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Abstract: Decades of research identified genomic similarities among prostate cancer patients and
proposed general solutions for diagnostic and treatments. However, each human is a dynamic
unique with never repeatable transcriptomic topology and no gene therapy is good for everybody.
Therefore, we propose the Genomic Fabric Paradigm (GFP) as a personalized alternative to the
biomarkers approach. Here, GFP is applied to three (one primary—“A”, and two secondary—“B” &
“C”) cancer nodules and the surrounding normal tissue (“N”) from a surgically removed prostate
tumor. GFP proved for the first time that, in addition to the expression levels, cancer alters also
the cellular control of the gene expression fluctuations and remodels their networking. Substantial
differences among the profiled regions were found in the pathways of P53-signaling, apoptosis,
prostate cancer, block of differentiation, evading apoptosis, immortality, insensitivity to anti-growth
signals, proliferation, resistance to chemotherapy, and sustained angiogenesis. ENTPD2, AP5M1
BAIAP2L1, and TOR1A were identified as the master regulators of the “A”, “B”, “C”, and “N” regions,
and potential consequences of ENTPD2 manipulation were analyzed. The study shows that GFP can
fully characterize the transcriptomic complexity of a heterogeneous prostate tumor and identify the
most influential genes in each cancer nodule.

Keywords: apoptosis; ENTPD2; evading apoptosis; gene master regulators; genomic fabric; immor-
tality; proliferation; P53 signaling; tumor heterogeneity

1. Introduction

According to the 29–31 March 2021 release of the Harmonized Cancer Datasets Ge-
nomic Data Commons Data Portal [1], 33,288 mutations in 20,237 genes were identified so
far in 2355 cases of prostate cancer. The most frequently mutated genes in prostate cancer,
TP53 (tumor protein p53) and TTN (titin) are also among the most 10 frequently mutated
genes in almost all other cancers. Although its long DNA (304.814 kb [2]) makes TTN more
vulnerable to random alterations, TP53, with “only” 25.760 kb [3] is even more frequently
mutated. Anyhow, together with the blamed mutation, millions of others occur in each
individual, whose contributions to the cancer pathology are neglected without evidence
that they are really negligible.

Transcriptomic data from prostate tumors were compared to identify similarly reg-
ulated genes (e.g., [4,5]) whose restoration might provide therapeutic solutions. Again,
unrepeatable combinations of hundreds of other genes are regulated among patients, and
their contributions are unjustifiably neglected.

Several commercially available cancer diagnostic assays compare either the base
sequences or the expression levels of selected genes with corresponding “standard” muta-
tion panels (e.g., [6–10]) or “standard” transcriptomic signatures (e.g., [11–13]). However,
how universal is the “standard” derived from meta-analyses of gene sequences or/and
expression levels in large populations of healthy and cancer individuals (e.g., [14–19])?

Many papers, including ours, proved that gene expression profiles depend on the
genetic background [20], sex [21], age [22], hormones [23], disease and treatment [24,25],
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and environmental conditions [26–29]. Owing to the astronomic number of potential
combinations, it is impossible to find two individuals with the same combination of regu-
latory factors and identical influences of these factors. Thus, the same cancer phenotype
may be associated with distinct transcriptomes in different individuals as we reported for
two cases of metastatic prostate cancers [30]. Although histologically similar, the unre-
peatable combination of the “other” regulated/mutated genes makes the cancer of each
individual unique. Therefore, whenever possible, one should refer the gene expression
profile in cancer nodules to that of the surrounding cancer-free tissue of the same tumor
(e.g., [31–33]).

In recent years, highly cited papers documented that tumors have not only heteroge-
neous histology but also heterogeneous gene expression profiles [34–36] as proved also by
us in a case of clear cell renal cell carcinoma [37]. If this is true within one tumor, what
justifies comparing the average gene expression profiles in large groups of phenotypically
similar but distinct cancer patients with healthy counterparts as reported by thousands
of papers?

Several specialized software text-mined the literature to select the genes that may
have a role in prostate cancer. For instance, the Kyoto Encyclopedia of Genes and Genomes
(KEGG, [38]) selected 97 genes involved in the prostate cancer (PRC) pathway [39] out of
which we quantified 84.

2. Materials and Methods
2.1. Genomic Fabric Paradigm

Almost all cancer genomists limit their analyses to identifying what gene was up-
/down-regulated in cancer with respect to normal tissue. Rather, we adopted the Genomic
Fabric Paradigm (GFP) [40] that considers the transcriptome as a multi-dimensional mathe-
matical object subjected to dynamic sets of transcripts’ abundances controls and expression
correlations among the genes. Instead of the most frequently regulated biomarker genes
in large populations of cancer patients, GFP looks for genes with commanding roles in
the cancer of THIS person NOW. Being a personalized approach, GFP is not based on
meta-analyses, and instead of universal gene targets, it identifies what should be done for
the current patient.

GFP makes full use of profiling tens of thousands of transcripts at a time in several
biological replicates. It characterizes every gene by average expression level (AVE), Relative
Expression Variability (REV) across biological replicas, and expression correlation (COR)
with each other gene from the same region and with any gene from other regions. Compar-
ing the AVE values in two regions determines what gene was significantly regulated.

The separately profiled biological replicas are like instances of the same system sub-
jected to slightly different environmental conditions. Thus, the expression variability
among biological replicas provided an indirect estimate of how much the stability of tran-
scripts’ abundances are controlled by the cellular homeostatic mechanisms [30]. Genes
whose right expression is critical for the cell’s normal behavior are kept under stricter
control and protected against environmental fluctuations, while genes empowering the cell
adaptation to the environmental irregular changes are left to adjust.

The simultaneous quantification of thousands of genes across biological replicas
allows determining how much expression of one gene is coordinated with the expression
of any other gene from the same or from another region. The expression correlation
analysis is based on the “Principle of Transcriptomic Stoichiometry” [41], a generalization
of Proust’s Law of Definite Proportions and Dalton’s Law of Multiple Proportions from
chemistry [42], requiring the expression coordination of all genes whose encoded products
are involved in a functional pathway. Expression correlation of genes does not stop
at the cell boundary, the transcellular transcriptomic networks being essential for the
integration and synchronization of multi-cellular structures as proved by us in the brain
pan-glial transcriptomic continuity [43]. The use of these three independent groups of
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features increases the workable information provided by a high throughput gene expression
experiment by several orders of magnitude [44].

