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A B S T R A C T   

The ongoing COVID-19 outbreak, caused by SARS-CoV-2, has posed a massive threat to global public health, 
especially to people with underlying health conditions. Type 2 diabetes (T2D) is lethal comorbidity of COVID-19. 
However, its pathogenetic link remains unclear. This research aims to determine the genetic factors and pro-
cesses contributing to the synergistic severity of SARS-CoV-2 infection among T2D patients through bioinfor-
matics approaches. We analyzed two sets of transcriptomic data of SARS-CoV-2 infection obtained from lung 
epithelium cells and PBMCs, and two sets of T2D data from pancreatic islet cells and PBMCs to identify the 
associated differentially expressed genes (DEGs) followed by their functional enrichment analyses in terms of 
protein-protein interaction (PPI) to detect hub-proteins and associated comorbidities, transcription factors (TFs), 
microRNAs (miRNAs) as well as the potential drug candidates. In PPI analysis, four potential hub-proteins (i.e., 
BIRC3, C3, MME, and IL1B) were identified among 25 DEGs shared between the disease pair. Enrichment an-
alyses using the mutually overlapped DEGs revealed the most prevalent GO and cell signalling pathways, 
including TNF signalling, cytokine-cytokine receptor interaction, and IL-17 signalling, which are related to 
cytokine activities. Furthermore, as significant TFs, we identified IRF1, KLF11, FOSL1, and CREB3L1 while 
miRNAs including miR-1-3p, 34a-5p, 16–5p, 155–5p, 20a-5p, and let-7b-5p were found to be noteworthy. The 
findings illustrated the significant association between COVID-19 and T2D at the molecular level. These genetic 
determinants can further be explored for their specific roles in disease progression and therapeutic intervention, 
while significant pathways can also be studied as molecular checkpoints. Finally, the identified drug candidates 
may be evaluated for their potency to minimize the severity of COVID-19 patients with pre-existing T2D.   

1. Introduction 

After the outbreak of SARS-CoV [1] and MERS-CoV [2] in 2002 and 
2012, respectively, a novel coronavirus SARS-CoV-2 has emerged in 
Wuhan city of Hubei province of China at the end of 2019 with its 
massive infectious threat [3,4]. This virus causes respiratory tract 
infection with clinical syndromes including fever, cough, sore throat, 

pneumonia, and in some severe cases, acute respiratory distress syn-
drome (ARDS), sepsis and septic shock, multiorgan failure, such as acute 
kidney injury and cardiac arrest [5,6]. The virus SARS-CoV-2 has been 
identified as the causative pathogen of the outbreak of coronavirus 
disease (COVID-19) by deep sequencing and etiological investigations 
[7]. The World Health Organization (WHO) has already declared 
COVID-19 as a pandemic. As of June 29, 2021, 181,007,816 cases have 
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been confirmed as SARS-CoV-2 infected in more than 218 countries and 
regions with 3,927,222 deaths according to WHO [8]. 

Comorbid diseases, such as diabetes, hypertension, and heart dis-
eases have been reported as risk factors for COVID-19 patients [6,9]. In 
Ref. [6], it was reported that, out of 41, 20 SARS-CoV-2 infected patients 
had comorbidities including diabetes (20%), hypertension (15%), and 
cardiovascular disease (15%). In Ref. [9], 191 COVID-19 patients’ re-
cords from two hospitals of Wuhan, China were investigated. Among 
them, 91 (48%) patients had comorbidity, of which 58 (30%) patients 
had hypertension, 36 (19%) had diabetes, and 15 (8%) were suffering 
from coronary heart disease. Moreover, several recent studies reported 
that type II diabetes (T2D) increases the risk of infection, severity, and 
mortality of COVID-19 patients [10,11]. However, there is a lack of 
sufficient information regarding genetic interactions of T2D on 
COVID-19. 

Viruses are obligate intracellular pathogens and they cannot repli-
cate without host cellular factors during infection [12]. Consequently, 
virus-host protein-protein interaction (PPI), might be an effective way 
toward elucidating the mechanism of viral infection [13]. Recently, 
integrative network-based approaches showed better effectiveness to 
identify disease-associated biomarkers and therapeutic targets [14] of 
various diseases, including respiratory system diseases [15], neurode-
generative diseases [16–18], cardiomyopathy [19], and viral infections, 
such as SARS-CoV, HIV [20] and Zika [21]. The network-based strate-
gies can potentially be used to identify effective repurposable drugs 
[22–24] as well as the combination of drugs [25] for various human 
diseases as well. Recently, genetic investigations into the gene expres-
sion data offered a better understanding of the molecular mechanism of 
the SARS-CoV-2 infection and its genetic association with various 
complications [26–30]. 

In this study, we investigated the genetic interaction of SARS-CoV-2 
with T2D using this network-based strategy that incorporates studies 
regarding gene expression profiling, protein-protein interaction, gene 
ontologies, molecular pathways, and regulatory analysis. The findings 
may lead to determining the significant therapeutic target to fight 
against the ongoing pandemic due to SARS-CoV-2 infection. The 
analytical approach adopted in this research work is illustrated in Fig. 1. 

