
7692  |   	﻿�  Cancer Medicine. 2021;10:7692–7711.wileyonlinelibrary.com/journal/cam4

Received: 24 May 2020  |  Revised: 12 July 2021  |  Accepted: 21 August 2021

DOI: 10.1002/cam4.4285  

R E S E A R C H  A R T I C L E

MLL3 is a de novo cause of endocrine therapy resistance

Kimberly M. Stauffer   |   David L. Elion  |   Rebecca S. Cook  |   Thomas Stricker

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided 
the original work is properly cited.
© 2021 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

Vanderbilt University, Nashville, 
Tennessee, USA

Correspondence
Thomas Stricker, MCN CC2210 1161 
21st Ave, South. Nashville, TN 37221, 
USA.
Email: thomas.stricker@vumc.org

Present address
David L. Elion, University of California, 
San Francisco

Funding information
National Cancer Institute, Grant/Award 
Number: K08 CA148912

Abstract
Background: Cancer resequencing studies have revealed epigenetic enzymes 
as common targets for recurrent mutations. The monomethyltransferase MLL3 
is among the most recurrently mutated enzymes in ER+ breast cancer.  The 
H3K4me1 marks created by MLL3 can define enhancers. In ER+ breast cancer, 
ERα genome-binding sites are primarily distal enhancers. Thus, we hypothesize 
that mutation of MLL3 will alter the genomic binding and transcriptional regula-
tory activity of ERα.
Methods: We investigated the genomic consequences of knocking down MLL3 
in an MLL3/PIK3CA WT ER+ breast cancer cell line.
Results: Loss of MLL3 led to a large loss of H3K4me1 across the genome, and a 
shift in genomic location of ERα-binding sites, which was accompanied by a re-
organization of the breast cancer transcriptome. Gene set enrichment analyses of 
ERα-binding sites in MLL3 KD identified endocrine therapy resistance terms, and 
we showed that MLL3 KD cells are resistant to tamoxifen and fulvestrant. Many 
differentially expressed genes are controlled by the small collection of new loca-
tions of H3K4me1 deposition and ERα binding, suggesting that loss of functional 
MLL3 leads to new transcriptional regulation of essential genes. Motif analysis of 
RNA-seq and ChIP-seq data highlighted SP1 as a critical transcription factor in 
the MLL3 KD cells. Differentially expressed genes that display a loss of ERα bind-
ing upon MLL3 KD also harbor increased SP1 binding.
Conclusions: Our data show that a decrease in functional MLL3 leads to endo-
crine therapy resistance. This highlights the importance of genotyping patient 
tumor samples for MLL3 mutation upon initial resection, prior to deciding upon 
treatment plans.
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1   |   INTRODUCTION

Breast cancer is the second most commonly diag-
nosed cancer in American women and 75% of cases are 

estrogen-receptor positive (ER+). Anti-estrogens are the 
first line of therapy, however, 80% of women present with 
(de novo) or develop (acquired) endocrine therapy resis-
tance.1 Disease recurrence and drug resistance are major 
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drivers of mortality in ER+ breast cancer. While some 
causes of endocrine therapy resistance, such as ESR1 mu-
tation, HER2 amplification, and FGFR1/CCND1 amplifica-
tions are known,2,3 ~60% of cases do not have an identified 
mechanism.4 Furthermore, only 50%–70% of ER+ patients 
respond to initial endocrine therapy, highlighting a need 
for de novo resistance biomarkers. Improved understand-
ing of the mechanisms of endocrine resistance will guide 
therapeutic development.

ChIP-Seq studies show tumors that respond poorly 
to endocrine therapy have a unique set of ERα genomic-
binding locations.5 Furthermore, it has been shown that 
ER+ breast cancer can adapt to estrogen deprivation 
through epigenetic reprogramming at enhancers.6 These 
patterns, therefore, suggest that genes regulating ERα 
binding may affect/alter endocrine therapy responsive-
ness. One such gene that has been shown to regulate nu-
clear receptor activity7 is MLL3, the sixth most frequently 
mutated gene in ER+ breast cancer.8  MLL3 primarily 
monomethylates H3K4 to mark enhancers. Interestingly, 
ERα-binding sites regulate gene transcription largely from 
enhancers. In MCF7 cells, the pioneer factor FOXA1 has 
been shown to recruit MLL3 to demarcate enhancers for 
ERα.9 Further implicating the monomethyltransferase as 
an important regulator of ERα binding, MLL3 possesses 
LXXLL domains known to interact with nuclear hormone 
receptors such as ERα.10

Recurrent MLL3 mutation was first identified in acute 
myeloid leukemia (AML), where it was determined to be 
a haploinsufficient tumor suppressor.11 Similarly, MLL3 
is recurrently mutated in ER+ breast cancer.8,12  These 
mutations are predicted to be functional and therefore 
drivers.13,14 Not only is MLL3 recurrently mutated, its mu-
tation is also associated with more aggressive disease char-
acteristics both in vitro15,16 and in vivo.17,18

Given the above observations, we predicted that mu-
tation of MLL3 will shift both the enhancer and ERα 
genomic landscape, and that this shift will affect tran-
scriptional control by ERα and biological behavior such as 
endocrine resistance.

2   |   RESULTS

2.1  |  MLL3 mutation pattern in ER+ 
breast cancer suggests that MLL3 is a 
haploinsufficient tumor suppressor

MLL3 has been reported to be a haploinsufficient tumor 
suppressor in AML,11 and thus we hypothesized that most 
MLL3 mutations in breast cancer would be heterozygous 
(Figure  1A).19,20  We expect a 1:1  mutant-to-wildtype al-
lele ratio in the TCGA ER+ breast cancer sample set to 
present as a 35:65  mutant-to-wildtype allele ratio for a 
few reasons: TCGA ER+ breast cancer samples have ap-
proximately 75% tumor purity,21 and copy number data 
from the TCGA demonstrate that no amplifications or 
deletions coincide with MLL3  mutations for these sam-
ples (Figure  S1D). Analysis of TCGA data demonstrates 
that the average MLL3  mutant allele frequency, corre-
sponding to the percent of sequencing reads containing 
a mutation, is approximately 30% across the different cat-
egories of mutation (Figure  1B). This suggests that only 
one of two alleles is mutated, and that heterozygosity is 
not lost upon mutation of that one allele. This trend per-
sists across multiple breast cancer datasets (Figure S1B), 
and in some of the other most frequently mutated genes 
in ER+breast cancer (Figure S1A). Indeed, MAP2K4 and 
TP53, tumor suppressors associated with loss of heterozy-
gosity,22,23 have a higher mutant allele fraction of approxi-
mately 50%–60%. These ratios are more consistent with 
mutation of one allele, followed by loss of heterozygosity 
of the other allele in the tumor cells, given the aforemen-
tioned tumor purity.

With evidence to support that MLL3 mutations in ER+ 
luminal breast cancer are heterozygous, we next considered 
whether the effect of the mutations would be deleterious to 
the function of the methyltransferase. Mutations were a mix 
of nonsense (16/49), frameshift (18/49,), missense (14/49), 
and splice (1/49) mutations spread across the length of the 
gene with no mutational hotspots (Figure 1C; Figure S1C). 
Table 1 shows that while there are no mutations within the 

F I G U R E  1   MLL3 is significantly mutated in ER+ breast cancer; its mutation confers poor outcome. (A) The most commonly mutated 
genes in the provisional TCGA ER+ breast cancer RNA-seq dataset (n = 581) BrCa = breast cancer. ER+ = estrogen receptor positive. (B) 
Frequency of mutant MLL3 allele in TCGA ER+ luminal breast cancer cases (n = 581). FS = frameshift. MS = missense. NS = nonsense. (C) 
MLL3 mutation lollipop plot of luminal TCGA breast cancer cases with RNA-seq data (n = 46 mutations). Red lollipops indicate frameshift 
mutations, green indicates missense mutations, blue indicate nonsense mutations, and purple indicates splice mutations. Colored boxes 
indicate specialty domains as follows: PHD-like zinc-binding (green), PHD finger (red), F/Y-rich N-terminus (blue), F/Y-rich C-terminus 
(yellow), catalytic SET domain (purple). (D) Histograms of (#) simulations of averages of randomly chosen GERP scores in PIK3CA (E) 
PTEN (F) TTN and (G) MLL3. The number of randomly chosen GERP scores matches the number of mutations in each respective gene in 
the TCGA luminal breast cancer cases (n = 581). Simulated averages are shown by black lines, the actual average GERP score is shown by 
the red dotted line. P-values are calculated by dividing the number of simulated averages higher than the actual average GERP score by the 
total number of simulated averages. (H) Survival curve showing luminal cases from TCGA breast cancer cohort (n = 581) that are either 
mutant (red) or wildtype (blue) for MLL3. Log-rank Test p-value = 0.00845. WT = wildtype
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catalytic SET domain of MLL3, there are 34 truncating mu-
tations that occur 5’ to the SET domain. In addition, mis-
sense mutations within the PHD domains of MLL3 have 
been shown to be oncogenic.15 Considering this informa-
tion, we speculated that the 10 missense mutations outside 

defined regions of the protein would still lead to deleteri-
ous effects on MLL3 function.

