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Abstract

Motivation: Single-cell RNA sequencing (scRNA-seq) technology has been widely applied to capture the heterogen-
eity of different cell types within complex tissues. An essential step in scRNA-seq data analysis is the annotation of
cell types. Traditional cell-type annotation is mainly clustering the cells first, and then using the aggregated cluster-
level expression profiles and the marker genes to label each cluster. Such methods are greatly dependent on the
clustering results, which are insufficient for accurate annotation.

Results: In this article, we propose a semi-supervised learning method for cell-type annotation called CALLR. It com-
bines unsupervised learning represented by the graph Laplacian matrix constructed from all the cells and super-
vised learning using sparse logistic regression. By alternately updating the cell clusters and annotation labels, high
annotation accuracy can be achieved. The model is formulated as an optimization problem, and a computationally
efficient algorithm is developed to solve it. Experiments on 10 real datasets show that CALLR outperforms the com-
pared (semi-)supervised learning methods, and the popular clustering methods.

Availability and implementation: The implementation of CALLR is available at https://github.com/MathSZhang/CALLR.

Contact: zhangs@fudan.edu.cn

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell RNA sequencing (scRNA-seq) technology has been more
and more widely applied in different scenarios in biomedical fields
nowadays (Kolodziejczyk et al., 2015; Tang et al., 2009). It meas-
ures the gene expressions at each single-cell level. Thus by analyzing
the transcriptome-wide cell-to-cell variations, we can study the het-
erogeneity of different cell types within complex tissues (Kelsey
et al., 2017; Liu and Trapnell, 2016; Stubbington et al., 2017), ex-
plore the cell-state progression in the developing embryos (Li et al.,
2018; Wagner et al., 2018), characterize the diversity of human
brain cells (Darmanis et al., 2015; Lake et al., 2018), investigate the
heterogeneity of the cancer ecosystems to study the disease progres-
sion and response to therapy (Friebel et al., 2020; Tirosh et al.,
2016; Wagner et al., 2019; Zheng et al., 2018) and so on. With the
fast development of single-cell sequencing platforms, such as
Seqwell and 10X chromium3, scRNA-seq data composed of more
and more cells are available.

An essential step in scRNA-seq data analysis is the annotation of
cell types. Traditional cell-type annotation methods mainly include
two steps: clustering the cells using unsupervised learning method,
and labeling each cluster manually based on aggregated cluster-level
expression profiles and the marker genes (Zhang et al., 2019b).

Such methods can be cumbersome, and the accuracy relies on both
the clustering accuracy and the prior knowledge on marker gene ex-
pression levels. Recently, several cell-type annotation methods using
the reference database have been developed. These methods usually
map the unannotated cells to the pre-annotated reference datasets
using selected features (Aran et al., 2019; de Kanter et al., 2019;
Kiselev et al., 2018; Hou et al., 2019; Shao et al., 2020). Then, the
cell types are assigned according to the cells’ nearest neighbors or
some similarity measures. For example, ‘scCATCH’ selects the
marker genes as features, and uses them to map the unannotated
cells to the tissue-specific cell taxonomy reference databases to de-
termine the cell types. The performance of such methods depends on
the clustering results, and the expression profiles from experiments
with different designs may not be directly comparable. Deep learn-
ing methods for cell-type annotation have also been proposed (Brbi�c
et al., 2020; Hu et al., 2020). MARS was proposed to project all
cells in a meta-dataset into a joint low-dimensional embedding space
shared by both annotated and unannotated cells. By learning the
cell-type-specific landmarks, it can discover cell types that have
never been seen before and annotate experiments that are as yet
unannotated (Brbi�c et al., 2020). ItClust is an iterative transfer
learning algorithm with neural network that utilizes external well-
annotated source data as the initialization for the target data to
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better cluster the target cells (Hu et al., 2020). All of these methods
integrate the information across multiple datasets. A few automatic
cell-type annotation methods were proposed for one single dataset
using the marker genes. Zhang et al. (2019a) proposed a probabilis-
tic cell-type assignment model ‘CellAssign’ to do the inference,
which leverages the prior knowledge of cell-type marker genes to an-
notate the cells. Another method ‘Garnett’ first labels a number of
cells by scoring the marker genes, then uses sparse logistic regression
to classify the cells (Pliner et al., 2019).