2. Materials and methods 

2.1. Data 

To reveal the genetic association of SARS-CoV-2 with T2D, we 
collected the RNA-Seq and gene expression microarray data from 
National Center for Biotechnology Information Gene Expression 
Omnibus (NCBI-GEO) and EBI array express. In this study, we 
analyzed the datasets with accession numbers GSE147507 and E-MTAB- 
8871 for SARS-CoV-2 while the datasets with accession numbers 
GSE9006 and E-MTAB-5060 for T2D. The GSE147507 is an RNA-Seq 
data obtained by transcriptional profiling of SARS-CoV-2 infected and 
mock-treated cells from humans and ferrets using Illumina NextSeq 500 
platform [31]. Herein, the human lung epithelium (NHBE) cell repli-
cates from 3 SARS-CoV-2 and 3 mock-treated samples were collected. 
The E-MTAB-8871 was obtained from human peripheral blood mono-
nuclear cells (PBMCs) of 10 healthy individuals and 23 samples from 3 
SARS-CoV-2 infected patients using NanoString profiling [32]. The T2D 
dataset (GSE9006) was obtained by gene expression microarray using 
Affymetrix HG-U133 array of PBMCs collected from 24 healthy in-
dividuals and 12 T2D patients [33]. The E-MTAB-5060 was produced by 
RNA-sequencing of human pancreatic islet cells from 4 T2D patients and 

Fig. 1. Schematic view of the systematic pipeline used in this study. (A) At first, transcriptomic analyses of two RNA-Seq data, one NanoString and one microarray 
data and cross-comparison identified 15 common DEGs between SARS-CoV-2 infection and T2D for lung epithelium and pancreatic islet cells respectively, and 11 
common DEGs for peripheral blood mononuclear cells (PBMCs). (B) Biological functions of these 26 (25 distinct) DEGs were assessed by PPI analysis and functional 
enrichment analysis using GO and cell signalling pathway databases. (C) Therapeutic targets were identified by obtaining hub genes and putative drug candidates. 
(D) Regulatory elements and possible comorbidities were determined. (E) All the gained results were validated through an extensive literature review. 
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3 healthy individuals using Illumina TruSeq protocol [34]. Since the 
complications and severity of COVID-19 usually vary drastically, we 
compiled two sets of experimental data to ensure the validity of our 
results. Firstly, we analyzed the differentially expressed genes (DEGs) 
for SARS-CoV-2 infection and T2D with data obtained from lung 
epithelial and pancreatic islet cells, respectively. Secondly, we 
compared the DEGs for the same disease-pair with data collected from 
human PBMCs. 

2.2. Identification of significant dysregulated genes 

The RNA-Seq is a next generation sequencing technology to measure 
gene expression with a high level of accuracy and mitigates many lim-
itations of microarrays [35]. Using this high-throughput sequencing 
technology and global transcriptome analyses, we compared the gene 
expression profiles of SARS-CoV-2 and T2D. To identify DEGs associated 
with the respective diseases, we used an R Bioconductor package 
DESeq2 [36] which is explicitly designed for RNA-Seq data. This pack-
age uses the Student unpaired t-test for the identification of DEGs. 

As the GSE9006 dataset is a microarray data set, we analyzed it with 
the R Bioconductor package Limma [37] to obtain the dysregulated 
genes. Since various errors can be introduced in preparing and analyzing 
microarray data of different platforms and experimental systems, the 
gene expression data gij in each sample j (case or control) were 
normalized using the Z-score transform which is defined as 

Zij =
gij − gi

σi
(1)  

where gi and σi are the mean and standard deviation of the expression 
value of i-th gene estimated over all the samples, respectively. After 
obtaining the DEGs for each disease condition, we selected the signifi-
cant genes by setting the threshold level of the absolute value of base-2 
log Fold Change ≥ 1 and adjusted p-value (FDR) < 0.05. The shared 
DEGs by the SARS-CoV-2 and T2D were then obtained through a cross- 
comparative analysis. 

2.3. Profiling associated comorbidities 

To assess the possible health implications linked to COVID-19, we 
anticipated the comorbidities associated with the shared DEGs via 
Enrichr web-platform [38] using DisGeNET database [39]. This data-
base is a publicly available repository of genes that are associated with 
human diseases and the latest version (v7.0) includes information 
regarding the association of 21,671 genes with 30,170 disorders (https 
://disgenet.org). In this analysis, we only considered diseases or com-
plications with gene enrichment ≥ 10 and adjusted p-value≤ 0.001. 
Likewise, we ran the shared DEGs using the same database via Meta-
scape server [40], where statistical significance was set to adjusted 
p-value≤ 0.05. For visualization of the gene-disease association (GDA), 
a bipartite network was created and designed with Cytoscape v3.8 
software [41]. It is an open source software to produce high resolution 
interactomes and complex networks. 

2.4. Functional enrichment analysis 

Functional enrichment analysis, also referred to as gene set enrich-
ment analysis (GSEA), identifies a group of significantly enriched genes 
engaging in the course of biological action or residing at the central 
chromosomal location by integrating all prior knowledge [42]. Such a 
group of genes can be associated with a biological function by means of 
gene ontology (GO) that has 3 separate classes including biological 
process (BP), molecular function (MF), and cellular component (CC) 
[43]. Similarly, pathway analysis also plays an important role to reveal 
the molecular or biological function that underlies the development of 
complex diseases and it also helps us to understand how to intervene 

therapeutically in disease processes. Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway database constitutes metabolic pathways 
representing the network of molecules interconnected for a general 
function [44]. Besides KEGG, Wikipathways [45], and Reactome [46] 
pathway databases are also widely used as annotation sources for 
analyzing signalling pathways. We performed the GSEA using the online 
platform Enrichr by integrating the pathway and GO term annotations 
for all the shared DEGs between the SARS-CoV-2 and T2D to have a 
better understanding of the metabolic pathways active in SARS-CoV-2. 
Enrichr integrates available gene-set libraries to provide enrichment 
outcomes for a gene list of interest. For statistical significance, the 
adjusted p-value was considered as less than 0.05 for the significance 
assessment of the obtained enrichment results. 