To interrogate the effect of missense mutations in the 
ER+ luminal TCGA cases we performed an analysis using 
GERP scores, an evolutionary calculation of nucleotide 
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constraint. Genomic positions with higher scores are 
thought to be more deleterious if altered.24,25  We hy-
pothesized that the GERP scores for mutations observed 
in MLL3 in breast cancer would be higher, that is, more 
deleterious, than randomly selected missense variants, in-
dicating that the residues mutated in TCGA samples are 
more conserved, and thus mutation of these conserved 
residues will likely be detrimental to protein function. 
For positive controls, we chose PIK3CA as an oncogene 
with hotspot mutations, and PTEN as a tumor suppres-
sor with mutations throughout the gene.13 For a negative 
control we chose TTN, a known false-positive in cancer 
resequencing studies. In PIK3CA and PTEN, the average 
GERP score of missense mutations for each gene was sig-
nificantly higher, and therefore more deleterious, than 
the simulated GERP score averages (PIK3CA p < 0.0001, 
PTEN p = 0.007) (Figure 1D,E). In TTN, the average GERP 
score was within the middle of the distribution of simu-
lated GERP averages (p = 0.7522) (Figure 1F). The average 
GERP score of missense MLL3 mutations was on the tail 
of the distribution of simulated GERP averages, very sim-
ilar to that of PTEN (p = 0.0004) (Figure 1G). This anal-
ysis suggests that missense mutations in MLL3 in ER+ 
luminal breast cancers are deleterious to the function of 
the protein. Of note, a similar analysis, using the ratio of 
nonsynonymous to synonymous mutations in cancer also 
found that MLL3 is enriched for missense mutations with 
evidence of selection.13

A Kaplan–Meier plot of TCGA breast cancer patients 
demonstrated that untreated ER+ breast cancer patients 
with MLL3-mutant breast tumors have a significantly 
poorer overall survival than those with MLL3-wildtype tu-
mors (Figure  1H), suggesting that loss of MLL3 function 
contributes to poor outcomes in breast cancer patients. 
This trend remains true when comparing patients with 
MLL3 missense mutations to patients with MLL3-wildtype 
tumors (Figure  S1E). The analyses above, along with the 
lack of hotspots and the number of loss-of-function mu-
tations, illustrates that MLL3 is a haploinsufficient tumor 
suppressor in ER+ breast cancer. Thus, we decided to model 
MLL3 mutation with lentiviral shRNA knockdown (KD) in 
the ER+ breast cancer cell line ZR751 in order to maintain 
some residual expression of wildtype MLL3 (Figure S2A).

2.2  |  Knockdown of MLL3 changes the 
genomic enhancer landscape

MLL3, as part of the coregulator complex ASCOM, mono-
methylates histone H3K4.26 Loss of MLL3 leads to a loss of 
H3K4me1 across the genome in MEF cells.27  We posited 
that loss of MLL3 function would result in a similar loss of 
global H3K4me1 in ER+ breast cancer. We chose to test this 

hypothesis in ZR751, an ER+ breast cancer cell line wildtype 
for MLL3. ChIP-seq for H3K4me1 was performed with two 
biological replicates for ZR751shMLL3 and ZR751shLucif 
each, with inputs used as background controls. Samples were 
processed according to the ENCODE (phase-3) transcription 
factor and histone ChIP-seq best practices. Peak calling was 
accomplished with SPP28 and reproducibility between repli-
cate experiments was examined to provide thresholds for op-
timal peak selection with the Irreproducible Discovery Rate 
(IDR) framework.29 The resulting set of peaks demonstrated 
a massive decrease in the number of H3K4me1 sites upon 
MLL3 KD (Figure 2A). This loss is global, and comparison of 
H3K4me1 peaks directly shows that, on average, there is more 
H3K4me1 deposited at ZR751shMLL3 H3K4me1 genomic 
locations in control cells than in KD cells, suggesting that 
H3K4me1 genomic locations common to both cell lines have 
lower amounts of H3K4me1 in ZR751shMLL3 compared 
to control (Figure  S3B,C). Comparison of the H3K4me1 
ChIP-seq samples with DiffBind5,30 proved this to be 
true, with 97.3% (19,619/20,166, FDR  <  0.05) of common 
H3K4me1 genomic locations having a positive fold change 
and therefore more H3K4me1 deposited in the control than 
in the KD (Figure 2B).

We reasoned that changes in the H3K4me1 enhancer 
landscape due to MLL3  KD would be accompanied by 
genomic shifts in ERα binding. Indeed, ERα ChIP-seq 
revealed a substantial shift in ERα binding upon KD of 
MLL3 (Figure  2A). At genomic locations bound by ERα 
in ZR751shLucif, there was a greater intensity of ERα 
binding in ZR751shLucif cells than in ZR751shMLL3 
cells, and vice versa (Figure S3B,C). Upon analysis with 
DiffBind we saw that indeed the differentially bound ge-
nomic locations with an FDR less than 0.05 were enriched 
in the ZR751shMLL3 condition if they overlapped a peak 
called for ZR751shMLL3, and vice versa (Figure 2B). We 
predicted that the altered enhancer landscape created 
by the loss of MLL3, comprised of major H3K4me1 loss 
and an altered ERα-binding profile, would affect genes in 
pathways associated with cancer phenotypes. Assessment 
with GREAT, which assigns peaks to genes using both 
proximity and gene annotation categories, was used to 
evaluate pathway and gene signature enrichment for our 
ChIP-seq data (Figure  S3D). This analysis showed that, 
as a whole, H3K4me1 peaks in the MLL3 KD, but not in 
the control, are enriched for the Creighton “group 4 set” 
of genes associated with acquired endocrine therapy re-
sistance in breast tumors (Figure 2C).31 In the MLL3 KD, 
ERα peaks are enriched for genes downregulated in 
breast cancers formed by MCF-7 xenografts resistant to 
Tamoxifen (Figure 2C). Enrichment in these gene terms 
suggests that MLL3 KD confers endocrine therapy resis-
tance to breast cancer cells via a global loss of H3K4me1 
and a shift in ERα-binding profile. Given these results, 
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we assessed the response of MLL3 KD cells to endocrine 
therapies Tamoxifen and Fulvestrant and found that 
MLL3  KD results in increased resistance to endocrine 
therapies (Figure 2D; Figure S2B–D).

2.3  |  Loss of functional MLL3 leads to 
enhanced transcription of genes associated 
with aggressive tumor behavior

Differential expression of RNA-seq in ZR751shLucif and 
ZR751shMLL3 identified 3037 upregulated and 3518 
downregulated genes upon KD of MLL3, q < 0.05. To de-
termine if the same gene expression changes were occur-
ring in clinical breast tumors with MLL3 mutations, we 
utilized RNA-seq data from TCGA ER+ luminal breast 
cancer patients; this analysis revealed 688 upregulated and 
693 downregulated genes based on MLL3  mutation sta-
tus, q < 0.05. Comparison of the two sets of DEG from the 
ZR751 (q < 0.05) and TCGA (p < 0.05) analyses revealed 
a significant overlap between both upregulated (3036 
ZR751, 1185  TCGA) and downregulated (3643 ZR751, 
3638  TCGA) gene sets (Figures  3A, 5B; Figure  S4A–D). 
This MLL3-deficiency signature consisted of 208 upregu-
lated genes (p  =  0.0000072, Fisher's exact test) and 750 
downregulated genes (750 genes, p = 4 × 10−17, Fisher's 
exact test).

Given the enhanced endocrine therapy resistance dis-
played in proliferation assays and poorer overall survival 

curves, we reasoned that the transcriptional program of 
MLL3  KD cells would be enriched for cancer progres-
sion pathways. Webgestalt over-representation analysis 
(ORA) of ZR751 DEG identified terms associated with 
aggressive tumor behavior due to AKT1 activation, in-
cluding “genes bound by ERα and up-regulated by estra-
diol in MCF7 cells expressing constitutively active AKT1” 
(Table S1).32 Webgestalt ORA of the TCGA DEG illumi-
nated positive enrichment in MLL3  mutants for “genes 
upregulated in ER+ breast cancer samples” and “KRAS-
dependency signature genes,” and negative enrichment 
for “genes downregulated in ER+ breast cancer samples” 
(Table  S2). Interestingly, Gene Set Enrichment Analysis 
(GSEA) for both TCGA and ZR751 DEG revealed a sig-
nificant positive enrichment score for “genes induced by 
Akt and sensitive to everolimus” (Figure 3B,C). This gene 
signature is correlated with an increased incidence of me-
tastases and a shorter disease-free survival time in several 
breast tumor datasets.33 It is worth noting that mutations 
in genes in the ASCOM complex, which includes MLL3, 
and PIK3CA pathway mutations co-occur in breast can-
cer more than we would expect by chance.34 The mTOR 
pathway activation gene signature is also enriched in 
MLL3  KD and mutant breast cancer samples compared 
to WT (Table S3). This signature is associated with poorer 
outcome in breast cancer compared to the pAKT pathway 
activation signature.35 These results demonstrate that ca-
nonical ERα target genes important to aggressive cancer 
behavior are upregulated upon loss of MLL3.