According to the above analysis, clustering plays leading roles in
most cell annotation methods. Though a large number of cell clus-
tering methods have been proposed (Ding et al., 2018; Grun et al.,
2016; Ji and Ji, 2016; Huh et al., 2020; Kiselev et al., 2017; Lin
et al., 2017; Marco et al., 2014; Ntranos et al., 2016; Park and
Zhao, 2018; Pierson and Yau, 2015; Tian et al., 2019; Wang et al.,
2017; Yang et al., 2019), they are still not sufficient for accurately
annotating the cells. Semi-supervised learning, as a branch of ma-
chine learning, uses both labeled and unlabeled data to perform
supervised or unsupervised learning tasks (Van Engelen and Hoos,
2020). It has been widely applied in many different fields, including
single-cell data analysis (Wu et al., 2020; Zhang et al., 2019c). The
advantage of semi-supervised learning is that it can make full use of
the prior knowledge on the labeled and unlabeled data, which can
lead to better data explanations.

In this article, we present a transductive semi-supervised
method called Cell type Annotation using Laplacian and Logistic
Regression (CALLR) for annotating the cell types in one single
scRNA-seq dataset. Given a dataset consisting of labeled and un-
labeled cells with the corresponding subsets denoted as Z and
Z0Z0, we propose a model to produce predicted labels for the un-
labeled cells in Z0Z0. The model combines the supervised learning
part, which uses sparse logistic regression, and the unsupervised
learning part, which is represented as a graph Laplacian con-
structed from all the cells, to learn the unknown cell labels. It is
formulated as an optimization problem, and the numerical algo-
rithm for solving it is presented. Here, we suppose a small number
of labeled cells are known in the dataset, which may be obtained
manually as traditionally do, or learned using marker genes, such
as the method developed in Garnett (Pliner et al., 2019). We
apply CALLR to several datasets to show its performance. We
first compare with some existing clustering methods and (semi-)
supervised learning methods. We then show that when a very
small proportion of cells are annotated, high annotation accuracy
can be achieved. Compared to clustering, higher clustering accur-
acy can be obtained and cell types can be directly assigned to the
clusters at the same time. Compared to supervised learning meth-
ods, such as logistic regression, much fewer labeled cells are
needed and much higher annotation accuracy is obtained. All
these results show the advantages of our proposed method.

2 Materials and methods

2.1 The CALLR framework
Given an m�n scRNA-seq gene expression matrix X ¼
ðx1;x2; . . . ;xnÞ with m genes and n cells, where xixi is the gene ex-
pression corresponding to the cell i. We first remove the genes with
zero expression across all the cells. X is then normalized by size fac-
tor to adjust for read depth, which is the same as that used in (Pliner
et al., 2019). Without confusion, we use X as the normalized data
matrix. Suppose a small proportion of cells have been annotated,
and the cell set is denoted as Z. The set of the remaining cells is
denoted as Z0Z0. We assume the putative number of cell types is
given as K, which can be seen from Z. The cell sets for type k is
denoted as Ck. Let the cell annotation matrix UK�n ¼
ðu1;u2; . . . ;unÞ be defined as: uki ¼ 1 if cell i belongs to cluster
Cki 2 Ck, uki ¼ 0 otherwise, where ui denotes the annotation vector
of the i-th cell. Let gi denote the cell type that the cell i belongs to.
For each cell i in Z, the corresponding ugii ¼ 1. We build a semi-
supervised model to infer the cell types of those in Z0.