Moreover, GFP establishes the gene hierarchy of that region based on their Gene
Commanding Height [37]. The topgene, termed Gene Master Regulator (GMR), is the
gene whose strictly controlled expression level regulates the major functional pathways
by coordinating the expressions of most of their genes. Therefore, altered expression of
the GMR has the largest consequences for cell physiology and can be used to selectively
suppress the phenotype it commands.

2.2. Prostate Tissues

This study is based on expression data obtained by profiling the primary tumor
(hereafter denoted as region “A”), two secondary tumors (regions “B” and “C”), and the
surrounding cancer-free tissue (region “N”) from a prostate of a 65 year old black man.
Raw and processed data from the four regions were deposited and are publicly accessible
in the websites [45] for the “N” and “C” regions, and [46] for the “A” and “B” regions. The
patient underwent a robotically assisted radical prostatectomy. The primary tumor had a
Gleason score of 4 + 5 = 9/10 and the two secondary tumors had both the same Gleason
score 4 + 4 = 8/10. The primary nodule was situated in the center of the left posterior
quadrant, extending from the apex to the base. Both secondary nodules were situated right
anterior mid-gland. The patient presented seminal vesicle invasion and metastasis in one
right pelvic and iliac lymph node.

Each of the 6–8 mm samples collected from the four regions was split into four
parts and each quarter was profiled separately, providing the needed four biological
replicas. Although the selected regions were as homogeneous as possible, cells of different
phenotypes were not completely eliminated, and by consequence, expression of genes from
other cell phenotypes affected (diluted) the reported results.

2.3. Microarray

At the time, we had equal access to Illumina NextSeq 500 but we preferred to use Agi-
lent 4× 44 k human dual-color microarrays (configuration G2519F, platform GPL13497 [47])
for their excellent reliability and affordable price. We used our standard protocol [44] for
the RNA extraction with RNAEasy Minikit (Qiagen, Germantown, MD, USA), purifica-
tion, and quantification before and after reverse transcription in the presence of Cy3/Cy5
dUTP with a Thermo Fisher Scientific NanoDrop ND-1000 (Waltham, MA, USA). RNA
quality was checked with a 2100 Bioanalyzer (Santa Clara, CA, USA). 825 ng of differently
(Cy3/Cy5) labeled biological replicas of the same prostate region were hybridized 17 h at
65 ◦C with microarrays and the washed and dried chips were scanned with an Agilent
G2539 dual laser scanned for 20 bit at 5 µm resolution. The digital images (tiffs) were
primarily analyzed with (Agilent) Feature Extraction vs. 11.6 software. The spots with
saturated or corrupted pixels and those with the fluorescence foreground less than twice
the fluorescence background were eliminated from the analysis. We used our iterative
procedure alternating intra-array and inter-arrays adjustment to normalize the raw data to
the median background subtracted fluorescence of all spots [48]. The control spots of the
microarrays were used as technical replicas to estimate the technical noise of the method.

2.4. Transcriptomic Analyses

Agilent microarrays probe some genes redundantly with several (not uniform num-
bers of) spots; for instance, TP53 was probed by 11 spots, all “transcript variant 1”. The
independent characteristics of every gene across biological replicas: average expression
level (AVE), Relative Expression Variability (REV), and correlation (COR) with an expres-
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sion of other genes were determined using the expression levels of all valid spots probing
that gene in “region” (= “N”, “A”. “B”, “C”) as:
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where: “µik” is the average expression of and “sik” is the standard deviation of gene “i”
probed by spot “k” in the four biological replicas of “region”. “ri = 4Ri − 1” is the number
of degrees of freedom.
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where “g” is another gene.
REV and COR are used to determine the Gene Commanding Height (GCH) [37]:
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where 〈 〉 = median, ()2 = average of the square values.
A gene was considered as statistically (p < 0.05) significantly regulated in a cancer

nodule (“cancer”) with respect to the normal tissue if the absolute fold-change x and the
p-value (p(N→cancer)

i ) of the heteroscedastic t-test of the mean equality in the two regions
satisfy the composite criterion:
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The p-value was computed with Bonferroni correction for multiple testing [49] in the
case of several spots probing redundantly the same gene.
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For more comprehensive characterization of the expression alteration, we computed
the Weighted Individual (gene) Regulation (WIR) and, for an entire functional pathway Γ,
the Weighted Pathway Regulation (WPR) [30] as

WIR(N→cancer)
i = AVE(N)

i
x(N→cancer)

i∣∣∣x(N→cancer)
i

∣∣∣
(∣∣∣x(N→cancer)

i

∣∣∣− 1
)(
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i

)
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i

∣∣∣
i∈Γ

(6)

Our software to determine these characteristics from the raw data is described in [50].

2.5. Pathway Analyses

In addition to the prostate cancer pathway (PRC), GFP was used here to analyze
the KEGG-determined apoptosis (APO) [51], P53 signaling (P53) [52], and the (general)
pathways in cancer (PAC) [53]. Within PAC, special attention was given to the gene blocks
responsible for evading apoptosis and immortality (hereafter denoted by EAI, 46 genes),
proliferation, insensitivity to antigrowth signals and block of differentiation (PIB, 54 genes),
and resistance to chemotherapy and sustained angiogenesis (RCSA, 19 genes).

3. Results
3.1. Overview

In total, we quantified the expressions of 14,908 unigenes in each of the 16 quarters
of the three cancer nodules (“A”, “B”, “C”) and the surrounding normal tissue (“N”),
isolated from a surgically removed metastatic prostate tumor. The 4-biological replicas
strategy provided for every gene in each region the values of AVE and REV. AVE was
used to identify up-/down regulated genes in the “A”, “B”, “C” regions with respect
to “N” and the differentially expressed genes between pairs of cancer nodules. REV
analysis identified the very stably expressed genes (low REVs), critical for the survival
and proliferation of each cell phenotype, and the very unstably expressed genes, used
by the cells as vectors of adaptation to the environmental fluctuations [54]. Moreover,
quantification of tens of thousands of genes at a time from the same region provided for
each gene extra 14.907 correlation coefficients (COR) with each other gene within one region
and 3 × 14,908 correlations with all genes from each other region. Thus, the use of GFP
translated the quantified 56,632 expression values (4 regions × 14,908 genes in one region)
data into 1,778,077,160 transcriptomic characteristics of the profiled tumor (119,270 times
larger than the number of expression levels of the individual genes considered by the
traditional analysis).