2.5. Protein-protein interaction analysis 

Proteins usually interact with each other to form molecular machines 
that perform cellular functions. Such protein-protein interactions (PPIs) 
can be mapped to discern the functional and structural knowledge of 
cellular protein networks [47]. We incorporated the web-based visual-
ization software NetworkAnalyst v3.0 to construct the PPI network of 
the common DEGs. This web-tool interprets the gene expression data 
from PPI network perspective [48]. Herein, we employed the STRING 
database with a confidence score of 600 for network construction. This 
database comprises published and estimated interactions that include 
both functional and physical contacts [49]. In this case, we only 
considered an experimentally validated interaction dataset. To deter-
mine potential hubs within the PPI network, we then applied three 
different methods, i.e., degree, maximal clique centrality (MCC), and 
betweenness using cytoHubba plugin [50] in Cytoscape v3.8. Next, we 
compared the results and identified the common nodes as the most 
potential hubs. Finally, the obtained networks were customized in 
Cytoscape v3.8. 

2.6. Probing the regulatory networks 

Transcription factors (TFs) control the gene expression level by 
switching it on and off at the transcription level. Thus, TFs and their 
interactions with genes are essential for their functional implications 
[51]. We utilized the NetworkAnalyst platform to investigate the in-
teractions of TFs with the shared DEGs. For this purpose, we selected the 
Encyclopedia of DNA Elements (ENCODE) database in NetworkAnalyst 
that uses peak intensity signal <500 and the predicted regulatory po-
tential score <1. The ENCODE project provides genomic and tran-
scriptomic annotations to characterize the human genomic elements 
[52]. Likewise, microRNAs (miRNAs) are non-coding RNAs that affect 
gene expression via post-transcriptional regulation [51]. To generate the 
gene-miRNA interactome, we provided the shared DEGs into the same 
platform utilizing the TarBase 8.0 database, which provides an experi-
mentally validated collection of curated miRNA-gene interaction data as 
well as function-related data derived from various present-day empirical 
methods [53]. Both gene-miRNA and gene-TF networks were initially 
filtered with the degree centrality ≥ 2. Next, the obtained networks 
were analyzed with degree method via CytoHubba plugin to determine 
the key regulatory components and their interacting gene partners. 

2.7. Identification of drug candidates 

One of the primary objectives of this line of research focuses on 
pinpointing the potential drug molecules. We searched the Drug Sig-
natures Database (DSigDB) based on the shared DEGs between SARS- 
CoV-2 and T2D using the Enrichr web-platform. The DSigDB is a 
collection of 22,527 gene sets related to the drug and small molecules 
considering the dysregulation in gene expression due to drug/com-
pounds [54]. The significant drug molecules were filtered through 
manual curation based on adjusted p-value. 
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3. Results 

3.1. Shared differentially expressed genes 

We first compared the gene expression levels of lung epithelium cells 
from SARS-CoV-2 patients (GSE147507) and pancreatic islet cells from 
T2D individuals (E-MTAB-5060) with the corresponding cells from 
healthy controls. Similarly, we also compared the expression profiling of 
PBMCs from SARS-CoV-2 (E-MTAB-8871) and T2D (GSE9006) patients 
with normal individuals. By filtering DEGs for each disease condition, 
we found 156 and 78 significant DEGs in the first experiment for SARS- 
CoV-2 and T2D, respectively. In the second experiment, we found 1289 
and 73 significant DEGs in PBMCs for the same disease-pair. The four 
volcano plots in Fig. 2 presented the expression pattern of the genes in 
both experiments. 

The cross-comparative analysis revealed 15 common DEGs between 
SARS-CoV-2 and T2D for lung epithelium and pancreatic islet cells, 
respectively. On the other hand, for PBMCs, we found 11 common DEGs 
between the disease pair. By combining these two sets of DEGs, we found 
a total of 25 unique shared DEGs. Negative 10-base logarithmic trans-
formed FDR adjusted p-value of these 25 common DEGs are shown in 
Fig. 2-E. Notably, all the common genes were strikingly up-regulated for 
the lung epithelium and pancreatic islet cell in SARS-CoV-2 and T2D, 
respectively, whereas CXCL1 was irregularly expressed in both scenarios. 

3.2. Significant gene ontologies and signalling pathways 

After identifying the overlapping DEGs for the disease pair, we per-
formed extensive GO and signalling pathway analyses accessing relevant 
curated databases. The adjusted p-value filtration found a total of 38 GO 
terms (Fig. 4) and 46 molecular pathways (Fig. 5) to be significantly 
enriched. Curation found cytokine activity and cytokine-mediated sig-
nalling pathway to be predominant. Similarly, signalling pathway ana-
lyses exhibited TNF signalling pathway and cytokine-cytokine receptor 
interaction having noteworthy enrichment. 

3.3. Genetic relationship of COVID-19 with other diseases 

By analyzing the GDA, we identified 19 highly significant (p-value 
≤ 0.001) diseases associated with up to 18 shared DEGs. Fig. 3 shows the 
different cancers and diseases related to DEGs identified in COVID-19. 
Most of the comorbidities were different forms of cancers. The highest 
number of DEGs (18) were found to be associated with breast cancer and 
its metastasis while at least 10 DEGs were affiliated with ulcerative 
colitis, cervix carcinoma, bladder neoplasm, atherosclerosis, autoim-
mune diseases, and inflammatory bowel disease (IBD). Other diseases 
include rheumatoid arthritis (13), asthma (12), Alzheimer’s disease 
(11), and arteriosclerosis (11). Additionally, the Metascape server pre-
dicted the top 20 diseases that are associated with 8–11 genes as shown 

Fig. 2. Differential gene expression and common DEGs. Volcano plots depict the genes expression in A) SARS-CoV-2 infected lung epithelium cells, B) SARS-CoV-2 
infected PBMCs, C) PBMCs of T2D patients, and D) T2D diseased pancreatic islet cells (red dots indicate significant DEGs), while bubble plot shows (E) the expression 
pattern of 25 common DEGs between SARS-CoV-2 and T2D in lung epithelium cells and pancreatic islet cells, respectively as well as in PBMCs. 
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in Fig. 3-B. These DEGs and diseases could provide the directionality of 
the COVID-19 progression and its long-term health impact. 