CALLR achieves the cell annotation matrix U through the fol-
lowing optimization framework:

min
a;b;U

�
X

i2Z

log Prðugii ¼ 1jxiÞ �
X

i2Z0

XK

k¼1

uki log Prðgi ¼ kjxiÞ

þ k1trðULUTÞ þ k2

XK�1

k¼1

jjbkjj1

s:t: log
Prðgi ¼ kjxiÞ
Prðgi ¼ KjxiÞ

¼ ak þ bT
k xi; 81 � k � K� 1;8i;

uki ¼ 0 or 1;
XK

k¼1

uki ¼ 1; 8i 2 Z0;

XK

k¼1

Prðgi ¼ kjxiÞ ¼ 1; 8i:

Here, k1 and k2 are non-negative tuning parameters. L is the
Laplacian matrix corresponding to the adjacency matrix constructed
from the gene expression matrix X. After obtaining the 0–1 K�n
matrix U, the label of each cell i is the position where the element in
the column vector ui equals to 1.

The intuition of this optimization problem is to combine sparse lo-
gistic regression and spectral clustering, which correspond to the super-
vised and unsupervised part, respectively. The first term in the
optimization problem comes from logistic regression for the annotated
cells, with a being a ðK� 1Þ � 1 vector explaining the intercept, and b
being the coefficient matrix of the m genes with size m� ðK� 1Þ. The
third term comes from spectral clustering, which clusters the cells based
on their similarities. The second term establishes a connection between
them, which tries to make the results of logistic regression and spectral
clustering correspond with each other. The fourth term is a regulariza-
tion penalty term for the coefficients to avoid the overfitting.

Let P ¼ ðP1; . . . ;PnÞ be the probability matrix for all the cells
being in each cell type, where Pi ¼ ðPrðgi ¼ 1jxiÞ; . . . ;
Prðgi ¼ KjxiÞÞT . Ideally for each cell i, Pi should have one position
near 1 and the other positions near 0. So when we calculate ui, we
expect it to take a larger value (near its maximum 1) if the result
from logistic regression and spectral clustering are corresponded.
Besides, the second term also utilizes the unlabeled cells in sparse lo-
gistic regression. Thus by solving this optimization problem, we ex-
pect there is a clear classification of the cells into different types.

2.2 Optimization algorithm
The objective function in the optimization problem is nonconvex,
but the objective function for logistic regression and spectral cluster-
ing are both convex. Thus, we optimize both parts alternately.

Laplacian Matrix. Before the iteration steps, we first need to
compute the Laplacian matrix of the gene expression data. We apply
k-nearest neighbors method to the Euclidean distance to construct
the adjacency matrix A. We require that cell j has a connection to
cell i if and only if both cell j and cell i are within their k-nearest
neighbors, and set Aij ¼ 1. Otherwise we have Aij ¼ 0. With this, we
have the structure of the similarity graph. Then we use Gaussian
kernels to generate the weights for the edges in A. For each edge
with Aij ¼ 1, we calculate their similarity Sij using the same kernel as
that in SIMLR (Wang et al., 2017). We set the variance in Gaussian
kernel as 1 and set the number of neighbors being 17 as default to
get the empirical performance. The results are stable when both
parameters take small changes. The Laplacian matrix is computed
in the same way as spectral clustering does.

Initialization. We run logistic regression on the labeled training
data to get the initial a and b. Then we predict the labels of the un-
labeled cells to get the initial value of matrix U.

Step 1 : Fix a and b to update U. We rewrite the objective func-
tion with respect to (w.r.t) the label matrix U as follows:

min
U

�l
X

i2Z0

XK

k¼1

uki log Prðgi ¼ kjxiÞ þ trðULUTÞ

s:t: uki ¼ 0 or 1;
XK

k¼1

uki ¼ 1; 8i 2 Z0;

where we set l ¼ 1
k1

in the original objective function.
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Since there are 0–1 constraints in this problem, and the dimen-
sion of U is quite large, it is inefficient to directly solve such opti-
mization problem using binary optimization methods. We instead
develop a projected gradient descent method and a thresholding step
to approximate the solution iteratively. We solve the optimization
problem by the following two steps.

