumors (regions “B” and “C”), and the
surrounding cancer-free tissue (region “N”) from a prostate of a 65 year old black man.
Raw and processed data from the four regions were deposited and are publicly accessible
in the websites [45] for the “N” and “C” regions, and [46] for the “A” and “B” regions. The
patient underwent a robotically assisted radical prostatectomy. The primary tumor had a
Gleason score of 4 + 5 =9/10 and the two secondary tumors had both the same Gleason
score 4 + 4 = 8/10. The primary nodule was situated in the center of the left posterior
quadrant, extending from the apex to the base. Both secondary nodules were situated right
anterior mid-gland. The patient presented seminal vesicle invasion and metastasis in one
right pelvic and iliac lymph node.

Each of the 6-8 mm samples collected from the four regions was split into four
parts and each quarter was profiled separately, providing the needed four biological
replicas. Although the selected regions were as homogeneous as possible, cells of different
phenotypes were not completely eliminated, and by consequence, expression of genes from
other cell phenotypes affected (diluted) the reported results.

2.3. Microarray

At the time, we had equal access to Illumina NextSeq 500 but we preferred to use Agi-
lent 4 x 44 k human dual-color microarrays (configuration G2519F, platform GPL13497 [47])
for their excellent reliability and affordable price. We used our standard protocol [44] for
the RNA extraction with RNAEasy Minikit (Qiagen, Germantown, MD, USA), purifica-
tion, and quantification before and after reverse transcription in the presence of Cy3/Cy5
dUTP with a Thermo Fisher Scientific NanoDrop ND-1000 (Waltham, MA, USA). RNA
quality was checked with a 2100 Bioanalyzer (Santa Clara, CA, USA). 825 ng of differently
(Cy3/Cyb5) labeled biological replicas of the same prostate region were hybridized 17 h at
65 °C with microarrays and the washed and dried chips were scanned with an Agilent
G2539 dual laser scanned for 20 bit at 5 um resolution. The digital images (tiffs) were
primarily analyzed with (Agilent) Feature Extraction vs. 11.6 software. The spots with
saturated or corrupted pixels and those with the fluorescence foreground less than twice
the fluorescence background were eliminated from the analysis. We used our iterative
procedure alternating intra-array and inter-arrays adjustment to normalize the raw data to
the median background subtracted fluorescence of all spots [48]. The control spots of the
microarrays were used as technical replicas to estimate the technical noise of the method.

2.4. Transcriptomic Analyses

Agilent microarrays probe some genes redundantly with several (not uniform num-
bers of) spots; for instance, TP53 was probed by 11 spots, all “transcript variant 1”. The
independent characteristics of every gene across biological replicas: average expression
level (AVE), Relative Expression Variability (REV), and correlation (COR) with an expres-
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sion of other genes were determined using the expression levels of all valid spots probing
that gene in “region” (= “N”, “A”. “B”, “C”) as:
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where “g” is another gene.
REV and COR are used to determine the Gene Commanding Height (GCH) [37]:
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where () = median, ()72 = average of the square values.
A gene was considered as statistically (p < 0.05) significantly regulated in a cancer

nodule (“cancer”) with respect to the normal tissue if the absolute fold-change x and the

p-value (prﬁmncer)) of the heteroscedastic t-test of the mean equality in the two regions

satisfy the composite criterion:
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The p-value was computed with Bonferroni correction for multiple testing [49] in the
case of several spots probing redundantly the same gene.
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For more comprehensive characterization of the expression alteration, we computed
the Weighted Individual (gene) Regulation (WIR) and, for an entire functional pathway T,
the Weighted Pathway Regulation (WPR) [30] as
WIR(N%cuncer) o AVE(N) foﬁmnm) ()X(Nﬁcancer) . 1) (1 . p(N%cancer))
= i i

j N—cancer |
i ‘xf ) i

(6)

WPR%N—mmcer) _ WIR(N—)cuncer)

i

iel
Our software to determine these characteristics from the raw data is described in [50].