The smallest and the largest AVEs in the four regions (multiples of the median gene
AVE) were for “N”: bradykinin receptor B1 (BDKRB1; 0.11) and ribosomal protein L13
(RPL13; 621.27), for “A”: glycoprotein A33 (GPA33; 0.15) and RPL13; (288.47), for “B”:
lymphocyte antigen 6 complex, locus G6C (LY6G6C; 0.07) and RPL13 (476.68); for “C”:
ubiquitously transcribed tetratricopeptide repeat-containing, Y-linked (UTY; 0.09) and
RPL13 (415.06). RPL13, the gene with the largest expression in all four regions 621.27 in
“N”, 288.47 in “A”, 476.68 in “B” and 415.06 in “C”), has also extraribosomal functions,
being involved in several diseases, including the gastric, colorectal and hepatic cancers [55].
Interestingly, more than half of the 50 most largely expressed genes in each region encoded
ribosomal proteins: 26 in “N”, 31 in “A”, 37 in “B”, and 33 in “C”. The preferred down-
regulation of the ribosomal proteins was somehow compensated by the preferred up-
regulation of the polymerase subunits and several translation initiation factors.

The most stably expressed (lowest REV) and the most unstably expressed (highest
REV) genes in the four regions were for “N”: mitochondrial ribosomal protein S12 (MRPS12;
0.32%) and ubiquitously-expressed, prefoldin-like chaperone (UXT; 133.35%), for “A”:
ectonucleoside triphosphate diphosphohydrolase 2 (ENTPD2; 0.29%) and ubiquitin-specific
peptidase 31 (USP31; 188.14%), for “B”: synovial sarcoma, X breakpoint 3 (SSX3; 0.94%)
and v-maf avian musculoaponeurotic fibrosarcoma oncogene homolog K (MAFK; 188.56%),



Cells 2021, 10, 1644 6 of 23

for “C”: BAI1-associated protein 2-like 1 (BAIAP2L1; 0.40%) and zyxin (ZYX; 192.35%).
Interestingly, in region “B”, both the most stably expressed (SSX3) and the most unstably
expressed (MAFK) genes have recognized roles in various forms of cancers (e.g., [56,57]).

The median REVs for all quantified genes are 12.79% (“N”), 32.39% (A), 29.73% (“B”),
and 17.71% (“C”) indicating that the gene expressions are overall less controlled by the
homeostatic mechanisms in the cancer regions. In thermodynamics, systems closer to
equilibrium exhibit higher numbers of degrees of freedom (and by consequence larger
variability measured by their entropy) and are more robust. We speculate that the overall
REV hierarchy justifies why the cancer nodules are more robust systems (particularly the
primary tumor “A”), with higher survival and proliferation rates than the normal tissue.

3.2. Independent Characteristics of the Individual Genes

Figure 1 presents the visual proof that for every gene in each region, AVE, REV, and
COR (with each other gene from the same or another region) are independent characteristics.
The independence is illustrated for the AVEs and REVs of 44 KEGG-selected evading
apoptosis genes from the Pathways in cancer [44] and their expression correlation (COR)
with TP53. The Pearson correlation coefficients among these three characteristics in each
region were between −0.00069 and 0.00123, which is within the statistically significant
independence interval.

In this gene selection, kallikrein-related peptidase 3 (KLK3) had by far the largest
average expression level (measured in median gene average expression level units) in all
regions (364 in “N”, 139 in “A”, 82 in “B” and 164 in “C”). KLK3 is a prognostic marker for
progression-free survival in patients with metastatic prostate cancer [58]. However, KLK3
has not the largest REVs, nor the highest correlation coefficients with TP53 in any of the
regions, verifying the independence of the three characteristics.

Microsomal glutathione S-transferase 2 (MGST2) had the largest variability in “N”
(REV = 86%), baculoviral IAP repeat containing 3 (BIRC3) had the largest variability in “A”
(REV = 101), Pim-2 proto-oncogene, serine/threonine kinase (PIM2) in “B” (REV = 79%)
and glutathione S-transferase mu 2 (GSTM2) in “C” (REV = 39%). MGST2 was recently
reported as critical in aristolochic acid-induced gastric tumor process [59]. BIRC3 [60] and
PIM2 [61] are recognized anti-apoptotic factors, and GSTM2 is a biomarker for the early
stages of the prostate cancer [62].

COR analysis, validated by the unit values of the correlation of TP53 with itself in
all four regions, indicates also different levels of synergism/antagonisms both across
the regions for the same gene and across the genes within the same region. Expression
correlations of two genes can be also opposite in different regions, indicating that the
encoded products of the two genes act synergistically in one region and antagonistically in
the other. For instance, BIRC3 has a (p < 0.05) significant antagonism with TP53 in “A” but
a significant synergism in “B” (and a not significant antagonism in “C”.

Comparing the three characteristics of the same gene in the cancer regions with
the normal tissue reveals that in addition to the expression level, cancer may alter also
the control of the transcript abundance and expression coordination with other genes.
Alteration of the expression control and/or coordination may occur for both regulated (e.g.,
BIRC3) and not regulated (e.g., MGTS2) genes.

Figure 1 shows also the substantial differences among the three cancer nodules with
respect to each of the three independent variables, indicating that the recognized tumor
transcriptomic heterogeneity [34–36] does not stop at the expression levels of genes in
the four regions. Tumor heterogeneity in the control of transcripts abundances and gene
networking indicates distinct alterations of the cellular biological processes and remodeling
of the functional pathways as illustrated below.
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Figure 1. Three independent characteristics for every of the KEGG-determined 43 evading apoptosis
genes in the three cancer nodule regions (“A”, “B”, “C”) and the surrounding normal tissue (“N”)
region. (a) Average expression level (AVE in multiples of the average expression level of the median
gene). (b) Relative Expression Variability. (c) Expression correlation with TP53.