1. The gradient descent step:

~U ¼ UN þ�tð�UNLþ l log PÞ;

2. Projection and thresholding step:

uNþ1
i ¼ projectToVertexðprojectToSimplexð~u iÞÞ;

where projectToSimplex projects a given vector to the simplex,
while projectToVertex maps a vector to its nearest standard unit vec-
tor. Specifically, projectToSimplex finds w for a given vector

v 2 R
K, and is defined as:

projectToSimplexðvÞ ¼ arg min
w2DK

jjw� vjj2;

where

DK :¼ w ¼ ðw1; . . . ;wKÞT 2 R
K : 0 � wi � 1; and

XK

i¼1

wi ¼ 1;

while

projectToVertexðvÞ ¼ arg min
w2DK

jjw� vjj2;

where

DK :¼ w ¼ ðw1; . . . ;wKÞT 2 R
K : wi ¼ 0 or 1; and

XK

i¼1

wi ¼ 1:

For projectToSimplex, we use a similar algorithm as that pro-
posed in (Chen and Ye, 2011), and projectToVertex directly projects
v to the standard unit vector of the same maximum value. �t is step
size in projected gradient descent method satisfying �t � 1

L for an
L-smooth convex function we optimize. In practice, we set Dt ¼
0:005 as default. We repeat 1 and 2 until the results of the two con-
secutive steps are the same. Then we get the solution of U at Step 1.

Step 2 : Fix U to update a and b. We rewrite the objective func-
tion w.r.t the logistic regression coefficients a and b as follows.

min
a;b
�
X

i2Z

logPrðugii¼1jxiÞ�
X

i2Z0

XK

k¼1

uki logPrðgi¼kjxiÞ þk2

XK�1

k¼1

jjbkjj1

s:t: log
Prðgi¼kjxiÞ
Prðgi¼KjxiÞ

¼akþbT
k xi;81�k�K�1;8i;

XK

k¼1

Prðgi¼kjxiÞ¼1;8i:

Given U, this optimization problem becomes the sparse logistic
regression on all the cells. We use the R package glmnet to complete
this step.

CALLR iterates step 1 and step 2 until convergence. In practice,
we stop the algorithm when the results of the two consecutive steps
become very close. We put the whole computation process in
Algorithm 1.

For Algorithm 1, besides the outer iterations for alternately
updating U and b, both steps include inner iterations. Step 1 involves
the gradient descent step, which requires OðKn2Þ operations, and
the projection and thresholding step, which requires OðK2nÞ opera-
tions. As K<n, the complexity of this step can be written as
N1 �OðKn2Þ, where N1 is the number of inner iterations. Step 2
implements glmnet, which includes a so-called partial Newton algo-
rithm and the coordinate descent step (Friedman et al., 2010). This
step is of computational complexity N2 � ðOðKnpÞ þN3 �
OðKnpÞÞ (Yuan et al., 2012), where N2, N3 are the number of

iterations for step 2 and coordinate descent within step 2. For the
space complexity, step 1 requires the space of Oðn2 þ nKÞ, and step
2 requires the storage of OðK2npÞ.

2.3 Preparation of the labeled cells
In the proposed method CALLR, we assume that we have known
a few number of annotated cells. These cells can be labeled
manually as usually do (Zhang et al., 2019b), and they can also
be selected with some state of the art computational methods.
Currently, we apply the scoring technique developed in Garnett
(Pliner et al., 2019) to select the representative cells. The scoring
framework consists of 3 steps. First, the term frequency-inverse
document frequency (TF-IDF) matrix is calculated, which is
defined by

Ti;j ¼
Xi;j

Pm

i¼1

Xi;j

� ð1þ n
Pn

j¼1

Xi;j

Þ;

where Xi;j is the normalized gene expression matrix defined above.
Then we assign a cutoff Ci of each gene

Ci ¼ 0:25qi;

where qi is the 95th percentile of T for gene i. Any value Ti;j below
Ci will be set to 0. Finally, we define the marker score Sc;j for cell
type c and cell j as

Sc;j ¼
X

k2Gc

Tk;j;

where Gc is the list of marker genes for cell type c. In our example,
cells in the 85th percentile and above for marker score S in only one
cell type are chosen as representatives for that type. More details
can be found in (Pliner et al., 2019).