2.5. Pathway Analyses

In addition to the prostate cancer pathway (PRC), GFP was used here to analyze
the KEGG-determined apoptosis (APO) [51], P53 signaling (P53) [52], and the (general)
pathways in cancer (PAC) [53]. Within PAC, special attention was given to the gene blocks
responsible for evading apoptosis and immortality (hereafter denoted by EAI, 46 genes),
proliferation, insensitivity to antigrowth signals and block of differentiation (PIB, 54 genes),
and resistance to chemotherapy and sustained angiogenesis (RCSA, 19 genes).

3. Results
3.1. Overview

In total, we quantified the expressions of 14,908 unigenes in each of the 16 quarters
of the three cancer nodules (“A”, “B”, “C”) and the surrounding normal tissue (“N”),
isolated from a surgically removed metastatic prostate tumor. The 4-biological replicas
strategy provided for every gene in each region the values of AVE and REV. AVE was
used to identify up-/down regulated genes in the “A”, “B”, “C” regions with respect
to “N” and the differentially expressed genes between pairs of cancer nodules. REV
analysis identified the very stably expressed genes (low REVs), critical for the survival
and proliferation of each cell phenotype, and the very unstably expressed genes, used
by the cells as vectors of adaptation to the environmental fluctuations [54]. Moreover,
quantification of tens of thousands of genes at a time from the same region provided for
each gene extra 14.907 correlation coefficients (COR) with each other gene within one region
and 3 x 14,908 correlations with all genes from each other region. Thus, the use of GFP
translated the quantified 56,632 expression values (4 regions x 14,908 genes in one region)
data into 1,778,077,160 transcriptomic characteristics of the profiled tumor (119,270 times
larger than the number of expression levels of the individual genes considered by the
traditional analysis).

The smallest and the largest AVEs in the four regions (multiples of the median gene
AVE) were for “N”: bradykinin receptor B1 (BDKRB1I; 0.11) and ribosomal protein L13
(RPL13; 621.27), for “A”: glycoprotein A33 (GPA33; 0.15) and RPL13; (288.47), for “B":
lymphocyte antigen 6 complex, locus G6C (LY6G6C; 0.07) and RPL13 (476.68); for “C”:
ubiquitously transcribed tetratricopeptide repeat-containing, Y-linked (UTY; 0.09) and
RPL13 (415.06). RPL13, the gene with the largest expression in all four regions 621.27 in
“N”, 288.47 in “A”, 476.68 in “B” and 415.06 in “C”), has also extraribosomal functions,
being involved in several diseases, including the gastric, colorectal and hepatic cancers [55].
Interestingly, more than half of the 50 most largely expressed genes in each region encoded
ribosomal proteins: 26 in “N”, 31 in “A”, 37 in “B”, and 33 in “C”. The preferred down-
regulation of the ribosomal proteins was somehow compensated by the preferred up-
regulation of the polymerase subunits and several translation initiation factors.

The most stably expressed (lowest REV) and the most unstably expressed (highest
REV) genes in the four regions were for “N”: mitochondrial ribosomal protein 512 (MRPS12;
0.32%) and ubiquitously-expressed, prefoldin-like chaperone (UXT; 133.35%), for “A”:
ectonucleoside triphosphate diphosphohydrolase 2 (ENTPD2; 0.29%) and ubiquitin-specific
peptidase 31 (LISP31; 188.14%), for “B”: synovial sarcoma, X breakpoint 3 (S5X3; 0.94%)
and v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog K (MAFK; 188.56%),
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for “C”: BAll-associated protein 2-like 1 (BAIAP2L1; 0.40%) and zyxin (ZYX; 192.35%).
Interestingly, in region “B”, both the most stably expressed (55X3) and the most unstably
expressed (MAFK) genes have recognized roles in various forms of cancers (e.g., [56,57]).
The median REVs for all quantified genes are 12.79% (“N”), 32.39% (A), 29.73% (“B”),
and 17.71% (“C”) indicating that the gene expressions are overall less controlled by the
homeostatic mechanisms in the cancer regions. In thermodynamics, systems closer to
equilibrium exhibit higher numbers of degrees of freedom (and by consequence larger
variability measured by their entropy) and are more robust. We speculate that the overall
REV hierarchy justifies why the cancer nodules are more robust systems (particularly the
primary tumor “A”), with higher survival and proliferation rates than the normal tissue.