3.4. Hub-proteins identified in the PPI network 

We constructed the PPI network using all the distinct DEGs shared 
between the disease pair through NetworkAnalyst. The resulted PPI 
network comprises 171 nodes and 176 edges as shown in Fig. 6-A. Each 
node in the network represents a protein and an edge indicates the 

functional interaction between two proteins. We employed three 
methods for topological analysis where each method identified the top 7 
hub-nodes within the PPI network (Fig. 6B–D). Interestingly, four out of 
7 hub-proteins were anticipated by all methods. As validated by multiple 
methods and exhibited a minimum of eight interconnections, we 
recognized those four hub-nodes as potential hub-proteins, i.e., BIRC3, 
C3, MME, and IL1B. 

Fig. 3. Gene-disease association network. In this figure, (A) the bipartite network includes circular nodes (blue) representing the shared DEGs and hexagonal nodes 
indicating COVID-19 (yellow) and different diseases (green), and (B) the bar graph indicating the top 20 diseases associated with DEGs in terms of expression and 
number of DEGs involved as predicted by the Metascape server. 

Fig. 4. Gene ontology analysis revealed significant GO terms associated with SARS-CoV-2 and T2D. The biological process, cellular component, and molecular 
function datasets were considered for this analysis. 
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3.5. Regulatory networks revealed highly active TFs and miRNAs 

The TF-gene interactome obtained from NetworkAnalyst contains a 
total of 116 nodes with 341 interactions, where 20 nodes were from our 
common DEGs. The network comprises circular and hexagonal nodes 
representing TFs and common DEGs, respectively. Out of total 116 
nodes, 111 nodes showed at least 3 TF-gene interactions. Notably, 
ICAM1, C3 and TYMP evidenced 49, 45 and 42 TF-gene interactions, 
respectively. The high number of interactions between the TFs and 
common DEGs are shown in Fig. 7-A. Further network analysis with 
degree method revealed 30 most significant nodes including 15 TFs 
(IRF1, RERE, FOSL1, KLF8, MAZ, ZNF580, DRAP1, TRIM22, KLF16, 
WRNIP1, TFDP1, KLF11, CREB3L1, ZBTB11, and ZNF197) and their 
partner DEGs (Fig. 7-B). Similarly, the constructed gene-miRNA inter-
action network identified a total of 535 interactions among 121 nodes 
where 96 nodes represent miRNAs as shown in Fig. 8-A. The gene ANLN 
exhibited maximum 59 interactions whereas BIRC3, PTGS2, INHBA, LIF, 
and ICAM1 were involved with 30 connections and/or more. All the 
nodes regulated at least three neighbours suggesting high level of 
miRNA association with the shared DEGs. Finally, topological study of 
the network identified 11 most important miRNAs (miR-1-3p, 34a-5p, 
129-2-3p, 146a-5p, 16–5p, 101–3p, 671–5p, 155–5p, 124–3p, 20a-5p, 
and let-7b-5p) interacting with 19 DEGs (Fig. 8-B). 

3.6. Candidate drug identification 

Based on the shared DEGs between SARS-CoV-2 and T2D, we iden-
tified some potential drug molecules. We obtained 438 significant 
drugs/compounds to be associated with the DEGs that resulted from 
manual curation by considering FDR adjusted p-value. Among them, 
estradiol and tetradioxin were the top 2 molecules based on the number 
of DEGs involved. Again, phencyclidine and profenamine molecules 
were found to be the most significant ones. The top 20 significant drug 
molecules along with the associated DEGs are provided in Table 1. 

4. Discussion 

This research work aimed to uncover the obscure genetic in-
teractions between SARS-CoV-2 and T2D by maneuvering a series of 
bioinformatics approaches. To our best knowledge, this is the first 
endeavor to divulge the genomic and transcriptomic connections shared 
by the disease pair. In this study, we first performed the gene expression 
analysis of the SARS-CoV-2 and T2D in lung epithelium and pancreatic 
islet cells, respectively, as well as in peripheral blood using four different 
datasets. Considering the expression patterns, we identified 25 unique 
DEGs shared by the disease pair that manifested their genetic proximity. 
The subsequent course of actions in this study revolved around these 

Fig. 5. Significant signalling pathways associated with SARS-CoV-2 and T2D. The human KEGG (2019), reactome (2016), and human WikiPathways (2019) datasets 
were considered for this analysis. 
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shared DEGs employing functional enrichments in terms of GO, molec-
ular pathways, protein-protein interactome, regulatory network, and 
drug target identification. 

Functional enrichment analysis using the overlapping DEGs derived 
significant GO terms associated with diseases under consideration. 
Markedly, inflammation related signalling pathways, including cytokine 
activity, cytokine-mediated signalling pathway, chemokine activity, and 
cellular response to cytokine stimulus were found to be prevalent. 
Evidently, the comprehensive activity of these pathways may contribute 
to the cytokine storm, thus, playing a crucial role in the progression of 
COVID-19 [55]. A recent study revealed chronic inflammation as a 
prominent feature of T2D that may lead to abnormal blood clot forma-
tion, which explains the severity of T2D upon SARS-CoV-2 infection 
[56]. Another biological process is the regulation of cell proliferation, 
which is plausible since cell cycle regulation actively occurs in T2D 

patients to counteract insulin resistance by increasing insulin-secreting 
β-cells despite the lack of success [57]. Therefore, the DEGs associated 
with this GO term may directly or indirectly involve in the regulation of 
β-cell proliferation and hence, can be potential therapeutic targets [58]. 