Algorithm 1 CALLR: Cell Annotation using Laplacian and

Logistic Regression

Input:

X: scRNA-seq matrix; Z: index set of the annotated cells;

yZ: labels of the annotated cells;

K: number of clusters given by the annotated dataset;

L: Laplacian matrix constructed from all the cells;

�t: step size in the descent step; l ¼ 1
k1

: parameter;

Output: y: cell labels;

1. P SparseLogisticRegressionðXZ; yZÞ
2. Uold ¼ U0 ¼ 0

3. Unew ¼ randð0; 1Þ; unew
i  projectToSimplexðunew

i Þ;

8i 2 Z; unew
gii
¼ 1; 8j 6¼ gi; unew

ji ¼ 0

4. while jjUnew �Uoldjj > �1 do

5. Uold  Unew; U1  Unew; N ¼ 1

6. while jjUN �UN�1jj > �2 do

7. ~U  UN þ�tð�LUN þ l log PÞ
8. for j ¼ 1 : n do

9. uNþ1
j  projectToSimplexð~u jÞ

10. uNþ1
j  projectToVertexð~ujÞ

11. N  N þ 1

12. Unew  UN

13. for i ¼ 1 : n do

14. yðiÞ  which½uN
i ¼¼ 1�

15. P SparseLogisticRegressionðX; yÞ
16. return y
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3 Results

In this section, we evaluate CALLR using the real-world datasets
and present the results compared to other models.

3.1 Datasets
We downloaded 10 publicly available scRNA-seq datasets, and they
are summarized in Table 1. We mainly chose the data generated
using 10X, which can provide high-throughput data efficiently.
Datasets of five mouse organs’ scRNA-seq from Tabula Muris gen-
erated using 10X were selected, which include bladder, kidney,
lung, marrow and tongue (Tabula Muris Consortium et al., 2018).
For the dataset ‘Lung’, depending on the marker file used in Garnett
(Pliner et al., 2019), we selected four cell types. ‘Baron’ is a scRNA-
seq dataset for human pancreatic islets (Baron et al., 2016). We
selected donor one of the four donors in this study. The cells were
sequenced using inDrop. Two datasets of Peripheral Blood
Mononuclear Cells (PBMC) are ‘PBMC10X’ and ‘PBMCSeqWell’,
which were generated using 10X and SeqWell (Butler et al., 2018;
Gierahn et al., 2017). ‘PBMC10X’ originally includes 2638 cells
from 8 cell types. According to the marker file used in Garnett
(Pliner et al., 2019), we combined four types of them into two, and
took six types finally. ‘Chen’ is a large dataset consisting of 23 284
genes and 14 437 cells in 47 cell types (Chen et al., 2017). All the
cells in these datasets have their true annotated labels.

3.2 Cell-type annotation results
As CALLR is a semi-supervised learning method, it can give the exact
labels for all the unannotated cells. We compared CALLR with both
(semi-)supervised learning methods and unsupervised learning meth-
ods. For (semi-)supervised methods, as the problem is multi-class clas-
sification, we used accuracy to measure their performance. For both
unsupervised and supervised learning methods, we used the criteria
NMI and ARI to measure their performance. Adjusted Rand Index
(ARI) and Normalized Mutual Information (NMI) are two widely
used criteria to measure the performance of clustering. They measure
the similarity between two distinct partitions (one corresponding to
the true clusters in our case) over a same dataset. Suppose there are
two sets of clusters CA and CB for partitions A and B over the same
dataset containing n data points. Let jCAj ¼ I and jCBj¼J;CA¼
fCA1;CA2;...;CAIg and CB¼fCB1;CB2;...;CBJg. Let nij be the number
of entries that belong to both CAi and CBj, that is, nij¼jCAi\CBjj.
ARI is given as:

ARI ¼ RI � EðRIÞ
maxðRIÞ � EðRIÞ ;

where Rand Index (RI) is defined as:

RI ¼
XI

i¼1

XJ

j¼1

ðnij

2
Þ=ð n

2
Þ:

NMI is defined as:

NMI ¼ 2IðCA; CBÞ
HðCAÞ þHðCBÞ

;

where

IðCA; CBÞ ¼
X

i;j

nij

n
log

nnij

jCAijjCBjj
;