3.3. Three Ways to Measure the Expression Regulation

The most down-regulated genes were: high mobility group AT-hook 2 (HMGA2;
−15.88× in “A”), kallikrein-related peptidase 11 (KLK11; –57.82× in “B”), and peptidase
inhibitor 15 (PI15; −30.20× in “C”). The most up-regulated genes were forkhead box J1
(FOXJ1; 13.75× in “A”), phospholipase A2, group IIA (platelets, synovial fluid) (PLA2G2A;
18.75x in “B”), and scleraxis basic helix-loop-helix transcription factor (SCX; 300.17× in
“C”). The high up-regulation of SCX in “C” was a surprise given that its expression level
was not altered in the other two cancer regions.

Figure 2 presents the regulation of the KEGG-determined 44 evading apoptosis
genes in the three cancer nodules (“A”, “B”, “C”) with respect to the surrounding nor-
mal tissue (“N”). The regulation is shown as Figure 2a uniform (+1/−1) contribution
to the percentages of up-/down-regulated genes, Figure 2b expression ratio “x” and
Figure 2c Weighted Individual (gene) Regulation (“WIR”). Both x and WIR are negative for
down-regulated genes.
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Figure 2. Regulation of 44 evading apoptosis genes in the three cancer nodules (“A”, “B”, “C”) with respect to the
normal tissue (N) measured as (a) uniform contribution of the significantly regulated genes, (b) expression ratio “x” and
(c) Weighted Individual (gene) Regulation “WIR”.
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While the “uniform contribution” is limited to only significantly regulated genes
based on arbitrary cut-off criteria for the absolute fold-change and the p-value of the
heteroscedastic t-test of the means’ equality, “x” and “WIR” considers all genes and dis-
criminate their contributions. For instance, although the up-regulation of BIRC3 had the
same contribution (+1) to the percentage of up-regulated genes in both “B” and “C” com-
pared to “N”, the expression ratio in “C” (x = 14.89) is statistically significantly larger than
in “B” (x = 6.94) and so is the WIR (21.05 in “C” and 8.71 in “B”). However, although
in this gene selection, the expression ratio with respect to “N” was the largest for BIRC3
in “C”, it is the down-regulation of KLK3 that had the largest absolute contribution in
all cancer nodules (WIR = −585.50 in “A”, −1,248.43 in “B” and −439.17 in “C”) to the
transcriptomic alteration in all cancer nodules “B”, owing to its large expression level in
the reference tissue (364 in region “N”).

3.4. Regulation of Selected Functional Pathways in the Cancer Nodules with Respect to the
Normal Tissue

Figure 3 presents the regulation of the major KEGG-determined functional pathways:
APO (117 quantified genes), P53 (62 genes), PRC (84), and selected component blocks of
PAC: EAI (46 genes), PIB (54 genes), RCSA (19 genes). The pathway regulations were
quantified as percentages of up- and down-regulated genes and as Weighted Pathway
Regulation (WPR). For comparison, we added also the numbers when all (ALL) 14,908
quantified genes are considered. Of note is that nodule B had the significantly largest
WPRs for the EAI, PIB, and PRC groups of genes, while nodule C had the significantly
largest percentages of up-regulated genes in all pathways. Of note is also the finding
that in all cancer nodules more genes related to cancer cell survival and proliferation are
up- than down-regulated, while more genes involved in apoptosis and P53 signaling are
down-regulated than up-regulated.

Figure 3. Overall regulation of selected KEGG-determined functional pathways measured by the percentages of the
significantly down- (a) and up-regulated (b) genes, and by the Weighted Pathway Regulation (WPR) (c). ALL = all genes,
APO = apoptosis, EAI = evading apoptosis + immortality, P53 = P53 signaling, PIB = proliferation + insensitivity to
antigrowth signals + block of differentiation, PRC = prostate cancer, RCSA = resistance to chemotherapy and sustained
angiogenesis.

3.5. Differential Regulation of the Genes Central to the KEGG-Determined Prostate Cancer
Pathway in the Three Cancer Nodules

Figure 4 shows the regulation of individual genes from the blocks of genes (presented
in Figure 4a) at the center of the KEGG-determined prostate cancer pathway [39]. Genes
shown in red/green background exhibited significant regulation in the cancer region
with respect to the normal tissue, while genes shown in the yellow background did
not satisfy our composite criterion (5). However, though not significant, owing to the
biological variability, technical noise of the method, and the stochastic nature of the gene
transcription, the average expression levels of the genes in the yellow background are
most likely not identical in the compared regions. Although not very abundant, there are
still significant differences in the subsets of the regulated genes among the three nodules.
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The up-regulation of MMP9 (matrix metallopeptidase 9 (gelatinase B) is in line with the
reported higher expression in the serum of patients with lung [63] and prostate [64] cancer.
Although AKT2 (v-akt murine thymoma viral oncogene homolog 2) was down-regulated in
all three cancer nodules (x = −1.65 in “A”, −1.61 in “B” and −1.94 in “C”), AR (androgen
receptor) was not affected and therefore the tumor did not regress as expected in the
androgen-deprivation therapy [65].

Figure 4. Significantly regulated genes central to the (a) KEGG-determined prostate cancer functional pathway in the:
(b) nodule “A”, (c), nodule “B”, (d) nodule “C” with respect to the surrounding normal tissue (“N”). Regulated genes:
AKT2/3 (v-akt murine thymoma viral oncogene homolog 2/3), CREB1/5 (cAMP-responsive element-binding protein 1/5),
CREB3L1/4 (cAMP-responsive element-binding protein 3-like 1/4), CREBBP (CREB binding protein), FOXO1 (forkhead
box O1), GSK3B (glycogen synthase kinase 3 beta), IKBKG (inhibitor of kappa light polypeptide gene enhancer in B-cells,
kinase gamma), MMP9 (matrix metallopeptidase 9 (gelatinase B)), NFKBIA (nuclear factor of kappa light polypeptide gene
enhancer in B-cells inhibitor, alpha), PIK3R1 (phosphoinositide-3-kinase, regulatory subunit 1 (alpha)). (modified from [39]).