T A B L E  1   Domains of MLL3 and TCGA ER+ luminal breast cancer mutations

Domain Name Function Amino Acids
# Truncating Mutations 
In/Prior To

TCGA 
Mutations

PHD1 Putative H3/Zn binding 247–330 2 NA

PHD2 Putative H3/Zn binding 390–435 3 1ns, 2ms

PHD3 Putative H3/Zn binding 466–517 4 1ns

PHD4 Binds to H4R3me0, H4R3me2a 952–1008 10 —

PHD5 Binds to H4R3me0, H4R3me2a 1009–1055 10 —

PHD6 Binds to H4R3me0, H4R3me2a 1086–1136 10 —

LXXLL Motif Nuclear Receptor Interacting 1408–1412 12 —

HMG-1 DNA Binding 1655–1703 15 1fs

LXXLL Motif Nuclear Receptor Interacting 2745–2749 23 —

LXXLL Motif Nuclear Receptor Interacting 2918–2922 23 —

LXXLL Motif Nuclear Receptor Interacting 3055–3059 23 —

LXXLL Motif Nuclear Receptor Interacting 3777–3781 26 —

PHD7 Putative H3/Zn binding 4402–4506 32 1ns, 1ms

FYRN Unknown 4550–4604 33 1fs

FYRC Unknown 4606–4691 33 —

SET Catalytic Domain, Methylates H3K4 4772–4893 34 —

The number of truncating mutations occurring within or prior to each domain is listed in the 4th column.
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2.4  |  MLL3 KD-driven H3K4me1 loss and 
ERα binding shifts contribute to 
differential gene expression programs in 
breast cancer

To investigate the relationship between the changes 
in the genomic enhancer landscape and ERα-binding 
profiles with the transcriptional changes upon KD of 
MLL3, we assigned H3K4me1 and ERα ChIP-seq peaks 

to ZR751 DEG by proximity. To check the robustness of 
these assignments, we used a permutation-based analysis 
that demonstrated our experimentally determined bind-
ing sites were closer to DEG than expected by chance 
(Figure S5A). H3K4me1 peaks and ERα peaks in both cell 
lines gave us a robustness measure of p = 0, and >80% 
of peaks were assigned for all conditions. 4179  genes 
out of the 6677 DEG were assigned to at least one peak 
(Figure  4A). We hypothesized that there would be an 

F I G U R E  2   Knockdown of MLL3 leads to a reduction in H3K4me1 that correlates with a shift in ERα-binding. (A) Venn diagrams 
showing either ERα or H3K4me1 peaks between merged ZR751shLucif (blue) and merge ZR751shMLL3 (red) (2 biological replicates per 
experiment, pooled samples with peaks chosen through IDR protocol) (B) Differentially bound H3K4me1 (left) and ERα (right) sites upon 
MLL3 knockdown in ZR751. Fold change and -log10(FDR) are plotted for the sites found by DiffBind to be differentially bound between 
ZR751shLucif and ZR751shMLL3. Genomic sites that have an absolute value fold change of 2 or greater are green if they do not have an 
FDR of less than 0.05, and pink if they do. Sites that have an FDR of less than 0.05 but do not have an absolute fold change greater than 
2 are blue. Sites with an FDR of more than 0.05 and an absolute fold change of less than 2 are orange. Positive fold enrichment indicates 
higher amounts of binding in ZR751shLucif compared to ZR751shMLL3. FC = fold change. (C) Gene enrichment terms from GREAT for 
peaks that were from either ZR751shLucif or ZR751shMLL3 cells for ERα-binding or H3K4me1 deposition. The results are displayed in 
matching graphs where each line on the y-axis is a gene-term, the x-axis shows increasing fold enrichment, the color of the circle denotes 
the significance, and the size of the circle denotes the number of genes from the dataset belonging to the respective gene-term. GREAT 
tool's binomial test was employed. (2 biological replicates per experiment, pooled samples with peaks chosen through IDR protocol) (D) 
Crystal violet assay for ZR751shLucif (blue) and ZR751shMLL3 (red) treated with Tamoxifen for 4 days. Error bars represent standard 
deviation. (n=3 biological replicates) (p = 0.02315, p = 0.02315, one-sided Wilcoxon Rank Sum test of GRValues). GRValues reflect the 
effect of a treatment such as Tamoxifen on the growth rate of a cell population on a per-division basis rather than on the percent viability. 
GR(c) = (2*(log2(x(c)/x0))/(log2(x(o)/x0)))−1, where x(c) is the number of cells in a treated well at concentration c, x0 is the number of cells in 
a well at beginning of treatment, and x(o) is the number of cells in an untreated well
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association between losing ERα peaks, losing H3K4me1 
peaks, and decreased gene expression, and vice versa. To 
test this hypothesis, we next assigned each DEG to a cat-
egory based on whether the number of peaks assigned to 
it was larger in the control or MLL3 KD. This categoriza-
tion showed a pattern in which DEG with a higher num-
ber of H3K4me1 peaks assigned to ZR751shMLL3 than 
ZR751shLucif tends to be downregulated rather than 

upregulated in ZR751shMLL3. The converse is also true 
(Figure 4B).

To quantify this trend we used a two-sided Wilcoxon 
paired signed-rank test with continuity correction, which 
confirmed that while MLL3  KD has a sizeable effect on 
the number of ERα peaks assigned to DEG in both the top 
100 up- and downregulated gene sets (p = 5.106 × 10−9, 
r = 0.59; p = 2.924 × 10−11, r = 0.67, respectively), a more 

F I G U R E  3   Knockdown of MLL3 and mutation of MLL3 share an MLL3-deficiency transcriptional signature. (A) Scatterplot of the 
differentially expressed genes in common between ZR751 breast cancer cells upon MLL3 knockdown (left) and TCGA ER+ luminal breast 
cancer samples with MLL3 mutations (right). Estimated log fold change from the gene-by-gene linear regression model with ANOVA is 
plotted against the change in Z-score between the control (ZR751shLucif on left, MLL3 wildtype samples on right) and the experimental 
(ZR751shMLL3 on left, MLL3 mutant samples on right). Genes with an absolute estimated log fold change greater than 0.1 are colored green 
if the p-value is larger than 0.01, and blue is the p-value is less than 0.01. Genes with a p-value less than 0.01 and absolute estimated log 
fold change less than 0.1 are orange. DEG = differentially expressed genes. estFC = estimated log fold change. (B) TCGA enrichment plot 
for selected MSigDB term CREIGHTON_AKT1_SIGNALING_BY_MTOR_DN by WebGestalt GSEA. Normalized enrichment score 1.8757, 
FDR q-value 0.026442. (C) ZR751 cell lines heatmap of Z-scores for merged-sample log10 normalized FPKM for genes in the CREIGHTON_
AKT1_SIGNALING_BY_MTOR_DN term by WebGestalt GSEA, normalized enrichment score 2.0273, FDR q-value 0.0026447. n = 2 
biological replicates per experiments
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robust effect on the number of H3K4me1 peaks assigned 
to DEG in the top 100 up- and downregulated gene sets 
is evident (p = 3.198 × 10−15, r = 0.853; p = 3.28 × 10−12, 
r  =  0.871). To investigate this relationship further, the 
top 100 upregulated DEGs and the top 100 downregu-
lated DEGs were dichotomized to ERα peak gain or loss 
and H3K4me1 peak gain or loss (Figure 4C; Figure S5B). 
Interestingly, the proportions of the top 100 upregulated 

and downregulated genes that gained ERα peaks were 
similar (20% of upregulated genes gained ERα peaks, and 
15% percent of downregulated genes gained ERα peaks). 
This difference was not significant (p-value  =  0.4566, 
2-sample test for equality of proportions with continuity 
correction), suggesting that ERα peak number, per se, is 
not a dominating factor in determining the direction of 
gene expression change. However, a similar analysis for 

F I G U R E  4   Knockdown of MLL3 in leads to a new transcriptional regulation program of ERα targets in conjunction with changes 
in H3K4me1 deposition. (A) Venn diagram of ERα and H3K4me1 ChIP-seq peak assignments to differentially expressed genes (DEG) 
in ZR751 MLL3 KD cells. (n = 2 biological ChIP-seq replicates per experiment) DEG = differentially expressed genes. (B) DEG upon 
MLL3 KD in ZR751 cells grouped into four categories based on the number of ERα and H3K4me1 ChIP-seq peaks assigned to each 
gene in the control and MLL3 KD conditions. (n = 2 biological ChIP-seq replicates per experiment) Upreg = upregulated expression. 
Downreg = downregulated expression. (C) Slope graph showing the difference in number of ERα ChIP-seq peaks assigned to each DEG in 
ZR751s upon MLL3 KD, between the control and MLL3 KD conditions. The left graph shows the top 100 upregulated genes, and the right 
shows the top 100 downregulated genes. The color of each individual line represents the difference in log10-normalized counts. (n = 2 
biological ChIP-seq replicates per experiment) (D) Heatmap of Z-score of the log10 normalized FPKM of genes in the GOZGIT_ESR1_
TARGETS_DN MSigDB term, which was significantly enriched in the Group 1 genes using WebGestalt Over Representation Analysis 
(ORA) (number of hits = 38, enrichment ratio = 2.1328, FDR q-value = 0.0129) (n = 2 biological RNA-seq replicates per experiment) (E) 
IGV Genome Browser snapshot of WNT3A, which belongs to Group 1 where gene expression is increased, but number of H3K4me1 and 
ERα ChIP-seq peaks assigned to the gene are decreased upon MLL3 KD. (n = 2 biological ChIP-seq replicates per experiment (F) Bubble plot 
showing significant MSigDB C2 terms for Group 2 genes by WebGestalt ORA. (n = 2 biological ChIP-seq replicates per experiment)
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H3K4me1 peaks showed that the proportion of gained 
H3K4me1 peaks were vastly different (4% of the top 100 
upregulated peaks, 64% of the top downregulated peaks). 
This difference was significant (p-value <2.2  ×  10−16, 
2-sample test for equality of proportions with continu-
ity correction), suggesting that, interestingly, gain of 
H3K4me1 peaks upon loss of MLL3 is strongly associated 
with downregulation of gene expression.