HðCAÞ ¼ �
X

i

jCAij
n

log
jCAij

n
;

and HðCBÞ is defined similarly. For the (semi-)supervised learning
methods, we considered sparse logistic regression in R package
glmnet (Friedman et al., 2010) and multiclass graph-based MBO
method (Garcia-Cardona et al., 2014), where sparse logistic regres-
sion is a popular supervised learning method, while MBO is a semi-
supervised learning method. We also considered a deep learning
method ‘ItClust’, which is a transfer learning algorithm with neural
network and utilizes external well-annotated source data to better
label the target data (Hu et al., 2020). We took the annotated cells
as the source data, and labeled the remaining cells. We randomly
selected 5% of the cells with their true labels as the annotated sub-
set, and ran the (semi-)supervised algorithms. For the unsupervised
clustering methods, we considered SIMLR (Wang et al., 2017),
Seurat (Butler et al., 2018), and SAME (Huh et al., 2020). We
selected SIMLR and Seurat because both are graph-based clustering
methods, which have some similarities with spectral clustering.
Furthermore, SIMLR integrates different kernel-based similarities to
visualize and cluster the cells. Seurat performs clustering using dif-
ferent algorithms such as the Louvain algorithm (Blondel et al.,
2008), Smart Local Moving (SLM) algorithm (Waltman and van
Eck, 2013), and Leiden algorithm (Traag et al., 2019) to optimize
the standard modularity function for the shared nearest neighbor
graph, which is constructed from the k-nearest neighbor graph using
Jaccard index. We applied the default method ‘Louvain algorithm’.
SAME aggregates the clustering results from multiple methods via
mixture model ensemble, thus it owns the advantages of various
methods. Here, SAME aggregated the results from SIMLR, Seurat
and tSNE þ k-means (first do tSNE, then k-means clustering). For
these methods, we directly used the R packages: SIMLR, Seurat, and
SAME.

We first compared CALLR with the clustering methods. Since
the results from sparse logistic regression, MBO and ItClust can be
taken as clusters, we also measured these three methods using ARI
and NMI. All the results are shown in Figure 1a and b. According to
both ARI and NMI, CALLR performs the best or second best in al-
most all datasets. Only ItClust performs slightly better than CALLR
throughout 10 datasets. As ItClust is a deep learning framework, it
may capture more effective details in some specific data than
CALLR does. Figure 1d plots the boxplot for the performance of the
seven methods. We ranked each model according ARI and NMI for
10 datasets. There are a total of 20 ranks for each model. The box-
plot shows each model’s ranks across all datasets. Lower rank repre-
sents better performance (one is the best and seven is the worst). It is
clear that CALLR performs more stable than ItClust. We note that

Table 1 Summary of the 10 real datasets

Data/references Protocol Ngene �Ncell Cell types Tissues

Baron (Baron et al., 2016) InDrop 20 125� 1937 14 Pancreatic islets

Bladder (Consortium et al., 2018) 10X 23 433� 2500 4 Bladder

Chen (Chen et al., 2017) Drop-seq 23 284� 14 437 47 Hypothalamus

Kidney (Consortium et al., 2018) 10X 23 433� 2781 8 Kidney

Lung (Consortium et al., 2018) 10X 23 433� 835 4 Lung

Marrow (Consortium et al., 2018) 10X 23 433� 1732 14 Marrow

PBMC10X (Butler et al., 2018) 10X 32 738� 2638 6 Blood

PBMCSeqWell (Gierahn et al., 2017) SeqWell 6173� 3694 6 Blood

Seger (Segerstolpe et al., 2016) Smart-Seq 25 525� 1099 9 Pancreatic islet

Tongue (Tabula Muris Consortium et al., 2018) 10X 23 433� 7538 3 Tongue

i54 Z.Wei and S.Zhang



CALLR does not perform well in dataset ‘Chen’. This is because
when we applied CALLR to ‘Chen’, we divided the dataset into sev-
eral subsets to separately get the final labels based on the same
labeled subset due to the large size of this dataset. This also moti-
vates us to develop faster algorithms for our model.