3.6. Regulation of Individual Genes Responsible for Survival and Proliferation of Cancer Cells

Figure S1 in the Supplementary Materials present the expression regulation of genes
identified by KEGG [47] as linked in most cancer forms to the: block of differentiation,
evading apoptosis, immortality, insensitivity to anti-growth signals, proliferation, resistance
to chemotherapy, and sustained angiogenesis. Genes such are GSTA4, GSTO2, KLK3, PGF
were down-regulated and E2F2, MMP9, PIM2, VEGFC are up-regulated in all cancer
nodules. Other genes were regulated only in one nodule, e.g., CSF1R, CYCS, E2F3, GSTM1,
GSTM4, GSTO1, GSTP1, GSTT2B, HES1, HEY1, HEYL, HHIP, MGST3, MYC, RARA. There
are also genes regulated similarly in two nodules: BIRC2, BIRC3, BMP4, CCNA2, CCND1,
E2F1, FOXO1, GLI1, GSTM5, GSTT1. However, no gene was found as oppositely regulated
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in two of the three profiled cancer nodules. Of note are the differences in the subsets of
significantly regulated genes among the three cancer nodules.

3.7. Remodeling of the Transcriptomic Networks

In addition to regulating the expression levels of numerous genes and altering the
control of their transcripts’ abundances, cancer affects also the coordination of genes’ ex-
pressions, reconfiguring their networking in functional pathways, with direct consequences
on cell biology.

Figure 5 illustrates the remodeling of the gene networks by presenting the statistically
(p < 0.05) significant expression synergism, antagonism, and independence of the first
alphabetically ordered 25 out of the 84 quantified KEGG-identified prostate cancer-related
genes [39] in the normal tissue and each of the cancer nodules.

Figure 5. Statistically (p < 0.05) significant expression synergism, antagonism, and independence of
the first 25 alphabetically ordered KEGG-identified prostate cancer-related genes in the normal tissue
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(N) (a) and each of the three cancer nodules (“A” (a), “B”, “C” (b)). Red/blue/gray squares indicate
significant expression synergism/antagonism/independence of the genes labeling the intersecting
rows and columns in that profiled region. Blank squares specify less than significant statistical
evidence to categorize the corresponding gene pairing. Red/blue/gray numbers are the percentages
of significant expression synergism/antagonism/independence among the first 25 alphabetically
ordered prostate cancer genes quantified in that region. Owing to the correlation analysis symmetry
to the permutation of the correlated genes, only the below or over the diagonal (black squares) part
of the diagram was shown for each condition.

One may observe that each cancer nodule had higher expression (synergistic + antag-
onistic) coordination and lower independence than the normal tissue, indicating stronger
inter-coordination of the prostate cancer genes in the cancer nodules. Thus, 12.02% to-
tal coordination in “A” > 9.04% total coordination in “C” > 8.38% total coordination in
“B” > 6.13% total coordination in “N”. Of note are also the coordination differences among
the three cancer nodules.

3.8. Alteration of the TP53 Targeted Genes Network

In the above paragraph, we proved that cancer changes the expression coordination
among genes, thus rearranging the gene’s transcriptomic interlinkages. Remodeling of the
gene networks affects the activation/inhibition of targeted genes by hub genes, with major
consequences on the dynamics of the cellular processes.

Figure S2 in the Supplementary Materials presents the correlation networks by which
TP53 coordinates the expression of several genes in the normal tissue and how these coor-
dinations were changed in the three cancer regions. According to the KEGG-determined
P53 signaling pathway [46], all genes from all blocks of genes presented in Figure 7 should
be activated by TP53. In terms of expression coordination, it means that expression of the
target genes should be synergistically expressed with that of TP53 (i.e., up when TP53
goes up and down when TP53 goes down). However, only part of the targeted genes was
actually synergistically expressed with TP53 in the normal prostate tissue (GTSE1, SIAH1
SESN2, SESN3 RCHY1, PPMID) and one (SIVA1) even antagonistically expressed. The
expression correlations in the normal tissue were substantially (but differently) altered by
cancer in the three nodules. The numbers of correlations ranged from 1 synergism and
3 antagonisms in “B” to 5 synergisms and 2 antagonisms in “A”, and 4 synergisms and
5 antagonisms in “C”. The subsets of significantly regulated genes were also different in
the three cancer nodules: 4 up- and 6 down-regulated in “A”, 5 up- and 3 down-regulated
in “B”, and 13 up- and 4 down-regulated in “C”.

Figure S2 shows also what genes activated by TP53 were up/down-regulated by
cancer. One may note that not only the expression coordinations with TP53 were different
among the cancer nodules but also the expression regulation of the target genes.

Alteration of TP53 (e.g., [66]) and another signaling (e.g., [67]) pathways in the prostate
cancer were analyzed by several other groups before, but this is the first time after our
knowledge that the analysis goes beyond expression regulation to explore also the expres-
sion coordination.

3.9. In-Phase and in Anti-Phase Expression of Prostate Cancer Genes among the Three
Cancer Nodules

Figure S3 presents the KEGG-identified prostate cancer genes [39] that are statistically
(p < 0.05) significantly expressed in-phase and in anti-phase among the profiled regions of
the tumor. This analysis is based on our model of transcellular transcriptomic networks [43]
that was also recently applied to identify synchronous expression of ion channels between
adjacent heart chambers [68].

One may note that the cancer nodules have different in-phase and anti-phase expres-
sion correlations of prostate cancer genes both among themselves and with respect to
the normal tissue region, nodules “A” and “B” having the largest in-phase expressions.
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Interestingly, while region “C” has the least in-phase and in anti-phase expressions with
both regions “A” and “B”, it has the highest number of in-phase expressions with the nor-
mal tissue. We found that ERBB2 (v-erb-b2 avian erythroblastic leukemia viral oncogene
homolog 2, a.k.a., HER2) is expressed in-antiphase in “N” with respect to nodules “A” and
“B” but in-phase between these two nodules. This finding justifies the reports that ERBB2
activation is associated with tumor-initiating cells contribution and progression of prostate
cancer [69].