2.5  |  Two new regulatory programs 
on the H3K4me1-ERα axis drive 
transcriptional enrichment for ESR1 target 
genes and genes associated with aggressive 
tumor behavior upon MLL3 KD

To further refine our model of how loss of MLL3 en-
hances endocrine therapy resistance through his-
tone mark changes and shifts in the ERα-binding 
profile, we proposed that genes with similar changes 
in enhancer landscape, ERα binding, and direction of 
expression upon loss of MLL3 would share similar bio-
logical functions. To identify genes with similar regula-
tory profiles and expression levels, we took an unbiased 
approach, grouping genes with at least one assigned 
H3K4me1 or ERα peak from either cell line into the 
four possible H3K4me1 categories: (1) H3K4me1  gain, 
expression upregulated (2) H3K4me1 loss, expression up-
regulated (3) H3K4me1 gain, expression downregulated 
(4) H3K4me1 loss, expression downregulated, as well as 
the four possible ERα categories: (1) ERα gain, expression 
upregulated (2) ERα loss, expression upregulated (3) ERα 
gain, expression downregulated (4) ERα loss, expression 
downregulated. Then, all 16 possible pairwise overlaps 

were assessed using Fisher's Exact Test with Bonferroni 
correction; overlaps with a significant p-value indicate 
that there is a module of co-regulated genes with that 
ERα and H3K4me1 status (Table 2). We tested for signifi-
cant overlap between groups of DEG with either a gain 
or loss of assigned ERα ChIP-seq peaks upon MLL3 KD, 
and either a gain or loss of assigned H3K4me1 peaks 
upon MLL3 KD. Four out of eight comparisons showed 
a significant overlap by one-sided Fisher's Exact Test 
(p < 0.05) with a non-zero Jaccard index: (1) upregulated 
genes with a loss in assigned H3K4me1 peaks per gene 
(ppg) and a loss in assigned ERα ppg upon MLL3  KD 
(416  genes, p  =  2.90  ×  10–227), (2) upregulated genes 
with a loss in H3K4me1 ppg and a gain in ERα ppg upon 
MLL3 KD (107 genes, p = 1.5 × 10−38), (3) downregulated 
genes with a gain in H3K4me1 ppg and a loss in ERα ppg 
upon MLL3  KD (658  genes, p  =  3.4  ×  10−266), and (4) 
downregulated genes with a gain in H3K4me1 ppg and 
gain in ERα ppg upon MLL3 KD (151 genes, 8.9 × 10−35). 
We collapsed the four groups into two modules based on 
the direction of effect in conjunction with H3K4me1 loss/
gain (Table 2), as ERα can both drive and repress tran-
scription of its targets. Taken together, these patterns in 
differential gene expression and number of associated 
peaks suggest that H3K4me1 peaks in WT cells that are 
lost after KD of MLL3 are associated with gene upregula-
tion, while the H3K4me1 peaks gained after KD are pri-
marily associated with gene repression.

Pathway analysis of genes belonging to the group 
1  module showed significant enrichment for ESR1 
targets (52  genes, enrichment ratio 2.7435, FDR 
q  =  6.915  ×  10−8) (Figure  4D; Table  S5). This implies 
that despite a decrease in regulatory H3K4me1 and ERα 
peaks per upregulated gene upon MLL3 KD, ESR1 targets 

T A B L E  2   Categories of regulons affected by knockdown of MLL3

Module Category H3K4me1 ERα
Direction 
of Effect Overlap P-value

Bonferroni (α 
< 0.003125)

Jaccard 
Index

Odds 
Ratio

1 1 Loss - 1356 Loss - 494 Upreg 416 2.90E-
227

Yes 0.3 29.7

2 Loss - 1356 Gain - 159 Upreg 107 1.50E-38 Yes 0.1 8.7

2 3 Gain - 1150 Gain - 333 Downreg 151 8.90E-35 Yes 0.1 4.4

4 Gain - 1150 Loss - 1170 Downreg 658 3.40E-
266

Yes 0.4 13.1

3 5 Loss - 0 Loss - 1170 Downreg 0 1 No 0 0

4 6 Loss - 0 Gain - 333 Downreg 0 1 No 0 0

5 7 Gain - 53 Loss - 494 Upreg 8 0.039 No 0 2.2

6 8 Gain - 53 Gain - 159 Upreg 7 2.30E-04 Yes 0 6.5

The table displays the organization of ZR751 differentially expressed genes (DEG) based on whether a gain or loss of associated ERα and H3K4me1 peaks were 
observed in the MLL3 KD compared to the control. The background size used for the one-sided Fisher's exact test was 6677 genes, as this was the number of 
DEG to which the peaks were matched. The GeneOverlap R package, by Li Shen was utilized. Categories in bold had significant overlaps. Significant categories 
sharing two characteristic changes were collapsed into modules.
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are being transcribed at a higher level in MLL3 KD cells, 
for example, WNT3A (Figure 4E; Figure S7A–F). Module 
2 is enriched for several carcinogenic signatures, in-
cluding “top genes down-regulated in metastatic versus 
non-metastatic bladder cancer cell lines” and “genes 
up-regulated in primary melanoma, sensitive to TRAIL 
compared to metastatic melanoma, resistant to TRAIL” 
(Figure  4F; Table  S6). These results suggest that apop-
tosis via TRAIL is being evaded in MLL3 KD cells, and 
pathways involved in metastasis are being expressed at 
higher levels than in the control.

2.6  |  SP1 binding increases upon 
MLL3 KD

It is probable that the change in the enhancer landscape 
and ERα binding profile upon MLL3  KD would be ac-
companied by a new milieu of transcriptional regula-
tors responsible for aggressive behavior. To find these 
regulators, we interrogated motifs found in our ChIP-
seq and RNA-seq data. We first analyzed ERα peaks that 
were gained upon the loss of MLL3 using MEME, which 
looks at the DNA sequences of the peaks to identify 
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enrichment of binding motifs, which were then classified 
as belonging to transcription factors using TOMTOM. 
This analysis identified GATA3, FOS, and SP1  motifs 
enriched in ERα peaks gained after MLL3  knockdown 
(Figure  5A).36  The iRegulon plug-in in Cytoscape lev-
erages both precomputed motifs and ChIP-seq data to 
identify enriched transcription factor binding sites when 
presented with a gene list.37  Thus, we used genes that 
were differentially expressed in the same direction in 
both our ZR751 MLL3 KD and in the TCGA mutant tu-
mors to define a set of 958 differentially expressed genes 
as a MLL3-deficient signature. iRegulon analysis of this 
gene list identified SP1 as a candidate transcription factor 
for one of the top ten most-enriched motifs for upregu-
lated genes in the MLL3-deficient signature (Figure 5C). 
Intriguingly, SP1 was significantly upregulated in 
MLL3  mutants in our TCGA dataset (p  =  2.32e-6), al-
though there was no statistically significant differential 
expression in the ZR751 cell line.

Changes in gene expression are not the only mecha-
nism of regulation, and we hypothesized that the change 
in enhancer landscape might change the transcription 
factor milieu regardless of expression. As SP1  motifs 
demonstrated enrichment in both our ChIP-seq and 
RNA-seq datasets upon MLL3 KD, we hypothesized that 
loss of MLL3 leads to increased activity of SP1. While the 
DEMETER tool for cancer-cell line dependencies illumi-
nated no trend toward increased or decreased dependence 
on SP1 for MLL3-mutant ER+ breast cancer cells lines 
compared to those that are MLL3-WT (Figure  5D),38 we 
investigated the SP1-binding patterns in ZR751shLucif 
and ZR751shMLL3. ChIP-seq for SP1 demonstrated 
a massive gain of 2,182 binding sites in MLL3  KD cells 
(Figure 5E; Figure S6B–D). This suggests that while SP1 
was not transcribed at a significantly higher rate in the 
MLL3 KD, it is differentially bound to the genome depend-
ing on MLL3 status in ZR751s.