In our GDA analysis, we found that most of the shared DEGs (18) 
were associated with breast carcinoma and cancer metastasis. The 
ICAM1 is crucial for infectious disease in viral replication modulation 
and has been evidenced to have key involvement in lung disease of se-
vere COVID-19 patients [59]. Again, genetic and biological evidence 
suggest that ICAM1 has a vital role in the development of diabetes [60]. 
The dysregulation of ANLN (anillin actin binding protein) gene is asso-
ciated with pulmonary carcinogenesis and it can be characterized as a 
prognostic biomarker and therapeutic candidate for lung cancer [61]. A 
recent study identified ANLN as a potential biomarker for bladder uro-
thelial carcinoma [62]. Besides, 10 DEGs from this study were found to 

Fig. 6. The protein-protein interaction network and hub-proteins. This network was constructed with the DEGs shared by SARS-CoV-2 and T2D using STRING 
database (confidence cut off 600). The network depicting (A) a total of 171 proteins including 11 shared DEGs in which 7 hubs were indicated as predicted by the 
degree method. Additionally, three smaller networks are depicting hub-proteins anticipated by (B) degree, (C) betweenness, and (D) maximal clique centrality (MCC) 
methods. For all methods, the top seven hub-proteins are indicated by the color ranging from red (higher) to yellow (lower). 

Fig. 7. TF-gene interaction network. The network was constructed using the shared DEGs and filtered with degree centrality≥ 2. It shows (A) the interactions of 96 
TFs with 20 DEGs, and (B) the 30 most significant nodes of the gene-TF network, which included 15 TFs and their interactions with 15 DEGs.The hexagonal (yellow) 
and circular (green) shaped nodes in the network indicate DEGs and TFs, respectively. 
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be linked to bladder cancers. A recent review highlighted the higher risk 
of COVID-19 and/or disease severity in individuals with breast cancer 
[63]. On the other hand, the least associated diseases were atheroscle-
rosis, IBD, bladder and cervix cancers, and ulcerative colitis, which 
involved with 10 shared DEGs each. In particular, the intense in-
flammations due to IL-6, TNF-α, and IL-1β can lead to aggravated 
atherosclerosis which in turn contribute to developing cardiovascular 
diseases [64]. Although no association was found between IBD and 
increased susceptibility towards SARS-CoV-2, a recent study suggested 
gut inflammation may contribute to viral entry by up-regulating ACE2 
expression [65]. Other notable diseases were lung carcinoma, pancreatic 
carcinoma, rheumatoid arthritis, and asthma, which were also evident 
in some previous studies [66–69]. Therefore, the associated DEGs could 
be of interest for risk management and genetic manipulation for thera-
peutic purposes. 

Pathway analysis focusing on the common DEGs was carried out and 

identified similar pathways for COVID-19 and T2D. Amongst all, TNF 
signalling pathway, cytokine-cytokine receptor interaction, IL-17 sig-
nalling pathway, and photodynamic therapy-induced NF–κB survival 
signalling were the top annotated pathways. Ouyang et al. found TNF- 
signalling pathway to be significantly enriched in severe COVID-19 
conditions [70]. Recently, Akash et al. reviewed the direct involve-
ment of TNF-α with the pathogenesis of T2D. Activation of TNF-α re-
duces the expression of glucose transporter type 4 (GLUT4) which is 
related to insulin metabolism. Besides, TNF-α expression coincides with 
the inhibition of insulin receptor through serine phosphorylation of in-
sulin receptor substrate-1 (IRS-1) [71]. Likewise, IL-17 pathway is 
involved in cytokine storm that regulates normal immune response [72]. 
Intriguingly, IL-17 also promotes insulin resistance by inducing angio-
tensin II type 1 receptor (AT1R). This lead to the production of nitric 
oxide (NO) in diabetic nephropathy resulting in complications in T2D 
patients [73]. Therefore, the increased disease severity of COVID-19 in 

Fig. 8. Gene-miRNA interaction network. The network was constructed using the shared DEGs and filtered with degree centrality≥ 2. It shows (A) the interactions of 
96 miRNAs with 25 DEGs, and (B) the 30 most significant nodes of the gene-miRNA network that includes 11 miRNAs and their interactions with 19 DEGs.The 
hexagonal (yellow) and circular (blue) shaped nodes in the network indicate DEGs and miRNAs, respectively. 

Table 1 
Top 20 significant drug candidates identified for shared DEGs between SARS-CoV-2 and T2D.  

Drug/small 
molecule 

p-value  Adj. 
p-value  

Associated genes 

Phencyclidine 1.16E-15 4.68E-12 IL1A, CCL20, IL1B, TNFAIP2, LIF, CXCL1, CXCL3, PTGS2, ICAM1, TYMP, BIRC3 
Profenamine 1.94E-14 3.91E-11 IL1B, LIF, CXCL1, INHBA, CXCL3, PTGS2, ICAM1, BIRC3 
8-Azaguanine 5.99E-14 8.04E-11 IL1A, CCL20, IL1B, LIF, CXCL1, INHBA, CXCL3, PTGS2, KRT6B, ICAM1, BIRC3 
Nickel chloride 6.02E-13 6.06E-10 IL1A, CCL20, IL1B, TNFAIP2, CXCL1, INHBA, LTB, CXCL3, PTGS2, ICAM1, BIRC3 
Chloropyramine 2.62E-12 2.11E-09 LIF, CXCL1, INHBA, PTGS2, ICAM1, BIRC3 
Pizotifen 2.36E-11 1.58E-08 CXCL1, INHBA, CXCL3, PTGS2, ICAM1, BIRC3 
MS-275 4.76E-11 2.74E-08 C3, IL1A, CCL20, IL1B, TNFAIP2, CXCL1, PTGS2, KRT6B, S100A8, BIRC3 
0297417-0002B 1.53E-10 7.74E-08 LIF, CXCL1, LTB, PTGS2, KRT6B, ICAM1, BIRC3 
Silica 1.89E-10 8.45E-08 ANLN, IL1A, EGR3, CCL20, IL1B, TNFAIP2, CXCL1, LTB, CXCL3, PTGS2, ICAM1, BIRC3 
Gemcitabine 2.93E-10 1.07E-07 IL1A, CCL20, IL1B, CXCL1, CXCL3, ICAM1, TYMP, BIRC3 
Peptidoglycan 3.313E- 