3.2. Independent Characteristics of the Individual Genes

Figure 1 presents the visual proof that for every gene in each region, AVE, REV, and
COR (with each other gene from the same or another region) are independent characteristics.
The independence is illustrated for the AVEs and REVs of 44 KEGG-selected evading
apoptosis genes from the Pathways in cancer [44] and their expression correlation (COR)
with TP53. The Pearson correlation coefficients among these three characteristics in each
region were between —0.00069 and 0.00123, which is within the statistically significant
independence interval.

In this gene selection, kallikrein-related peptidase 3 (KLK3) had by far the largest
average expression level (measured in median gene average expression level units) in all
regions (364 in “N”, 139 in “A”, 82 in “B” and 164 in “C”). KLK3 is a prognostic marker for
progression-free survival in patients with metastatic prostate cancer [58]. However, KLK3
has not the largest REVs, nor the highest correlation coefficients with TP53 in any of the
regions, verifying the independence of the three characteristics.

Microsomal glutathione S-transferase 2 (MGST2) had the largest variability in “N”
(REV = 86%), baculoviral IAP repeat containing 3 (BIRC3) had the largest variability in “A”
(REV =101), Pim-2 proto-oncogene, serine/threonine kinase (PIM2) in “B” (REV = 79%)
and glutathione S-transferase mu 2 (GSTM?2) in “C” (REV = 39%). MGST2 was recently
reported as critical in aristolochic acid-induced gastric tumor process [59]. BIRC3 [60] and
PIM2 [61] are recognized anti-apoptotic factors, and GSTM?2 is a biomarker for the early
stages of the prostate cancer [62].

COR analysis, validated by the unit values of the correlation of TP53 with itself in
all four regions, indicates also different levels of synergism/antagonisms both across
the regions for the same gene and across the genes within the same region. Expression
correlations of two genes can be also opposite in different regions, indicating that the
encoded products of the two genes act synergistically in one region and antagonistically in
the other. For instance, BIRC3 has a (p < 0.05) significant antagonism with TP53 in “A” but
a significant synergism in “B” (and a not significant antagonism in “C”.

Comparing the three characteristics of the same gene in the cancer regions with
the normal tissue reveals that in addition to the expression level, cancer may alter also
the control of the transcript abundance and expression coordination with other genes.
Alteration of the expression control and/or coordination may occur for both regulated (e.g.,
BIRC3) and not regulated (e.g., MGTS2) genes.

Figure 1 shows also the substantial differences among the three cancer nodules with
respect to each of the three independent variables, indicating that the recognized tumor
transcriptomic heterogeneity [34-36] does not stop at the expression levels of genes in
the four regions. Tumor heterogeneity in the control of transcripts abundances and gene
networking indicates distinct alterations of the cellular biological processes and remodeling
of the functional pathways as illustrated below.
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Figure 1. Three independent characteristics for every of the KEGG-determined 43 evading apoptosis
genes in the three cancer nodule regions (“A”, “B”, “C”) and the surrounding normal tissue (“N”)
region. (a) Average expression level (AVE in multiples of the average expression level of the median
gene). (b) Relative Expression Variability. (c) Expression correlation with TP53.