To identify which genes SP1 regulates in control and 
MLL3 KD cells, SP1 peaks were assigned to DEG in ZR751 

cells using the method described for H3K4me1 and ERα. 
Strikingly, the largest group of DEG with both ERα and 
SP1 assignments are those that have an ERα peak loss and 
an SP1 peak gain upon MLL3  KD. Figure  5A illustrates 
that upon MLL3 KD, there is a switch from ERα to SP1 
regulation of genes. Furthermore, when gene assignments 
between ERα and SP1 categories are compared, there is 
a significant overlap by one-sided Fisher's exact test be-
tween DEG with a change in number of ERα peak as-
signments in MLL3 KD cells and those with a gain in the 
number of assigned SP1 peaks (p = 1.4 × 10−34, Table S7; 
Figure S6E,F). Thus, SP1 may play a role in creating a tran-
scriptome resistant to endocrine therapy by regulating the 
transcription of ERα targets that have altered ERα binding 
upon MLL3 KD. In fact, 381 (nearly half of the 809 genes 
in Module 2) gain SP1 peaks upon MLL3 KD, while 22 of 
the Module 1 genes lose SP1 peaks upon MLL3 KD.

3   |   DISCUSSION

Over 40,000 women will die from breast cancer this year,39 
and over 50% of those deaths will be due to ER+ breast 
cancer.40 ERα drives the growth of ER+breast cancers and 
is the target of endocrine therapy. In randomized clini-
cal trials, endocrine therapies have effectively prevented 
cancer recurrence.41 However, approximately 20% of ER+ 
breast cancers will present with de novo resistance,42,43 
and many patients with early stage disease will recur 
after endocrine therapy.44  The majority of patients with 
metastatic ER+ breast cancer have or develop endocrine 
resistance, and thus both de novo and acquired resist-
ance to endocrine therapy present significant hurdles to 
the effective treatment of breast cancer. The mechanisms 
underlying both de novo and acquired endocrine resist-
ance remain incompletely understood, however. Somatic 
mutations such as ERBB2 amplification,45,46 ligand-
binding domain ERα mutations,47 and co-amplification of 
FGFR1 and CCND1 have been associated with endocrine 

F I G U R E  5   SP1 binding increases upon MLL3 KD in ER+ breast cancer cell line. (A) Representative enriched transcription factor motifs 
in ERα ChIP-seq samples by MEME analysis. (n = 2 biological ChIP-seq replicates per experiment) KD = knockdown. (B) Venn diagram of 
upregulated genes in the ZR751shLucif versus ZR751shMLL3 analysis as well as in the TCGA ER+ luminal breast cancer MLL3 WT versus 
MLL3 mutant analysis. Fisher's test, p = 7.2 × 10−06. Venn diagram of downregulated genes in the ZR751shLucif versus ZR751shMLL3 
analysis as well as in the TCGA ER+luminal breast cancer MLL3 WT versus MLL3 mutant analysis. Fisher's test, p = 4 × 10−17. (n = 2 
biological RNA-seq replicates per experiment) (C) Representative enriched transcription factor motifs in the common differentially 
expressed genes between TCGA MLL3 WT versus mutants and ZR751 control and MLL3 KD cells, by iRegulon analysis in Cytoscape. (n = 2 
biological RNA-seq replicates per experiment) DEG = differentially expressed genes. (D) SP1 dependency scores of ER+ luminal breast 
cancer cell lines from the DEMETER tool where a lower score denotes a higher dependency. The center line signifies the median, box limits 
signify upper and lower quartiles, and whiskers signify the 1.5x interquartile range. All data points are shown as dots. Wilcoxon Rank Sum 
test, p = 0.1807 (n = 13 ER+ luminal breast cancer cell lines) (E) Venn diagram showing number of SP1 ChIP-seq peaks in ZR751 control 
and MLL3 KD cell lines. (n = 2 biological ChIP-seq replicates per experiment) (F) DEG upon MLL3 KD in ZR751 cells grouped into four 
categories based on the number of ERα and SP1 ChIP-seq peaks assigned to each gene in the control and MLL3 KD conditions. (n = 2 
biological ChIP-seq replicates per experiment)
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resistance, but these mechanisms do not explain even the 
majority of endocrine resistance.

Interestingly, both preclinical and clinical observa-
tions suggest that the majority of endocrine-resistant 
tumors remain dependent on ERα. Most ER+ breast tu-
mors retain protein expression of ERα after developing 
resistance.48,49 Furthermore, about 30% of patients that 
develop resistance to aromatase inhibition (AI) respond 
to fulvestrant,50,51 and in first-line therapy for metastatic 
disease, the combination of fulvestrant and AI is supe-
rior to AI alone.52,53 Importantly, ERα binds to different 
genomic locations in tumors will good versus poor out-
comes, and studies show that ERα binds to different loca-
tions in endocrine-sensitive and endocrine-resistant cell 
lines,5 or in cell lines expressing ERα with mutations in 
the ligand-binding domain (LBD). These results suggest 
that dysfunction of the regulatory mechanisms govern-
ing ERα genomic binding contribute to the development 
of endocrine-resistant ER+ breast cancer, and we hy-
pothesized that chromatin remodeling enzymes that can 
regulate the ERα genomic landscape may contribute to 
endocrine resistance.

MLL3, a histone monomethylase that is known to in-
teract with nuclear hormone receptors such as ERα, is 
recurrently mutated in many cancers. MLL3 is the sixth 
most mutated gene in ER+ breast cancer. Indeed, MLL3 is 
altered in 9% of ER+ breast cancer patients in the TCGA 
dataset and 8.5% in the AACR GENIE dataset.8,9 In the 
work above, we identify the mutation of MLL3 as a po-
tential common cause of endocrine resistance in ER+ 
breast cancer. We demonstrate that the mutation pattern 
of MLL3 in breast cancer is most consistent with a haplo-
insufficient tumor suppressor.

Modeling loss of MLL3 function using shRNA knock-
down in the ER+ PIK3CA-wildtype breast cancer cell line 
ZR751, we found that knockdown of MLL3 led to a major 
loss of H3K4me1 marked peaks across the genome. This 
loss was associated with a major shift in ERα binding, in-
cluding to genes in signatures associated with endocrine 
resistance. Indeed, the loss of MLL3 expression increased 
resistance to endocrine therapy. The loss of MLL3 func-
tion was not only associated with massive changes to the 
H3K4me1-marked enhancer landscape and ERα genomic-
binding sites, but also significant changes in gene expres-
sion. Assigning peaks to DEG, we were able to identify 
two groups of genes that were altered upon loss of MLL3. 
Module 1 genes demonstrate that when functional MLL3 
is lost, a substantial amount of H3K4me1  marks is also 
lost, accompanied by a loss of ERα at those genomic loca-
tions. However, the canonical ERα target genes controlled 
by those lost peaks are upregulated. Module 2  genes 
demonstrate that a loss of functioning MLL3 results in 
a compensatory H3K4  methyltransferase activity that is 

accompanied by a change in number of regulatory ERα 
peaks and decreased gene expression. These two ERα-
H3K4me1-gene modules allow breast cancer cells with a 
loss in functional MLL3 to increase the expression of ca-
nonical ERα targets, while also deploying transcriptional 
programs shown to mediate aggressive tumor behaviors.

The changes in gene expression attributed to changes 
in ERα regulation could be due to changes in the mi-
lieu of regulatory factors coordinating the binding of 
ERα to the genome. Motif analysis of both our ChIP-seq 
and RNA-seq data suggested that an SP1 transcriptional 
program might be activated upon inactivation of MLL3, 
global reduction of H3K4me1, and re-organization of 
ERα genomic-binding sites. Indeed, loss of MLL3 was as-
sociated with a massive increase in SP1 peaks. Strikingly, 
the largest group of differentially expressed genes with 
both ERα and SP1 peaks are those that have an ERα peak 
loss and a SP1 peak gain upon MLL3 KD. This suggests 
that the reorganization of the ERα-driven transcriptome 
caused by loss of MLL3 results in a substantial frac-
tion of genes being driven by SP1. Future studies will 
seek to identify the mechanism that unleashes SP1 in 
MLL3  mutant cells and its contribution to aggressive 
tumor behavior.

MLL3 is a member of multi-protein epigenetic com-
plexes, ASCOM and COMPASS.26,27 Both ASCOM and 
COMPASS complexes interact with nuclear hormone 
receptors, including ERα. Importantly, MLL3 is not the 
only histone methyltransferase that can be a component 
of these complexes. MLL4 can also serve as the histone 
methyltransferase in ASCOM and COMPASS. However, 
each individual complex contains either MLL3 or MLL4, 
and the difference in their function is not well understood. 
Both MLL3 and MLL4 have been shown to help regulate 
ERα transcriptional activity, for targets such as EZH2, 
HOX genes, and HOTAIR.27,54-56 Interestingly, MLL4 is 
also recurrently mutated in many cancers, such as lung 
adenocarcinoma and bladder cancer,14 but is NOT recur-
rently mutated in breast cancer. It is thus possible that loss 
of MLL3, and its replacement with MLL4 in ASCOM com-
plexes leads to unique histone monomethylation locations 
and changes in regulatory partners, like SP1, altering the 
transcriptional program and driving endocrine resistance. 
Interestingly, MLL4  has been shown to be regulated by 
AKT1, leading to ERα-driven therapeutic resistance to 
PIK3CA inhibition. Targeted treatment of PIK3CA-mutant 
breast cancers with anti-PIK3CA therapy is known to lead 
to a compensatory increase in ER-dependent transcription 
and shift in ERα genomic binding that limits therapeutic 
efficacy.57,58 These changes are dependent on MLL4, sug-
gesting that increased MLL4 function can lead to a shift 
in the genomic location of ERα binding that may contrib-
ute to therapeutic resistance. It has been shown that in 
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the TCGA breast cancer dataset, increased MLL4 mRNA 
expression leads to shorter overall survival (p = 0.0398).59 
Unsurprisingly, MLL3  KD in ZR751 cells upregulated 
expression of MLL4, albeit not to statistical significance, 
and in TCGA ER+ luminal breast cancer studies MLL3-
mutant cases had significantly higher expression of 
MLL4 (p  =  0.01176938, ANOVA of multivariate linear 
regression).