3.10. Gene Hierarchy

Figure 6 presents the top 25 genes in each of the four profiled regions. The gene
hierarchies were determined separately for each profiled region based on their GCH
score (defined by the formula (4)) and the top of the top genes (the GMR) identified in
each region.

Figure 6. Top 25 genes in each region and what may happen to the regulated enzyme genes in “A” by overexpressing
ENTPD2, the GMR of “A”. (a) Top 25 genes in “N” and “A”; (b) Top 25 genes in “B” and “C”.

The very important results of the GCH analysis are: (i) there is no overlap of the
top 25 genes among the profiled regions; (ii) The GMR of one region has significantly
lower GCH scores in the other regions; (iii) top genes may include both coding and
non-coding genes.
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The GMRs are: TOR1A (torsin family 1, member A), GCH = 74 in “N”, ENTPD2
(ectonucleoside triphosphate diphosphohydrolase 2), GCH = 149 in “A”, AP5M1 (adaptor-
related protein complex 5, mu 1 subunit) GCH = 36 in “B” and BAIAP2L1 (BAI1-associated
protein 2-like 1), GCH = 49 in “C”.

The non-coding genes within the top 25 are LINC0188 (long intergenic non-protein
coding RNA 1881), C15orf40 (chromosome 15 open reading frame 40), and LOC220729
(succinate dehydrogenase complex, subunit A, flavoprotein (Fp) pseudogene) in “N”,
C12orf29 (chromosome 12 open reading frame 29) in “A”, LINC00687 (long intergenic
non-protein coding RNA 687) and C12orf29 (chromosome 12 open reading frame 29) in “B”,
and RPL13AP17 (ribosomal protein L13a pseudogene 17) in “C”.

The top ranking of TOR1A in the normal prostatic tissue justifies its major roles
in protein folding, degradation and trafficking, vesicle fusion, cytoskeleton dynamics,
organelle biogenesis, and spermatogenesis [70]. We found TOR1A as significantly up-
regulated in the nodule “B” (x = 1.44), but not altered in the other two cancer nodules.

A higher GCH score indicates the stronger regulatory power of the GMR on the
phenotype it commands. With GCH = 149 in “A” but only 3 in “N” and 2 in both “B”
and “C”, ENTPD2 is a strong candidate target gene whose manipulation may selectively
destroy the primary tumor “A” with practically no effect on the other regions of the
prostate. Recent reports considered ENTPD2 relevant for the lung adenocarcinoma [71]
and hepatocellular carcinoma [72] transcriptomic signatures. Interestingly, expression of
ENTPD2 was significantly up-regulated in the nodules “B” (x = 2.95) and “C” (x = 2.03) but
not in “A” (x = −1.08).

AP5M1 (a.k.a. MUDENG), the GMR of nodule “B”, is already considered a target
for anti-cancer therapy owing to its pro-apoptotic function [73]. Owing to its very low
expression variability, the 20% increase of AP5M1 expression level in the nodule “B” was
statistically significant. However, its expression level was not significantly altered in the
nodules “A” or “C”.

BAIAP2L1, the GMR of nodule “C” was up-regulated in all three cancer regions (by
1.76× in “A”, 2.54× in “B”, and 1.92× in “C”). Up-regulation of BAIAP2L1 was observed
in clear cell Renal Carcinoma [74] (confirmed also by our data on a surgically removed
ccRCC [75]), in lung cancer [76] and recently even in prostate cancer [77].

In all profiled regions, the top genes are of wide functional diversity, indicating a
strong interplay of the functional pathways. For instance, the next two genes in “N” are:
mitochondrial ribosomal protein S12 (MRPS12, GCH = 69) and LINC0188 (GCH = 43), and
the next genes in “A” are: COMM domain containing 9 (COMMD9, GCH = 107) and zinc
finger protein 529 (ZNF529, GCH = 74). In addition to the GMRs, the commanding triplet
in “B” includes CAP-GLY domain-containing linker protein family, member 4 (CLIP4,
GCH = 26) and synovial sarcoma, X breakpoint 3 (SSX3, GCH = 25), while that of nodule
“C” includes: family with sequence similarity 71, member E1 (FAM71E1, GCH = 48) and
MAP6 domain containing 1 (MAP6D1, GCH = 45).

3.11. The GMR Approach of the Prostate Cancer Gene Therapy

Because ENTPD2 is an enzyme (involved in the purine metabolism [78]), we analyzed
its expression coordination with all other 3204 enzymes quantified in the nodule “A”, out of
which 324 (10.11%) were up-regulated and 327 (10.21%) were down-regulated with respect
to “N”. 311 (11.14%) enzyme genes were (p < 0.05) significantly coordinated (|COR| > 0.95)
with ENTPD2: 102 (3.18%) synergistically expressed and 209 (7.96%) antagonistically. As
we proved in previous works [43,79], genes synergistically expressed with the target gene
tend to be up-regulated when the target is experimentally over-expressed while those
antagonistically expressed tend to be down-regulated.

Figure 7 presents the significant expression coordination of ENTPD2 with sig-
nificantly regulated enzyme genes in “A” and what might happen if ENTPD2 is
experimentally overexpressed.
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Figure 7. The GMR at work. (a) Significant expression coordination of the significantly regulated enzyme genes with
ENTPD2 in “A”. (b) Expected regulation of the enzymes following overexpression of ENTPD2. Note that all genes but
EHMT2 (euchromatic histone-lysine N-methyltransferase 2), ELL (elongation factor RNA polymerase II), RNF125 (ring
finger protein 125, E3 ubiquitin protein ligase), and SMG1 (SMG1 phosphatidylinositol 3-kinase-related kinase) restored
their normal expression.

The analysis predicted that 16 out of 18 significantly up-regulated enzymes that were
antagonistically expressed with ENTPD2, and 10 out of 12 significantly down-regulated
enzymes synergistically expressed with ENTPD2, are expected to restore their normal
expression after significantly overexpressing ENTPD2. We assume that this 26/30 (87%)
restoration of the normal expression of the enzyme genes will force the cancer cells from
the nodule “A” to go back to the normal phenotype. Owing to its very large (negative)
contribution to the cancer phenotype in all three nodules (Figure 2c) and its antiangiogenic
activity [80], restoration of the normal expression of KLK3 may be instrumental for the
normal phenotype recovery.