3.3. Three Ways to Measure the Expression Regulation

The most down-regulated genes were: high mobility group AT-hook 2 (HMGA2;
—15.88x in “A”), kallikrein-related peptidase 11 (KLK11; -57.82x in “B”), and peptidase
inhibitor 15 (PI15; —30.20x in “C”). The most up-regulated genes were forkhead box J1
(FOXJ1;13.75% in “A”), phospholipase A2, group IIA (platelets, synovial fluid) (PLA2G2A;
18.75x in “B”), and scleraxis basic helix-loop-helix transcription factor (SCX; 300.17x in
“C”). The high up-regulation of SCX in “C” was a surprise given that its expression level
was not altered in the other two cancer regions.

Figure 2 presents the regulation of the KEGG-determined 44 evading apoptosis
genes in the three cancer nodules (“A”, “B”, “C”) with respect to the surrounding nor-
mal tissue (“N”). The regulation is shown as Figure 2a uniform (+1/—1) contribution
to the percentages of up-/down-regulated genes, Figure 2b expression ratio “x” and
Figure 2c Weighted Individual (gene) Regulation (“WIR”). Both x and WIR are negative for
down-regulated genes.
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Figure 2. Regulation of 44 evading apoptosis genes in the three cancer nodules (“A”, “B”, “C”) with respect to the

normal tissue (N) measured as (a) uniform contribution of the significantly regulated genes, (b) expression ratio “x” and

(c) Weighted Individual (gene) Regulation “WIR”.
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While the “uniform contribution” is limited to only significantly regulated genes
based on arbitrary cut-off criteria for the absolute fold-change and the p-value of the
heteroscedastic t-test of the means’ equality, “x” and “WIR” considers all genes and dis-
criminate their contributions. For instance, although the up-regulation of BIRC3 had the
same contribution (+1) to the percentage of up-regulated genes in both “B” and “C” com-
pared to “N”, the expression ratio in “C” (x = 14.89) is statistically significantly larger than
in “B” (x = 6.94) and so is the WIR (21.05 in “C” and 8.71 in “B”). However, although
in this gene selection, the expression ratio with respect to “N” was the largest for BIRC3
in “C”, it is the down-regulation of KLK3 that had the largest absolute contribution in
all cancer nodules (WIR = —585.50 in “A”, —1,248.43 in “B” and —439.17 in “C”) to the
transcriptomic alteration in all cancer nodules “B”, owing to its large expression level in
the reference tissue (364 in region “N”).

3.4. Regulation of Selected Functional Pathways in the Cancer Nodules with Respect to the
Normal Tissue

Figure 3 presents the regulation of the major KEGG-determined functional pathways:
APO (117 quantified genes), P53 (62 genes), PRC (84), and selected component blocks of
PAC: EAI (46 genes), PIB (54 genes), RCSA (19 genes). The pathway regulations were
quantified as percentages of up- and down-regulated genes and as Weighted Pathway
Regulation (WPR). For comparison, we added also the numbers when all (ALL) 14,908
quantified genes are considered. Of note is that nodule B had the significantly largest
WPRs for the EAI, PIB, and PRC groups of genes, while nodule C had the significantly
largest percentages of up-regulated genes in all pathways. Of note is also the finding
that in all cancer nodules more genes related to cancer cell survival and proliferation are
up- than down-regulated, while more genes involved in apoptosis and P53 signaling are
down-regulated than up-regulated.
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Figure 3. Overall regulation of selected KEGG-determined functional pathways measured by the percentages of the
significantly down- (a) and up-regulated (b) genes, and by the Weighted Pathway Regulation (WPR) (c). ALL = all genes,
APO = apoptosis, EAI = evading apoptosis + immortality, P53 = P53 signaling, PIB = proliferation + insensitivity to
antigrowth signals + block of differentiation, PRC = prostate cancer, RCSA = resistance to chemotherapy and sustained

angiogenesis.