Curiously, one recent paper found that in MCF7 cells 
loss of MLL3  leads to decreased proliferation, decreased 
ERα transcriptional activity, and increased growth in 
estrogen-absent media.18 However, MCF7 cells have a 
PIK3CA mutation, while ZR751 are wild-type for PIK3CA. 
Thus, in MCF7 cells PIK3CA may be restraining MLL4 
and ERα through activated AKT1, while MLL4 is free to 
activate transcription in ZR751. Future studies will focus 
on the interplay of MLL3, MLL4, and the PIK3CA sig-
naling pathway. Synergies between loss of MLL3, inhibi-
tion of PIK3CA, and anti-estrogen therapies may provide 
new avenues for therapy of endocrine-resistant tumors. 
Furthermore, we have established that MLL3 is a haploin-
sufficient tumor suppressor, which suggests the possibility 
that loss of the remaining allele of MLL3 could be detri-
mental to cancer cell survival. MLL3 is an enzyme and is 
thus a potential target for small molecule inhibitors. As 
such, subsequent studies will focus on the possibility that 
MLL3 and/or MLL4 may represent a therapeutic target in 
MLL3-mutant breast cancers, as well as present a mecha-
nism for reversal of endocrine resistance.

4   |   EXPERIMENTAL 
PROCEDURES

4.1  |  GERP analysis

Hg 19 base-wise GERP scores were downloaded from 
http://mendel.stanf​ord.edu/Sidow​Lab/downl​oads/
gerp/.24  To find average GERP scores for the missense 
mutations in each gene we used 595 TCGA ER+ luminal 
breast cancer cases and found the GERP score for the lo-
cation of each missense mutation for the following genes: 
MLL2, PIK3CA, PTEN, and TTN. We calculated GERP 
averages for each set of missense mutations. We then se-
lected a corresponding number of GERP scores from the 
entire coding sequence that would potentially lead to mis-
sense variants of each gene at random and calculated the 
average of those GERP scores. We repeated the random 
selections and average calculation 10,000 times. To get a 
value of significance, we divided the number of times a 
random selection GERP average was greater than the ac-
tual mean GERP score of our gene of interest by 10,000. 
Values less than 0.05 were considered significant.

4.2  |  Cell culture and antibodies

ZR751 cells (RRID CVCL_0588) were obtained from the 
Lannigan laboratory60 and grown in RPMI (Sigma Aldrich 
#R8758500ml) supplemented with 10% heat-inactivated 
FBS (Corning™ #35016CV), 0.002% insulin (Sigma Aldrich 
#11376497001) and 50  IU penicillin, 50  mg/mL strepto-
mycin (Corning™ #MT30001CI). HEK 293T cells (RRID 
CVCL_0063) were obtained from the Lannigan laboratory60 
and grown in DMEM with high glucose, L-glutamine, phenol 
red, but not sodium pyruvate (Sigma Aldrich D0819-500ML), 
5% FBS, 1% Pen/Strep, and 1% Sodium pyruvate (Sigma 
Aldrich S8636-100ML). The cell culture incubator parame-
ters were as follows: 37˚C, 95% relative humidity, and 5% CO2 
concentration. The antibodies used for ChIP-seq were anti-
Erα (Santa Cruz Biotechnology sc-543X), anti-H3K4me1 
(Abcam ab8895), anti-SP1 (Abcam ab13370), and sheep anti-
rabbit IgG Dynabeads M-280 (Invitrogen™ 11203D).

4.3  |  Lentivirus-mediated RNA-
interference (RNAi)

Oligos to use for shRNA were designed and ordered from 
Sigma/Genosys at the Molecular Cell Biology Core at 
Vanderbilt. The oligos were annealed, phosphorylated, 
and ligated into pSuper for transformation into DH5α cells. 
QIAprep Spin Miniprep Kit (Qiagen 27104) was used to 
isolate the vector, which was transfected into ZR751 cells 
and assessed by qPCR for KD. KDs that worked were then 
isolated with QIAprep Spin Miniprep Kit (Qiagen 27104), 
digested, and ligated into pLVTH61 (Addgene 12262) for 
transformation into STBL3 cells. A QIAGEN Plasmid Plus 
Maxi Kit (Qiagen 12963) isolated the pLVTH for transfec-
tion into HEK 293T cells, from which lentivirus was col-
lected. The oligo sequence used to silence MLL3 was 5°-C
CGGCGCACCTTATAGTAAACAGTTCTCGAGAACTGT
TTACTATAAGGTGCGTTTTT-3°, taken from The RNAi 
Consortium.62 Negative control Luciferase shRNA Control 
was donated by the Lannigan laboratory.63 Cells were sta-
bly transduced at 100,000 cells per well in a 6-well plate 
(Corning 3516) with 4 µl lentivirus, and subsequently flow 
sorted for GFP expression and propidium iodide (Sigma 
Aldrich P4864) staining after 3 days. qPCR was performed 
in biological triplicate to check shRNA KD 3  days after 
transduction. Experiments were performed in multiple, but 
early (<=10) passages of the stably transduced cell lines.

4.4  |  RNA-Seq

Cells were harvested at steady state using the RNAEasy 
Kit (Qiagen 74104). RNA samples of 600  ng were 

http://mendel.stanford.edu/SidowLab/downloads/gerp/
http://mendel.stanford.edu/SidowLab/downloads/gerp/


      |  7705STAUFFER et al.

subjected to Turbo DNAse (Thermo Scientific #AM2238) 
and Superscript III RT (ThermoFisher 18080093) with 
Random Hexamers (ThermoFisher N8080127) and dNTPs 
(ThermoFisher 18427088). qPCR was performed with 2 µl 
cDNA, 0.5 µl of 10 mM forward and reverse primers each, 
10 µl SYBR Green (ThermoFisher 4364346), and 7 µl water 
in the Molecular Cell Biology Resource Core at Vanderbilt 
(BioRad CFX96 Touch Real-Time PCR Detection System). 
An initial denaturation and enzyme activation step of 95°C 
for 3 min was performed, followed by 40 cycles of 95°C for 
10 seconds to denature and 55°C for 30 seconds to anneal, 
and finally a melt curve. Reactions were performed in 
biological triplicate using SYBER green PCR Master Mix 
(Thermo Scientific #4344463), and results were analyzed 
using the delta-delta Ct method. The average of the three 
biological replicate Ct values for the reference GAPDH 
gene was subtracted from the three individual biological 
replicate Ct values for the target MLL3 gene. A t-test was 
performed on the resultant two groups of delta Ct values to 
give a p-value of 0.0193. The Ct values ranged from 11.77 
to 25.06. The qPCR was performed three times to obtain a 
working assay. The primers were ordered from the DNA 
Core at Vanderbilt from Sigma Genosys as follows: MLL3 
forward, AACTCACGACCACCATCTCC, MLL3 reverse, 
TCTGGAGGTTTTGCATAGGG, GAPDH (control) for-
ward, GTGAAGGTCGGAGTCAACGAPDH (control) re-
verse, CCCATACGACTGCAAAGACC. RNA quality was 
assessed in VANTAGE via Invitrogen Qubit and Agilent 
BioAnalyzer and samples with RIN >7 were used. RNA 
libraries were generated with two biological replicates of 
2  μg RNA using Illumina's TruSeq Stranded Total RNA 
Sample Prep Kit (20020597). Libraries were sequenced 
at VANTAGE with PE75 to a depth of approximately 
30  million reads per sample on an Illumina HiSeq3000 
(Table S8). Quality of NGS data was assessed using FastQC, 
and adapters/low-quality bases were trimmed from reads 
using fastq-mcf from ea-utils, with a minimum quality of 
7 and a minimum length of 25. Fastq files from 595 breast 
invasive carcinoma samples in TCGA were downloaded 
from the Cancer Genomics Hub (https://brows​er.cghub.
ucsc.edu/). Tumor classification data were obtained from 
the TCGA Data Portal (https://tcga-data.nci.nih.gov/
tcga/). RNA-seq reads, both in-house and from the TCGA, 
were aligned to the human genome (hg19) with Tophat 
(v2.0.13), quantified using cufflinks (v2.2.1), and normal-
ized using cuffnorm (v2.2.1).64

4.5  |  Differential expression analysis

For ZR751 RNA-seq, differential expression analysis was 
performed in Rstudio v3.6.1 using a gene-by-gene linear 
regression model with ANOVA taking MLL3 knockdown 

status into account. Genes with a mean expression level of 
log2(fpkm + 0.5) greater than 1 were kept for the analy-
sis. A log2(fpkm + 0.5) transformation was used on the 
gene expression table. The sva (surrogate variable analy-
sis) package in Bioconductor was utilized to remove batch 
effects.65 DEG were identified as those with an ANOVA 
FDR q-value less than 0.05; q-values were calculated using 
the qvalue package in R.