10 
1.11E-07 IL1A, CCL20, IL1B, PTGS2, ICAM1 

1-Nitropyrene 2.83E-10 1.14E-07 IL1A, CCL20, IL1B, CXCL1, LTB, CXCL3, ICAM1, BIRC3 
Estradiol 8.55E-10 2.45E-07 EGR3, MME, CCL20, SLC6A14, ADAM22, LIF, KRT23, INHBA, CXCL3, PTGS2, ICAM1, C3, ANLN, IL1A, VNN1, IL1B, LTB, KRT6B, 

S100A8, BIRC3 
Nickel sulphate 8.04E-10 2.49E-07 IL1A, CCL20, IL1B, CXCL1, INHBA, CXCL3, PTGS2, ICAM1, TYMP, BIRC3 
3-Nitrofluoranthene 9.33E-10 2.50E-07 CCL20, CXCL1, LTB, CXCL3 
Dexamethasone 1.12E-09 2.67E-07 IL1B, SLC6A14, LIF, LTB, PTGS2, S100A8, ICAM1, TYMP, BIRC3 
Niclosamide 1.10E-09 2.77E-07 CCL20, CXCL1, INHBA, CXCL3, PTGS2, ICAM1, BIRC3 
MG-132 1.35E-09 3.02E-07 IL1A, IL1B, CXCL1, PTGS2, ICAM1, TYMP, BIRC3 
Simvastatin 2.24E-09 4.75E-07 IL1A, IL1B, LIF, LTB, PTGS2, S100A8, ICAM1, BIRC3 
Thioridazine 3.22E-09 6.49E-07 LIF, INHBA, LTB, CXCL3, PTGS2, ICAM1, BIRC3  
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T2D patients is not surprising. Now that we know the genetics of this 
complex interplay, blocking the involved DEGs could be an effective 
strategy in alleviating disease severity by regulating these signalling 
pathways. For instance, there are some clinical trials of antibodies 
against IL-17 for chronic inflammatory diseases such as psoriasis and 
arthritis [74]. These approaches can also be adopted to ameliorate the 
hyper-inflammation in SARS-CoV-2-infected T2D. Moreover, AT1R an-
tagonists or vitamin D or in combinations are suggested to reduce the 
COVID-19 complications [75]. 

The PPI network analysis using the shared DEGs promisingly iden-
tified BIRC3, C3, MME, and IL1B as the potential hub-proteins, the 
proteins exhibiting a high degree of interactions and identified in mul-
tiple networks analyses. Notably, BIRC3 (Baculoviral IAP repeat con-
taining 3) is connected with Marginal Zone B-Cell Lymphoma and is 
reported as NK cell immune checkpoint in tumor [76]. Likewise, C3 
(Complement C3) is a principal element of the protective immune sys-
tem against pathogens [77]. A recent study noticed hyper-activation of 
C3 in COVID-19 and suggested its suppression as a therapeutic strategy 
[78]. Importantly, C3 is suggested as a potential therapeutic target for 
diabetic nephropathy in a recent study [79]. Another hub-protein MME 
(Membrane metalloendopeptidase) in cerebrospinal fluid (CSF) was 
found to be involved in Alzheimer’s disease progression [80]. Interest-
ingly, in this study, we also identified Alzheimer’s disease as the co-
morbidity of COVID-19. This protein directly employs neutrophil 
recruitment and consequently intensifies the immunopathology of 
COVID-19 [81]. The IL1B (Interleukin 1 beta) belongs to the interleukin 
1 cytokine family and plays a vital role in arbitrating the inflammatory 
response. It is also involved in osteoarthritis pathogenesis [82], which 
was also evident in our comorbidity analysis. Moreover, 1L1B like 
pro-inflammatory cytokine level upraises in the bronchial alveolar 
lavage fluid of serious COVID-19 patients [83]. Consequently, the in-
flammatory response promoted by IL1B induces lung damage in 
COVID-19 [84]. Additionally, PTGS2 (Prostaglandin-endoperoxide 
synthase 2), exclusively detected by MCC method, is demonstrated to be 
a prognostic biomarker for gastric cancer [85]. Moreover, PTGS2 is 
lately reported as a key target molecule of the Qing-Fei-Pai-Du decoction 
(QFPDD), the traditional Chinese medicine that was successfully applied 
to treat COVID-19 [86]. Therefore, the identified hub-proteins could be 
considered as potential biomarkers for COVID-19. Further investigation 
could be conducted to confirm their biological involvement to highlight 
them as drug targets. 

Furthermore, the regulatory network analyses elucidated notably 
high occurrence of TF-gene and gene-miRNA interactions. The ICAM1 
(Intercellular adhesion molecule 1) gene was found to be involved with 
the highest number (49) of TF-gene interactions. In this study, we found 
interferon regulatory factor 1 (IRF1) as a potential TF. A previous study 
showed IRF1 directly regulates gene expression in response to herpes 
simplex virus (HSV) and MERS-CoV infections [87], probably by pro-
moting IRF3 activation [88]. It is also responsible for the upregulation of 
interleukin-1β (IL1B) as we evidenced in our gene-TF network [89]. 
Also, krüppel-like factors (KLFs) are TFs that regulate various pathways 
and rendered metabolic abnormalities if altered. Notably, phenotypic 
expression related to KLF-11 includes decreased circulating insulin [90]. 
We identified KLF8, KLF11 and KLF16 as highly active TFs. Besides, we 
detected TF protein CREB3L1 which is in line with a previous study [91]. 
This TF is associated with ER stress [92] and PCSK1 gene, which was 
found to be linked with diabetes mellitus [93]. Another TF protein 
FOSL1 interacts with CCL20 gene, which was found upregulated in this 
study. The elevated level of CCL20 is implicated in cytokine storm of 
COVID-19, obesity, and insulin resistance [94,95]. Also, the CCL20 is 
regulated by the NF–κB subunits in pancreatic β-cells [95]. Importantly, 
FOSL1 is reported to negatively regulate the type I interferon (IFN–I) 
response in host against malaria and viral infections and is identified as a 
potential drug target for controlling malaria and other diseases [96]. 