3.5. Differential Regulation of the Genes Central to the KEGG-Determined Prostate Cancer
Pathway in the Three Cancer Nodules

Figure 4 shows the regulation of individual genes from the blocks of genes (presented
in Figure 4a) at the center of the KEGG-determined prostate cancer pathway [39]. Genes
shown in red/green background exhibited significant regulation in the cancer region
with respect to the normal tissue, while genes shown in the yellow background did
not satisfy our composite criterion (5). However, though not significant, owing to the
biological variability, technical noise of the method, and the stochastic nature of the gene
transcription, the average expression levels of the genes in the yellow background are
most likely not identical in the compared regions. Although not very abundant, there are
still significant differences in the subsets of the regulated genes among the three nodules.



Cells 2021, 10, 1644

10 of 23

The up-regulation of MMP9 (matrix metallopeptidase 9 (gelatinase B) is in line with the
reported higher expression in the serum of patients with lung [63] and prostate [64] cancer.
Although AKT2 (v-akt murine thymoma viral oncogene homolog 2) was down-regulated in
all three cancer nodules (x = —1.65in “A”, —1.61 in “B” and —1.94 in “C”), AR (androgen
receptor) was not affected and therefore the tumor did not regress as expected in the
androgen-deprivation therapy [65].

COLOR CODE

down-regulated
up-regulated

Casp9 }—

1
s i I .
e <

- —_—— ~ ,__’inhibition
[Pz} [Foxor} -
4 @ I Cell cycle 44 CDKNIA
progression
;
PIPz Q
2| [ CREB |
- EGFR
pCateran PIK3CD

PIK3R1

[Casm]

=
— .
s _’Apoptosls

PIK3R2

PIK3R3

CREB1 _|not regulated WTOR - — — —» Tumor
CDKNI1A |not quantified [mTORT- growth
(c) & - (d) -
| S . -— .
A BAD }———Ef‘{‘?{’.‘:’."’ PTEN ‘:‘Eﬁ.ﬁ?ﬁﬁi‘:
\ == - ——
\ - CREB1 ] CREBI
\ CDKNIA LEERS CREB3
PDPK1| - .
e A CDKNIB CREB3L2 -
PIPs AKTI " PIPs G
MDM?2
| CrEB5
EGFR 1oiK3CA] AKT3 CREBBP
PIK3CB| %, .
PIK3CD|[ AR CHUK PIK3CD
IKBKB
PIK3R2 -P PIK3R2
PIK3R3 RELA PIK3R3
umo: T
—— % srowth MTOR } ——— 4 routh

Figure 4. Significantly regulated genes central to the (a) KEGG-determined prostate cancer functional pathway in the:

(b) nodule “A”, (c), nodule “B”, (d) nodule “C” with respect to the surrounding normal tissue (“N”). Regulated genes:

AKT2/3 (v-akt murine thymoma viral oncogene homolog 2/3), CREB1/5 (cAMP-responsive element-binding protein 1/5),
CREB3L1/4 (cAMP-responsive element-binding protein 3-like 1/4), CREBBP (CREB binding protein), FOXO1 (forkhead
box O1), GSK3B (glycogen synthase kinase 3 beta), IKBKG (inhibitor of kappa light polypeptide gene enhancer in B-cells,
kinase gamma), MMP9 (matrix metallopeptidase 9 (gelatinase B)), NFKBIA (nuclear factor of kappa light polypeptide gene
enhancer in B-cells inhibitor, alpha), PIK3R1 (phosphoinositide-3-kinase, regulatory subunit 1 (alpha)). (modified from [39]).

3.6. Regulation of Individual Genes Responsible for Survival and Proliferation of Cancer Cells

Figure S1 in the Supplementary Materials present the expression regulation of genes
identified by KEGG [47] as linked in most cancer forms to the: block of differentiation,
evading apoptosis, immortality, insensitivity to anti-growth signals, proliferation, resistance
to chemotherapy, and sustained angiogenesis. Genes such are GSTA4, GSTO2, KLK3, PGF
were down-regulat