For TCGA RNA-seq, we limited our search to breast 
cancer cases that were marked as ER+ in the clinical file. 
To decrease the variance in the control ER transcriptional 
activity profile, we also limited the breast cancer cases that 
were marked as molecular subtypes luminal A and lumi-
nal B in the clinical file. Samples that did not have infor-
mation in the clinical file were discarded. Samples with 
an internal size factor of less than 0.35 were discarded 
from the analysis. Samples from men were excluded. 
Genes with a mean expression level of log2(fpkm + 0.5) 
greater than 1.5 were kept for the analysis. A transforma-
tion of log2(fpkm + 0.5) was performed on the gene ex-
pression set. The sva (surrogate variable analysis) package 
in Bioconductor was utilized to remove batch effects.65 A 
gene-by-gene linear regression model with multivariate 
ANOVA accounting for histological subtype, molecular 
subtype, and MLL3  mutation status was utilized to find 
differential gene expression. DEG were identified as those 
with an ANOVA FDR q-value for the MLL3-mutation sta-
tus variable less than 0.05; q-values were calculated using 
the qvalue package in R.

4.6  |  ChIP-seq

ChIPs were performed for two biological replicates, for 
one experimental repetition. Cells were grown to 80% 
confluency, washed three times in ice-cold PBS (8 g NaCl, 
0.2 g KCl, 1.44 g Na2HP04, 0.24 g KH2PO4, H2O up to 1 L, 
adjusted to pH 7.4 with HCl) and then fixed for 10 min at 
room temperature using 1.85% formaldehyde (50 ml cold 
PBS, 2.5  ml 37% formaldehyde solution Sigma Aldrich 
252549), followed by quenching with 2.5 ml of 2.5 M gly-
cine (93.8 g glycine Sigma Aldrich G7126 in 500 ml H2O) 
for 2 min at room temperature. After aspirating and wash-
ing with 50 ml cold PBS, we lysed the cells using 20 ml 
Farnham lysis buffer (5 mM HEPES pH 8, 85 mM KCl, 
0.5% NP-40) and 400 µl protease inhibitor cocktail (PIC, 
Roche 11873580001) to scrape the cells off (Corning™ 
3008) into a 50 ml conical tube (Corning 352098). These 
tubes were spun down at 425 g for 5 min at 4°C.

Nuclei lysis buffer (50  mM Tris-HCl pH 8, 10  mM 
EDTA pH 8, 1% SDS), 1X PIC, and 10  mM sodium bu-
tyrate (Sigma Aldrich B5887) were added to a concentra-
tion of 20,000,000 cells per 400 µl and resuspended until 

https://browser.cghub.ucsc.edu/
https://browser.cghub.ucsc.edu/
https://tcga-data.nci.nih.gov/tcga/
https://tcga-data.nci.nih.gov/tcga/
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homogenous. Chromatin was sonicated using a Covaris 
LE220 for 35 min, then centrifuged at max speed for 10 min 
at 4°C to obtain supernatant. Per 0.1 ml of supernatant, 
we diluted with 0.9 ml ChIP dilution buffer (50 mM Tris-
HCl pH 8, 0.167 M NaCl, 1.1% Triton X-100, 0.11% sodium 
deoxycholate), 0.5  ml RIPA-150 (50  mM Tris-HCl pH 8, 
0.15 M NaCl, 1 mM EDTA pH 8, 0.1% SDS, 1% Triton X-
100, 0.1% sodium deoxycholate), 28 µl 50X PIC, and 14 µl 
1 M sodium butyrate.

Anti-ERα (3  µl/IP), anti-H3K4me1 (1  µl/IP), and an-
ti-SP1 (3  µl/IP) were linked to 100  µl/IP, 60  µl/IP, and 
100  µl/IP magnetic anti-rabbit Dynabeads, respectively, 
with RIPA-150 to a final volume of 500 µl for 6 h at 4°C 
in low-bind tubes (Eppendorf Z666505), and then in-
cubated with 150  µg of chromatin overnight at 4°C. 
Immunoprecipitants were washed with RIPA-150 once, 
followed by RIPA-500 (50 mM Tris-HCl pH 8, 0.5 M NaCl, 
1 mM EDTA pH 8, 0.1% SDS, 1% Triton X-100, 0.1% sodium 
deoxycholate) twice, then RIPA-LiCl (50 mM Tris-HCl pH 
8, 1 mM EDTA pH8, 1% Nonidet P-40, 0.7% sodium de-
oxycholate, 0.5 M LiCl2) twice, and finally 1X TE Buffer 
pH 8 (10 mM Tris-HCl pH 8, 1 mM EDTA pH 8) twice for 
5 min each. Chromatin-IPs were eluted from the beads in 
200 µl freshly made Direct Elution Buffer (10mM Tris-HCl 
pH 8, 0.3 M NaCl, 5 mM EDTA pH 8, 0.5% SDS), and then 
treated with 1 µl of 1 mg/ml RNase A (Fisher Scientific 
FEREN0531) at 65°C with shaking for 4 h. This was fol-
lowed by 3  µl proteinase-K (Sigma-Aldrich 3115879001) 
overnight at 55°C to reverse crosslinks. DNA was purified 
using phenol–chloroform extraction. Samples were trans-
ferred to a spun-down 2 ml phase lock gel tube (Qiagen 
129056) and an equal volume of phenol/chloroform/iso-
amyl alcohol (Sigma Aldrich P3803100ML) was added and 
vortexed. This was spun at room temperature for 5  min 
at 14,000 g, and the sample was moved to a new 1.5 ml 
tube. One-tenth volume of sodium acetate (Invitrogen 
AM9740), 1 µl glycogen (Roche 10901393001), and twice 
volume of 100% ethanol (Sigma Aldrich E7023500ML) 
were added, and the samples were incubated at −80°C 
for 30 mins. The sample was spun at 20,000 g for 30 min 
at 4°C, and the supernatant was carefully aspirated. The 
pellet was washed with 1 ml cold 70% ethanol, and spun 
at 20,000 g for 30 min at 4°C. The supernatant was aspi-
rated, and the spin was repeated a final time. The super-
natant was removed, and the pellet was allowed to dry. 
The pellet was then resuspended in 25 µl elution buffer 
(Qiagen 19086) and subsequently quantified by Qubit 2.0 
Fluorometer.

Standard Illumina ChIP-seq Library Kits (IP-202-1012, 
IP-202-1024) were used to build sequencing libraries for 
two biological replicates per condition for one experimen-
tal repetition, with inputs used as control. Libraries were 
sequenced at VANTAGE using an SR50  flow cell on the 

Illumina HiSeq3000 to a depth of approximately 20 mil-
lion reads (Table  S8). Quality of NGS data was assessed 
using FastQC v0.11.5, and adapters/low-quality bases 
were trimmed from reads using fastq-mcf from ea-utils, 
with a minimum quality of 7 and a minimum length of 25. 
The fastq files were aligned to human genome version 19 
by BWA (Burrows–Wheeler aligner Version 0.7.5a-r405).66 
Post-alignment filtering was performed with Samtools 1.767 
and Picard 1.126 MarkDuplicates. PhantomPeakQualTools 
v1.2.168 was used to assess ChIP-seq enrichment quality 
prior to inclusion in the study, and all replicates used in 
this study passed. Self-pseudoreplicates, pooled data, and 
pooled-pseudoreplicates were generated and used to call 
peaks for the creation of peak thresholds. Peaks were 
called against matching input using SPP v1.15.5 accord-
ing to best practices ENCODE 3 Pipeline v1.69 SPP uses a 
normalization factor is implicitly used to linearly scale the 
control sample for comparison with the ChIP sample; it 
does this by identifying a subset of background bins with 
a tag count exceeding Poisson density (p < 0.0001). Those 
background regions can then be normalized to the input 
channel. The Irreproducible Discovery Rate (IDR) frame-
work version 2.0.3 was used to measure the reproducibility 
of ChIP-seq peaks identified from replicate experiments 
and find thresholds based on reproducibility.29 All call 
sets used for this study met IDR benchmarks for repro-
ducibility (Figure S3A; Figure S6A; Table S9). Final peak 
thresholds were chosen from this structured comparison 
of number of peaks called from original replicates, self-
pseudoreplicates, and pooled-pseudoreplicates; these peak 
thresholds were applied to a pooled reads file composed of 
the two biological ChIP replicate libraries. The DiffBind 
package in R was utilized to find differential binding of 
ZR751shLucif versus ZR751shMLL3 H3K4me1, ERα, and 
SP1 ChIP-seq peaks (Figure 2B; Figure S6C).