4. Discussion

Our work was not meant to produce results with general validity but to illustrate
how the novel paradigm (GFP, [40,81]) can be applied to prostate cancer as a personalized
alternative to the biomarker paradigm. GFP does not stop after identifying what genes
were regulated by cancer but goes on to quantifying how much cancer changes the cellular
control of transcripts’ abundances and remodels the gene networks.
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In addition to the inherent technical noise of the microarrays, the major limitation
of our study comes from the morphological heterogeneity of the tumor reflected at the
transcriptomic level [34–36]. Although we did our best to isolate the most homogeneous
parts of the cancer nodules and normal tissue, the samples were not 100% pure. However,
the use of scRNA-sequencing was not an option owing to the sparse returns. With almost
90% random “dropout” of the expressed genes [82], the use of scRNA-sequencing would
have drastically limited the GFP analytical power. However, our algorithms are fully
developed and ready to be used when the scRNA technological limitations will be solved.

The most important result is the identification of the Gene Master Regulators (GMR) of
cancer nodules whose tightly controlled expressions impose the phenotype by coordinating
the expressions of most other genes. As such, the GMRs command the cellular functional
pathways, and their directed alteration might eliminate the cancer phenotype. Our analysis
suggests that GMR targeting may enhance apoptosis (as in [79]), stop cell proliferation [37],
significantly alter cell cycle [37], or force cancer cells to go back to the normal transcriptome
as hypothesized in Section 3.11. Unfortunately, we could not functionally validate these
predictions on the profiled tumors. Nonetheless, we validated the relationship between
the GCH score and the transcriptomic consequences of manipulating the gene expression
by stably transfecting DDX19B, NEMP1, PANK2, and UBALD1 on the papillary (BCPAP)
and anaplastic (850C) human thyroid cancer cell lines [51,53]. The cited studies confirmed
that experimental changing the expression of a gene in the two cell lines produced larger
alterations of the transcriptomic organization in the cells where that gene had higher GCH.

The GFP approach provided the most theoretically possible comprehensive under-
standing of the transcriptomic topology. GFP characterizes each gene by the independent
variables: average expression levels (AVE), relative expression variability (REV), and ex-
pression correlation (COR) with each other genes. To understand the importance of these
characteristics let us think about what is needed to assemble an electronic device with tens
of thousands of different types of semiconductors. Using the right numbers (AVE) of each
type of electronic component but not applying the right voltage oscillations across these
components (REV) would provide different outputs. The situation is worse if the wiring of
the components (COR) is not respected. Likewise, knowing only the average expressions
of the genes is not enough to understand cancer complex genomics.

The correlation analysis is popular in clustering the genes according to their similar
regulation across people, conditions, tissues, or time-points (e.g., [83–86]). It was even
used to correlate transcripts and protein abundances [87]. However, all our genomic
studies indicated that the gene networking differs from person to person and from tissue to
tissue, change with maturation/aging, remodel in disease and recovery following adequate
treatment. Thus, although clustering is useful for classification, it does not reflect gene
interactions. In contrast, our COR analysis restricted to biological replicas shows how the
expression of one gene fluctuates in-phase/in anti-phase with expressions of other genes, a
pre-requisite for optimal gene networking in functional pathways.

The analyses indicated that the three cancer nodules had distinct transcriptomic orga-
nizations beyond the gene expression regulations (reported also by other authors [34–36]).
Thus, we found different alterations of controls of transcripts’ abundances and, distinct
remodeling of the gene networks even between the phenotypically similar regions “B”
and “C”.

These results prove again the existence of transcriptomic redundancy (many distinct
transcriptomes) of each cancer phenotype that poses serious challenges to the use of disease
“transcriptomic signatures” [88–90]. We have arrived at the same conclusion not only for
different persons (equally graded cases of prostate cancer [30]) but even for equally graded
cancer nodules from the same tumor (one case of clear cell renal cell carcinoma [37,91] and
this case of prostate tumor).

REV analysis pointed also to some interesting genes for oncogenomics. Thus, MRPS12,
the most stably expressed gene in “N”, is a potential prognostic candidate for ovarian
cancer [92], while UXT the most unstably expressed gene in “N” is associated with ad-
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vanced stages of gastric cancer [93]. ENTPD2, the most stably expressed gene in “A” is a
biomarker for lung [94] and hepatocellular [72] carcinomas, while USP31, the most variably
expressed gene in “A”, could be a potential target for sarcomas [95]. SSX3, the most stably
expressed in “B” is a prognostic predictor for pancreatic ductal adenocarcinoma [96], while
MAFK, the most variably expressed gene in “B”, appears responsible for the induction of
breast cancer [97]. BAIAP2L1, the most stably expressed gene in “C”, is overexpressed in
clear cell renal cell carcinoma [74] as we also found in all three prostate cancer nodules,
while ZYX, the most variably expressed gene in “C” and a crucial mechanotransductor
in prostate cancer [98], had also a very large (176.65×) up-regulation in “C” (ZYX was
also up-regulated in “A” by 2.53× and “B” by 2.92×). The significant difference in the
fold-change of this gene between nodules “B” and “C” suggests distinct mechanotrans-
duction mechanisms (worth being further investigated by molecular and physiological
studies). The median REVs are 12.79% (“N”), 32.39% (“A”), 29.73% (“B”), and 17.71%
(“C”) indicating that the gene expressions are overall less controlled by the homeostatic
mechanisms in the cancer regions.

Interestingly, HMGA2, the strongest down-regulated gene in “A” (−15.88×), “whose
silencing promotes apoptosis and inhibits migration and invasion of prostate cancer
cells” [99], was not regulated in “B” and “C”. With KLK11 down-regulated by −7.37× in
“A”, −57.82× in “B” and −27.11× in “C”, our study confirmed previous reports e.g., [100],
of this gene down-regulation in cancer regions with respect to the surrounding benign
tissue in prostate tumors. The observed up-regulation in all three cancer nodules of FOXJ1
(13.75× in “A”, 18.51 in “B” and 20.39 in “C”) and PLA2G2A (6.68× in “A”, 18.75× in “B”
and 23.61× in “C”) confirmed findings of other authors [101,102].