We also detected 11 potential miRNAs that might have shared 
pathogenetic relationship between COVID-19 and diabetes. For 

example, miR-1-3p and 20a-5p identified in this study reported to be 
involved in viral respiratory diseases and can be used to design anti-viral 
drugs [97]. Another miRNA miR-34a-5p increases high 
glucose-mediated apoptosis in cardiomyocytes by reducing 
anti-apoptotic BCL2 protein [98]. Thus, the upregulation of miR-34a-5p 
in the diabetic condition is most likely to increase apoptosis [99]. 
Interestingly, the elevated level of miRNA-34a was also observed in 
patients who experienced acute myocardial infarction (MI) leading to 
heart failure [99]. Further, some miRNAs associated with lung diseases 
(e.g., let-7b-5p) and asthma (e.g., miR-155–5p, miR-16–5p) were highly 
prevalent in COVID-19 [100]. Furthermore, miR-16 and miR-155 
modulate inflammatory responses by targeting the MCL1 and NFKBIA 
hub-proteins [100,101]. Therefore, the association of identified TFs and 
miRNAs with COVID-19 pathogenesis and diabetes could reveal other 
potential drug targets with further study. 

Moreover, taking the common DEGs into consideration with the 
DSigDB database, several drug/molecule candidates were proposed. As 
expected, the top interacted component estradiol was found to have a 
positive protective effect on COVID-19 patients in several experimental 
investigations that suggests its prospect as a therapeutic candidate 
against SARS-CoV-2 [102]. Again, dexamethasone which had associa-
tion with 9 shared DEGs, was found effective in COVID-19 patients who 
require oxygen supplement and/or mechanical ventilation [103]. 
Another drug candidate tetradioxin (not shown in Table 1) showed in-
teractions with 18 shared DEGs. Previously, dioxin showed immune 
suppression activity through the inhibition of CD4+ T-cell differentia-
tion into Th1, Th2 and Th17 effector cells [104]. Strikingly, activation of 
Th17 is mainly responsible for IL-17 release, the prominent cause of 
cytokine storm in COVID-19 [105,106]. Therefore, the identified drug 
candidates can further be assessed for their potency in alleviating the 
COVID-19 complication. Altogether, the obtained results demand clin-
ical expeditions that may improve our understanding of the genetic 
impact of T2D on SARS-CoV-2 as well as to propose putative therapeutic 
targets. 

5. Conclusions 

To conclude, the pathophysiological outcome of SARS-CoV-2 infec-
tion significantly differs in different people based on their underlying 
health conditions. In this study, we explored the molecular pathogenesis 
of COVID-19 in patients with pre-existing T2D hoping to find the genetic 
determinants that cause higher infection risk and disease severity. In 
doing so, we observed that both diseases exhibited similarity in gene 
expression profile to some extent. We also identified several key proteins 
that could be the source of potential biomarkers in early disease prog-
nosis. In addition, the identified regulatory molecules such as TFs and 
miRNAs may highlight the disease-modifying factors involved in the 
COVID-19 progression. These regulatory molecules along with the sig-
nalling pathways can be targeted for the development of novel COVID- 
19 therapeutics. Furthermore, the identified potential drug candidates 
need experimental validation for their therapeutic evaluation. Thus, we 
believe that this study will shed light on the understanding of the 
intertwined pathobiology of the complexity of SARS-CoV-2 infected T2D 
patients. 
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A. Ortiz, Could IL-17A be a novel therapeutic target in diabetic nephropathy?, 
others, J. Clin. Med. 9 (2020) 272. 

[75] M. Rafiullah, Can a combination of AT1R antagonist and vitamin d treat the lung 
complication of COVID-19? Am. J. Med. Sci. 360 (4) (2020) 338–341. 

[76] A. Ivagnès, M. Messaoudene, G. Stoll, B. Routy, A. Fluckiger, T. Yamazaki, 
K. Iribarren, C.P. Duong, L. Fend, A. Caignard, TNFR2/BIRC3-TRAF1 signaling 
pathway as a novel NK cell immune checkpoint in cancer, others, 
OncoImmunology 7 (2018), e1386826. 

[77] J.R. Delanghe, R. Speeckaert, M.M. Speeckaert, Complement C3 and its 
polymorphism: biological and clinical consequences, Pathology 46 (2014) 1–10. 

[78] T. Gao, M. Hu, X. Zhang, H. Li, L. Zhu, H. Liu, Q. Dong, Z. Zhang, Z. Wang, Y. Hu, 
Highly pathogenic coronavirus n protein aggravates lung injury by MASP-2- 
mediated complement over-activation, others, MedRxiv (2020). Preprint. 

[79] S. Tang, X. Wang, T. Deng, H. Ge, X. Xiao, Identification of C3 as a therapeutic 
target for diabetic nephropathy by bioinformatics analysis, Sci. Rep. 10 (2020) 
1–12. 

[80] T. Grimmer, O. Goldhardt, I. Yakushev, M. Ortner, C. Sorg, J. Diehl-Schmid, 
H. Förstl, A. Kurz, R. Perneczky, S. Miners, Associations of neprilysin activity in 

CSF with biomarkers for alzheimer’s disease, Neurodegener. Dis. 19 (2019) 
43–50. 