We then compared CALLR with sparse logistic regression, MBO
and ItClust. All of these four methods can give exact label for each
cell. The accuracy of the classification is shown in Figure 1c. In both
‘Bladder’ and ‘Lung’, four methods perform similarly because these
two datasets only contain four types of cells. CALLR and ItClust
achieve a little higher accuracy. For the dataset ‘Chen’, again, due to
the separate subset labeling, CALLR does not perform well. For the
remaining seven datasets, CALLR performs significantly better than
the other three methods. In ‘Baron’, ‘Chen’ and ‘Marrow’, CALLR
performs much better than ItClust because they are of more cell
types. It indicates that CALLR has great adaptability to deal with
large datasets with complex cell types compared to ItClust. We also
show the boxplot of CALLR, MBO, glmnet and ItClust for all
indexes. The results are shown in Figure 1e. CALLR has an out-
standing and robust performance compared to the other three.

To clearly see the differences of these compared methods, we
visualized the cells in a 2D space using umap (Becht et al., 2019).
We put the dataset ‘PBMC10X’ as the example. The results are
shown in Figure 2. It is clear that (semi-)supervised methods perform
much better than pure clustering. For (semi-)supervised methods,
CALLR assigns more cells to their types correctly. To be specific,
CALLR can successfully separate NK cells and T cells while other
methods fail to distinguish some cells from these two types.

We further compared CALLR with Garnett, which uses marker
genes to first determine the types of a small set of cells. We down-
loaded the marker gene files of ‘Lung’ and ‘PBMC10X’ directly
from the Supplementary Materials of Garnett, and applied the same
scoring technique developed in Garnett to first determine the labels
of a small number of cells. In Garnett, cells having aggregated mark-
er score greater than the 75th percentile in only one cell type are
chosen as good representatives. For CALLR, we used two thresh-
olds: the 75th percentile and the 85th percentile. The results are
shown in Figure 3. In both cases, CALLR have much better perform-
ance than Garnett. For ‘Lung’, CALLR gave similar performance in
both cases. For ‘PBMC10X’, more known labeled cells gave better
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Fig. 2. Visualization of the cells in ‘PBMC10X’
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performance, which is consistent with our intuition. All the results
show that even with fewer known labeled cells, CALLR greatly
improves sparse logistic regression.

We conducted the experiments in a Laptop with CPU 3.1 GHz
Intel Core i5 and memory 8 GB 2133 MHz LPDDR3 to check the
computational time. When the cell size is of 835 (dataset ‘Lung’), it
took 3 min. When the cell size is of 2500 (dataset ‘Bladder’), it took
15 min. And when the sample size is of 7538 (dataset ‘Tongue’), it
took about 2 h and a half. When the sample size is very large (data-
set ‘Chen’), we divided the cells into several groups correspondingly,
and ran the algorithm separately to cluster each group. This proced-
ure can save time and space, but may lose some annotation
accuracy.

3.3 Effect of the number of labeled cells
We did experiments to investigate the relationship between the
labeled cells’ size and the performance of annotation. We denoted
the ratio of the size of labeled cells to the total sample size as r ¼ n0

n .
Here we show the results on the ‘Lung’ data matrix.

We let r ¼ 0:02;0:05; 0:1; 0:2; 0:3 to select the labeled cells ran-
domly. For each value of r, we repeated the experiments for 10 times
and calculated the accuracy of classification to the cell types. We
recorded the accuracy means and standard deviations. The result is
shown in Figure 4. When r is very small, the results highly depend
on the number of labeled cells. When r>0.05, the results become
very stable. This shows that CALLR needs only a few labeled cells,
and they can help improve the annotation greatly. In the vast major-
ity of cases on different datasets, we have 0:05 < r < 0:3 can give
reliable results.

3.4 Parameter selection
The optimization problem contains two tuning parameters: k1 for
balancing the effect of logistic regression term and the spectral clus-
tering term, and k2 for regularization in sparse logistic regression.
For k2, it can be selected in the dataset with labels using leave-one-
out cross validation. Based on the empirical results, in practice, we
directly set k2 ¼ 0:004.