4.7  |  Peak assignment

Using Bedtools v2.26.0 we assigned each ChIP-seq peak to 
the two closest DEGs rather than the closest gene in the 
human genome.70 We then removed all assignments that 
had a peak-to-gene distance greater than 1  million base 
pairs (bp), ranging from 16% to 26% of assignments, be-
cause most chromatin–chromatin interactions span 1 mil-
lion bp or less.71

To determine whether our ChIP-seq peaks are closer to 
our DEG than we would expect by chance, we randomly 
selected a matched number (6677 to equal the number of 
differentially expressed genes) of genes from the reference 
genome file to assign to our peaks, calculated distances, 
and then repeated this process 1000 times. A one-sided 
Kolmogorov–Smirnov test between our DEG-peak 
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assignments and randomly chosen gene set-peak assign-
ments was performed for each of the 1000 repetitions, and 
then created a final measure of robustness by subtracting 
the number of p-values less than 0.05 divided by 1000 
from 1. Peak categories with a final measure of robustness 
less than 0.05 were kept.

4.8  |  Bioinformatic tools

Mutation information, survival plots, and TCGA for breast 
cancer samples were acquired from the National Cancer 
Institute Genomic Data Commons Data Portal. GRMetrics 
R package usage included GRfit by cell line and time point 
to calculate GR values. For IDR plots, peak files and an 
hg19 genome file were loaded into R. Parameters included 
half.width = NULL, overlap.ratio = 0, is.broadpeak = F, 
sig.value = “signal.value”. Data were processed and IDR 
output was generated with process.narrowpeak, compute.
pair.uri, and fit.em with fix.rho2 = T as a parameter. NGS 
Plot heatmaps and histograms were created at the com-
mand line using ngs.plot.r with hg19 genome, with final 
bed files as region to plot, configuration files to plot both 
control and KD bam files, length from gene body of 3000 bp, 
ensemble as the gene database, and chipseq and protein_
coding as the annotations to use. Diffbind in R utilized the 
DBA_EDGER analysis method with a reporting threshold 
of 0.1 and bUsePval  =  TRUE. The DBA__BLACKLIST_
HG19 blacklist was applied, and a graylist.pval of 0.9 was 
applied afterward. A consensus peakset with a minOverlap 
of 0.66 and consensus of DBA_CONDITION was created 
and used to count reads in dba.count. These reads were 
normalized with dba.normalize and method = DBA_ALL_
METHODS, and then contrasted with dba.contrast by con-
dition and minMembers = 2. Analysis of differential peak 
enrichment was carried out using dba.analyze using DBA_
ALL_METHODS. GREAT webtool version 3.0.0 was used 
to identify gene set enrichment analysis with ChIP-seq 
data31 with human genome UCSC hg19 for species assem-
bly, whole genome as background, and basal plus exten-
sion with 5.0 kb upstream, 1.0 kb downstream, and distal 
up to 1000 kb for associating genomic regions with genes. 
Curated regulatory domains were included. WebGestalt 
2019 version was utilized for gene set enrichment analy-
sis with RNA-seq and ChIP-seq data.32 RNA-seq data were 
submitted to WebGestalt Gene Set Enrichment Analysis 
(GSEA) as rank (rnk) files sorted by -log10(p-value) from 
the differential expression analysis in R, and the Molecular 
Signatures Database (MSigDB) curated gene sets of chemi-
cal and genetic perturbations (C2 CGP) database as the 
functional database to survey. All genes expressed in the 
specific dataset (ZR751 or TCGA) were used as the refer-
ence set. The minimum number of genes for a category was 

set at 3, and the maximum was set at 2000. P-values from 
this analysis were adjusted for multiple hypothesis testing 
using Benjamin–Hochberg method, and the top 50  most 
significant terms by FDR were retrieved. Gene groups 
from the integration of RNA-seq and ChIP-seq data were 
submitted to WebGestalt using an Over-Representation 
Analysis (ORA) using all the same parameters except for 
use of protein-coding portion of the human genome as the 
background. The iRegulon tool v1.3 (build 2015-02-12) in 
Cytoscape software version 3.7.1 was utilized to identify 
enriched transcription factor motifs in DEG from RNA-seq 
data37 with the “Predict regulators and targets” option. The 
species and gene nomenclature chosen was Homo sapiens, 
HGNC symbols, the type of search space was gene-based, 
the motif collection was 10k (9713 PWMs), the track col-
lection was ENCODE raw signals, the putative regulatory 
region was 20kb centered around TSS, and the motif rank-
ings database was seven species. The Enrichment score 
threshold was 3.0, the ROC threshold for AUC calculation 
was 0.03, and the rank threshold was 5000. The minimum 
identity between orthologous genes for TF prediction was 
0, and the maximum FDR on motif similarity was 0.001. 
MEME-suite command-line tools version 4.11.2 was used 
to identify enriched transcription factor motifs in ChIP-seq 
data.36 Fasta files were used with MEME command and 
max dataset size of 5,000,000  letters, using the DNA al-
phabet, and a max number of motifs at three. Tomtom was 
utilized with the HOCOMOCOv11_full_HUMAN_mono_
meme_format.meme database to identify known motifs 
within the MEME results. Dependence scores for ER+ 
breast cancer cell lines were acquired from the DEMETER 
dependence tool online at the Dependency Map (DepMap) 
Portal, https://depmap.org/porta​l/.38,41 IGV version 2.9.4 
was utilized to visualize RNA-seq and ChIP-seq data in the 
form of bigwig files, hosted at data.cyverse.org.72 Bigwig 
files were generated using command line bamCover-
age program from deepTools version 3.3.1-Python-3.7.2 
on merged bam files with the parameters bin size of 100, 
smoothing length of 250, normalizing using RPKM, and ef-
fective genome size using hg19.

4.9  |  Proliferation assays

Cells were plated in 96-well plates (Fisher Scientific 07-
200-95) with 10,000 cells per well and three biological 
replicates per experiment in phenol-red free RPMI (Sigma-
Aldrich R8758500ml) with 10% heat-inactivated charcoal-
stripped FBS (Corning™ 35016CV), 10  nM β-estradiol 
(Sigma-Aldrich E8875-5G), 0.002% insulin (Sigma-Aldrich 
11376497001), and 50 U/ml penicillin, 50  mg/ml strep-
tomycin (Corning™ MT30001CI), and either DMSO 
(Sigma-Aldrich D8418-100ML), Tamoxifen (Sigma-Aldrich 

https://depmap.org/portal/
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579002-5MG), or Fulvestrant (Sigma-Aldrich I4409-25MG). 
Media was switched out every four days and plates were 
fixed on days 4 and 8. All plates were stained with crystal 
violet (Sigma-Aldrich C0775-25G) and quantification by 
spectrophotometric detection at 490 nm using plate reader 
Molecular Devices Spectramax M3. Ten experimental rep-
licates were performed to obtain parameters (cells per well, 
estradiol amount, time points) that gave consistent results. 
Effects were analyzed using GRmetrics version 1.10.0, one-
sided Wilcoxon Rank Sum Test, n = 3.

4.10  |  Statistical analyses

All significance level thresholds are p < 0.05 unless other-
wise noted. For all bar-and-whisker plots, the center line 
signifies the median, box limits signify upper and lower 
quartiles, and whiskers signify the 1.5x interquartile 
range. All data points are shown as dots. For histograms 
and line plots, error bars represent standard deviation. 
Significance of survival curves (1H, S1E) was evaluated by 
Log-Rank test. Quantification of gene expression (qPCR, 
S2A) was evaluated by a one-tailed unpaired t-test of the 
calculated delta CT values. For differential expression 
analyses, RNA-seq FPKM files were log2 transformed. The 
R SVA package73 was utilized to estimate artifacts in the 
form of surrogate variables from the RNA-seq data, which 
were then removed from the data. The cleaned data were 
then analyzed with a gene-by-gene multivariate linear re-
gression model accounting for KD status for ZR751 data 
and histological subtype, intrinsic molecular subtype, and 
binary MLL3 mutation status for TCGA data. An ANOVA 
was used to evaluate the model. Estimated log expres-
sion change and Pr(>|t|) for MLL3 mutation or KD status 
from the linear regression and Pr(>F) for MLL3  muta-
tion or KD status from the ANOVA were recorded for 
each expressed gene. Multiple hypotheses correction was 
achieved through the use of the qvalue R package on the 
ANOVA p-values.74 Overlap between groups of genes was 
tested with the GeneOverlap R package75 which employs 
the Fisher's exact test. For proliferation assays, the R pack-
age GRMetrics was utilized to find GR values, which are 
the growth-rate inhibition value of a given treatment at 
a given concentration. The GR values were then assessed 
by Wilcoxon Rank Sum Exact test, for each concentra-
tion and time point. The SP1 Dependency scores were 
assessed for effect by MLL3  mutation using a Wilcoxon 
Rank Sum exact test. The number of peaks assigned to 
DEG was assessed for patterns of loss or gain using both a 
proportions test where gain of peaks assigned to DEG in 
the KD condition = 1 and a loss of peaks = 0, as well as a 
two-sided Wilcoxon paired signed rank test with continu-
ity correction.
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