[81] A. Didangelos, COVID-19 hyperinflammation: what about neutrophils? mSphere 
5 (2020). 

[82] H. Wu, M. Zhang, W. Li, S. Zhu, D. Zhang, Stachydrine attenuates IL-1 -induced 
inflammatory response in osteoarthritis chondrocytes through the NF-κ, Chem. 
Biol. Interact. (2020), 109136. 

[83] C.D. Crisci, L.R. Ardusso, A. Mossuz, L. Müller, A precision medicine approach to 
SARS-CoV-2 pandemic management, Current Treatment Options in Allergy 
(2020) 1–19. 

[84] C. Perricone, P. Triggianese, E. Bartoloni, G. Cafaro, A.F. Bonifacio, R. Bursi, 
R. Perricone, R. Gerli, The anti-viral facet of anti-rheumatic drugs: Lessons from 
COVID-19, Journal of Autoimmunity (2020), 102468. 

[85] H.J. Yoo, T.J. Kim, D.J. Kim, W. Kim, Role of COX2 as a biomarker for estimating 
survival of patients with clinical stage i gastric cancer, Anticancer Res. 40 (2020) 
341–347. 

[86] J. Zhao, S. Tian, D. Lu, J. Yang, H. Zeng, F. Zhang, D. Tu, G. Ge, Y. Zheng, T. Shi, 
Systems pharmacological study illustrates the immune regulation, anti-infection, 
anti-inflammation, and multi-organ protection mechanism of qing-fei-pai-du 
decoction in the treatment of COVID-19, others, Phytomedicine (2020), 153315. 

[87] A.T. Irving, Q. Zhang, P.-S. Kong, K. Luko, P. Rozario, M. Wen, F. Zhu, P. Zhou, J. 
H. Ng, R.M. Sobota, Interferon regulatory factors IRF1 and IRF7 directly regulate 
gene expression in bats in response to viral infection, others, Cell Rep. 33 (2020), 
108345. 

[88] J. Wang, H. Li, B. Xue, R. Deng, X. Huang, Y. Xu, S. Chen, R. Tian, X. Wang, 
Z. Xun, IRF1 promotes the innate immune response to viral infection by 
enhancing the activation of IRF3, others, J. Virol. 94 (2020). 

[89] T. Masuda, S. Iwamoto, S. Mikuriya, H. Tozaki-Saitoh, T. Tamura, M. Tsuda, 
K. Inoue, Transcription factor IRF1 is responsible for IRF8-mediated IL-1β 
expression in reactive microglia, J. Pharmacol. Sci. 128 (2015) 216–220. 

[90] N.M. Pollak, M. Hoffman, I.J. Goldberg, K. Drosatos, Krüppel-like factors: 
Crippling and uncrippling metabolic pathways, JACC: Basic to Translational 
Science 3 (2018) 132–156. 

[91] S.P. Sajuthi, P. DeFord, N.D. Jackson, M.T. Montgomery, J.L. Everman, C.L. Rios, 
E. Pruesse, J.D. Nolin, E.G. Plender, M.E. Wechsler, et al., Type 2 and interferon 
inflammation strongly regulate SARS-CoV-2 related gene expression in the airway 
epithelium, Nat. Commun. 11.1 (2020) 1–18. 

[92] M. Greenwood, M.P. Greenwood, J.F. Paton, D. Murphy, Transcription factor 
CREB3L1 regulates endoplasmic reticulum stress response genes in the 
osmotically challenged rat hypothalamus, PloS One 10 (2015), e0124956. 

[93] M. Greenwood, A. Paterson, P.A. Rahman, B.T. Gillard, S. Langley, Y. Iwasaki, 
D. Murphy, M.P. Greenwood, Transcription factor Creb3l1 regulates the synthesis 
of prohormone convertase enzyme PC1/3 in endocrine cells, J. Neuroendocrinol. 
32 (2020), e12851. 

[94] F. Coperchini, L. Chiovato, L. Croce, F. Magri, M. Rotondi, The cytokine storm in 
COVID-19: an overview of the involvement of the chemokine/chemokine- 
receptor system,, Cytokine Growth Factor Rev. 53 (2020) 25–32. 

[95] S.J. Burke, M.D. Karlstad, K.M. Regal, T.E. Sparer, D. Lu, C.M. Elks, R.W. Grant, J. 
M. Stephens, D.H. Burk, J.J. Collier, CCL20 is elevated during obesity and 
differentially regulated by NF-κ b subunits in pancreatic β-cells, Biochimica Et 
Biophysica Acta (BBA)-Gene Regulatory Mechanisms 1849 (2015) 637–652. 

[96] B. Cai, J. Wu, X. Yu, X. Su, R.-F. Wang, FOSL1 inhibits type i interferon responses 
to malaria and viral infections by blocking TBK1 and TRAF3/TRIF interactions, 
mBio 8 (2017). 

[97] R. Sardar, D. Satish, D. Gupta, Identification of novel SARS-CoV-2 drug targets by 
host microRNAs and transcription factors co-regulatory interaction network 
analysis, Front. Genet. 11 (2020) 1105. 

[98] F. Zhao, B. Li, Y. Wei, B. Zhou, H. Wang, M. Chen, X. Gan, Z. Wang, S. Xiong, 
MicroRNA-34a regulates high glucose-induced apoptosis in H9c2 
cardiomyocytes, J. Huazhong Univ. Sci. Technol. - Med. Sci. 33 (2013) 834–839. 

[99] Q.A. Hathaway, M.V. Pinti, A.J. Durr, S. Waris, D.L. Shepherd, J.M. Hollander, 
Regulating microRNA expression: at the heart of diabetes mellitus and the 
mitochondrion, Am. J. Physiol. Heart Circ. Physiol. 314 (2018) H293–H310. 
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