The selection of k1 is equivalent to selecting l as previously men-
tioned in step 1 of Algorithm 1, where the two terms in the objective
function are corresponding to logistic regression and spectral clus-
tering, respectively. There should be high consistency between the
clusters obtained using both methods separately, and the number of
borderline cells that affect the final classification results in logistic
regression should be small. Thus the model should be robust to the
choice of the parameters. In our setting, both terms are linear func-
tions of the cell number n. The log-likelihood is a sum of about n
terms, and the trace term is a sum of about nKnn terms, where Knn is
the number of neighbors in the construction of the similarity graph.
Thus to balance these two terms will not highly depend on n. In
practice, we varied the parameter in different datasets to see the per-
formance, and finally took l ¼ 0:3 as the default.

We took the dataset ‘Lung’ as an example to show the results for
different values of parameter l. First, we set l ¼ 0:1;0:2;0:3; . . . ; 10
with step size 0.1 and ran the algorithm to investigate the variation
of clustering performance. As we can see in the first row of Figure 5,
for either NMI, ARI or accuracy, the best performance happens
when l 2 ½0; 1�, and as l goes larger, the performance of CALLR is
very stable, though it becomes a little worse. We further checked out
the effect of l more closely. Let l ¼ 0:01;0:02; 0:03; . . . ; 1 with step
size 0.01, and ran the algorithm. The result is shown in the second
row. Either NMI, ARI or accuracy reaches their highest value when
l is around 0.3, and the value of these measures changes quite small.

4 Discussion

We presented CALLR, a semi-supervised learning framework, to an-
notate the cell types. It learns the labels of the unannotated cells
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from the log-likelihood function and Laplacian matrix. Based on a
small number of labeled cells and the similarity graph between dif-
ferent cells, it can predict the probabilities of those unlabeled cells
being in a particular type. The resulting information alternatively
helps the clustering. As a result, CALLR combines the advantages of
sparse logistic regression and spectral clustering to annotate each
cell more accurately. For the representative cells of each type, with
information of marker genes, we can conduct the selection using the
existing data-driven approaches, which makes it easier to use our
proposed method. We applied alternating optimization method and
projected gradient descent method to solve the proposed optimiza-
tion model. Such algorithms reduce the computational complexity
of binary optimization, and thus improve the computational effi-
ciency and capacity of the model. Furthermore, analyzing the effect
of the labeled cells’ size on the annotation results shows the robust-
ness of CALLR. The performance of the method is stable when par-
ameter changes or labeled subset varies.

Results across 10 real datasets show that CALLR provides more
accurate and robust results. For either NMI, ARI or accuracy as as-
sessment criteria, the performance of CALLR is the best compared
to the traditional (semi-)supervised methods. And it is competitive
compared to the up-to-date deep learning method ‘ItClust’ with
more stable performance. According to NMI and ARI, it outper-
forms each single compared clustering method. And it outperforms
SAME in 8 of the 10 datasets, where SAME integrates the advan-
tages of various current clustering methods. We note that in
CALLR, the number of cell types depends on the annotated cells,
which is pre-specified. It may not detect the rare cell types since it is
difficult to find the representative cells at the first stage due to their
small sample size. However, some clustering methods, such as those
in Seurat, learn the number of cell types automatically, which may
help determine the number of cell types in advance. Taking advan-
tages of such clustering methods and the increasing number of mark-
er genes to label a number of reliable representative cells is of great
importance, and is left as one of our future work.

In our current formulation and experiments, we only used one
Gaussian kernel function to construct the adjacency matrix of all the
cells, which is based on the pairwise Euclidean distance. As there are
many kernel-based similarity fusion methods developed, we may in-
tegrate more similarity measures to construct the adjacency matrix,
which have shown better performance, such as SIMLR. At the same
time, dimension reduction methods can also be applied before meas-
uring the similarities between pairwise cells.

The implementation of CALLR is based on general and rigorous
theories behind logistic regression, spectral clustering and graph-
based Merriman–Bence–Osher scheme. Thus, it is a useful classifica-
tion framework not only for single cells but also for other fields,
such as pattern recognition and image processing.
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