Much more comprehensive than the fold-change, WIR analysis identified the genes
with the largest contributions to the cancer-related transcriptomic alterations. Thus, the
main contributors in “A” were: zinc finger protein 865 (ZNF865) and immunoglobulin
lambda-like polypeptide 5 (IGLL5), in “B”: spondin 2, extracellular matrix protein (SPON2)
and IGLL5, while in “C” they were SPON2 and midkine neurite growth-promoting factor 2
(MDK). IGLL5, the main positive contributor to both nodules “A” and “B”, was correlated
with tumor-infiltrating immune cells in kidney cancer [103], suggesting an interesting
study to determine whether it plays a similar role in prostate cancer. SPON2 is considered
a serum prostate cancer diagnostic biomarker [104]. MDK is considered one of the most
reliable prognostics for short prostate cancer-specific survival [105]. For now, we have no
info about the potential roles of ZNF865 in the progression of prostate cancer.

As illustrated in Figure 1c and Figure S1, cancer remodels also the transcriptomic
networks by which genes are linked to each other in functional pathways. Importantly, the
remodeling was different from one cancer region to the other. These findings prove that
the KEGG-designed functional pathways are not universally wired but are dependent on
the cell phenotype and even the localization in the tumor. As such, the same manipulation
of the expression of one gene may have different consequences on the other genes of the
pathway in distinct phenotypes. (We arrived at the same conclusion when conditionally
knocking down the Gja1 gene encoding the gap junction channel protein Cx43 in the brains
of two mouse strains [20] and the brain and heart of the same mouse). By consequence,
efficient gene therapy for one person may not be as efficient for another person. Moreover,
the treatment efficiency may be even different for distinct cancer nodules from the prostate
of the same man.

Figure S2 brings another confirmation of the transcriptomic networks’ dependence
not only on the cell phenotype (compare regions “N” and “A”), but also on the localization
of that phenotype within the tumor (compare “B” and “C”) as we have reported before
for the two atria and the two ventricles of the mouse heart [68]. We found that TP53
activation of the target genes is substantially different among the four profiled regions
of the tumor. The negative correlation of TP53 and SIVA1 in both normal tissue and the
primary tumor “A” (Figure S2a), suggests that increased expression of SIVA1 is reported to
inhibit cervical cancer progression [106] (and hopefully also the progression of prostate
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cancer) may be achieved by down-regulating TP53. This possibility is based on our “see-
saw” model [107] indicating that similar effects of the increase of one gene expression can
be obtained either by up-regulating another gene with a similar coordination profile (the
ordered set of Pearson correlation coefficients between the expression levels of that gene
with each other gene) or by down-regulating one with opposite coordination. However,
the correlation of TP53 with SIVA1 is poor in the other two cancer nodules, indicating that
down-regulating TP53 may have little consequences for SIVA1 in the secondary tumors.

We analyzed also whether there is inter-regional transcriptomic communication by
determining the expression correlation of KEGG-determined prostate cancer genes between
two regions. A positive correlation means that the expression of that gene goes up and
down simultaneously (in-phase) in both regions, while a negative correlation means that
when the expression of one gene goes up in one region it goes down in the other (in-
antiphase). In previous studies ([43,68,81]) we have provided experimental evidence about
transcellular transcriptomic communication between astrocytes and oligodendrocytes
in the brain and between the myocardial walls of the adjacent heart chambers of the
mouse. This type of analysis may provide clues about the transcriptomic integration of
heterogeneous tissues.

Lastly, we determined the gene hierarchy in the four profiled regions of the tumor,
identified the GMR of each region, and analyzed what might be the consequences of
overexpressing ENTPD2, the GMR of the primary tumor nodule “A”. Out of the four
GMRs, we focused on the ENTPD2 because it has a significantly higher GCH in its region
than the other GMRs in their commanded regions. With 11.14% (p < 0.05) and 22.97%
(p < 0.10) significant coordination with enzyme genes, expression manipulation of ENTPD2
should have devastating consequences on the metabolism of the cells of nodule “A”. We
have to warrant that this is a personalized genomic result with little relevance for the
prostate cancers of other persons.

The idea of master regulators is floating in genomics for a long time, most investigators
looking for transcription factors (e.g., [108,109]) or even hormone receptors (e.g., [110])
whose regulation might have large downstream effects on the expression of many genes.
Distinct from the traditional approach, our procedure does not restrict the GMR quest to
transcription factors but it ranks with respect to GCH all quantifiable coding AND non-
coding RNAs. As illustrated in Figure 7, the top 25 genes of the profiled prostate tumor
regions include long intergenic non-protein coding RNAs, pseudogenes, and open reading
frames of various chromosomes. Thus, our method can identify novel genomic factors
governing the cancer phenotype. Moreover, the coordination analysis allows predicting
the consequences of the GMR alteration (illustrated in Figure 7).

5. Conclusions

We found that, beyond regulating the expression levels of numerous genes, prostate
cancer altered also the cellular homeostatic mechanisms that control the abundances of their
transcripts and, more importantly, their networking in functional pathways. Interestingly,
even equally histopathologically graded cancer nodules from the same tumor have different
transcriptomic organizations that go beyond the recognized tumor heterogeneity of gene
expression levels (e.g., [32–34]). This conclusion raises serious concerns about the validity
of biomarkers identified through meta-analyses of large populations of cancer-stricken and
cancer-free humans and poses new challenges for the germline genetic testing of prostate
cancer patients [111].

As illustrated here for one case of prostate cancer, and in previous papers on cases
of papillary thyroid cancer [46,92] and clear cell renal cell carcinoma [35,93], GFP offers
a comprehensive personalized alternative to the biomarkers approach to determine the
cancer transcriptional identity (e.g., [112]) and explore gene therapy.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells10071644/s1, Figure S1. Expression coordination of TP53 with KEGG-determined targeted
genes in (a) normal tissue; (b) cancer nodule “A”; (c) cancer nodule “B”; (d) cancer nodule “C”.
Figure S2. Statistically (p < 0.05) significantly in-phase (synchronously) and in-antiphase expressed
KEGG-determined prostate cancer genes in pairs of profiled regions.
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