@,

BiolVed Central

BIVIC Bioinformatics

Research
Service-based analysis of biological pathways
George Zheng*' and Athman Bouguettaya®

Address: 1Virginia Tech, Blacksburg, Virginia, USA and 2CSIRO ICT Centre, Canberra, ACT, Australia

E-mail: George Zheng* - gzheng@vt.edu; Athman Bouguettaya - athman.bouguettaya@csiro.au
*Corresponding author

from Semantic Web Applications and Tools for Life Sciences, 2008
Edinburgh, UK 28 November 2008

Published: 01 October 2009

BMC Bioinformatics 2009, 10(Suppl 10):S6 doi: 10.1186/1471-2105-10-S10-S6

This article is available from: http://www.biomedcentral.com/1471-2105/10/S10/S6

© 2009 Zheng and Bouguettaya; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Computer-based pathway discovery is concerned with two important objectives:
pathway identification and analysis. Conventional mining and modeling approaches aimed at
pathway discovery are often effective at achieving either objective, but not both. Such limitations
can be effectively tackled leveraging a Web service-based modeling and mining approach.

Results: Inspired by molecular recognitions and drug discovery processes, we developed a Web
service mining tool, named PathExplorer, to discover potentially interesting biological pathways
linking service models of biological processes. The tool uses an innovative approach to identify useful
pathways based on graph-based hints and service-based simulation verifying user’s hypotheses.

Conclusion: Web service modeling of biological processes allows the easy access and invocation
of these processes on the Web. Web service mining techniques described in this paper enable the
discovery of biological pathways linking these process service models. Algorithms presented in this
paper for automatically highlighting interesting subgraph within an identified pathway network
enable the user to formulate hypothesis, which can be tested out using our simulation algorithm
that are also described in this paper.

Background

Biological pathways are represented as networks of
interactions among biological entities such as cell,
DNA, RNA and enzyme. The exposure of biological
pathways are expected to deepen our understanding of
how diseases come about and help expedite drug
discovery for treating them. Computer-based pathway
study currently relies on two main approaches of entity/
process representation: free-text descriptions and com-
puter models. Free-text based approaches used in

GenBank [1], DIP [2], KEGG [3,4], Swiss-Prot [5], and
COPE [6] rely on free text annotations and narratives
[7,8] to target towards human comprehension. One
major disadvantage with these approaches is their
inherent lack of support for computer-based simulation
of these processes. Computer models (e.g., [9-14]) of
biological processes, on the other hand, while enabling
computer-based simulations of biological processes, are
often constructed in isolated environments, limited to
the study of known pathways, and lack the ability to

Page 1 of 17

(page number not for citation purposes)

mailto:gzheng@vt.edu
mailto:athman.bouguettaya@csiro.au
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Bioinformatics 2009, 10(Suppl 10):S6

facilitate the discovery of new pathways. We propose to
use Web service modeling strategy [15] to bridge the gaps
between the two representation approaches. Using this
strategy, biological processes are modeled as Web service
operations, which can be first described and published
by one organization, and later discovered and invoked by
independently developed applications from other organi-
zations. A service operation may consume some input
substance meeting a set of preconditions and then
produce some output substance as a result of its
invocation. Some of these input and output substances
may themselves carry processes that are known to us and
thus can be also modeled and deployed as Web services.
Domain ontologies containing definition of various
entity types would be used by these Web services for
describing their operation inputs and outputs. This
service oriented process modeling and deployment
strategy not only allows for the identification of path-
ways linking processes of biological entities, as do
existing natural language processing approaches (e.g.,
[16,17]), but would more importantly bring about
unprecedented opportunities for analyzing such path-
ways right on the Web through direct invocation of
involved services. When enough details are captured in
these process models, this in-place invocation capability
presents an inexpensive and accessible alternative to
existing in vitro and/or in vivo exploratory mechanisms.

The second key contribution of our work is the
development of our service mining tool, named PathEx-
plorer, used to discover potentially interesting biological
pathways (i.e., composition networks) linking service
models of biological processes. Unlike traditional top
down service composition approaches that are driven by
specific user goals, Web service mining, which aims at
the discovery of any interesting and useful compositions
of Web services, is carried out in a bottom up fashion
with no such goals to guide the search process. As a
result, it faces the challenge of combinatorial explosion
as the number of service models increases. In search for
efficient mining algorithms and framework, we drew
inspirations from molecular recognitions and drug
discovery methodologies and developed several key
mining algorithms with performance that is linear to
the number of service models that are involved [18].

In [19], we applied our Web service mining framework
[20] to service models of biological processes that are
deployed using Web Service Modeling eXecution envir-
onment (WSMX) [21] for the discovery of biological
pathways. These service models are expressed using both
Web Service Markup Language (WSML) and Web
Services Description Language (WSDL). We then
explored the opportunity of evaluating such pathways
on the Web through direct invocation of involved

http://www.biomedcentral.com/1471-2105/10/S10/S6

services. In [22], we extended our approach to also
provide graph-based hints on discovered pathways to
help user formulate hypotheses, which can then be either
confirmed or rejected based on simulation results,
leading to the identification of useful pathways. In this
paper, we establish the analogies between molecules and
Web services, paving the way for future interdisciplinary
exploration of these two seemingly unrelated subjects.
We also describe in detail our graph expansion algo-
rithms that are not covered in [22]. The algorithms are
used to identify subgraphs linking interesting edges and
user selected nodes within an existing pathway network.
These subgraphs provide the basis for hypothesis
formulation and simulation based evaluation.

Methods

The bottom up Web service mining inevitably exposes
itself to the problem of combinatorial explosion, which,
if left unaddressed, renders the mining process unscal-
able as the number of services involved increases.
Nature, however, has provided us with ample examples
on how composition takes place in a bottom up fashion.
In this section, we first establish analogies between
molecular world and Web services world. We then draw
inspirations from molecular recognitions and drug
discovery processes and present our Web service recogni-
tions mechanisms and mining framework.

Analogies between molecules and Web services

Web services share similarities in many ways with atoms
and molecules in the natural world. At the most basic
level, Web services are analogous to atoms, as illustrated
in Figures 1(a) and 1(b). In the chemical world, oxygen
and hydrogen atoms are two of the most basic building
blocks in nature. Under the right condition, the supply-
demand relationship between the two types of atoms
drives them to form bonds and, ultimately, a water
molecule. Similar supply-demand relationship is also
what drives Web services together. Like a molecule that is
composed of atoms or simpler molecules, a composite
Web service is composed of simpler component Web
services. Operation invocations among services are
realized through the exchange of eXtensible Markup
Language (XML) messages. Similar to electrons in the
natural world, these messages bind component Web
services into composite services. If we imagine each
message as an electron, then this type of message
exchange can help establish bonds between Web
services. Here, we use bond as a notional concept to
indicate the composability between two Web services.

The analogy between the molecular and Web service
worlds continues at a more complex process level. In the
chemical world, the DNA inside our cells provides a

Page 2 of 17

(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 10):S6 http://www.biomedcentral.com/1471-2105/10/S10/S6

’ Car Rental - isCarAvailable()
1 electron available - : st
‘@s‘; Service - cancel()

Travel
Service

B

- isRoomAvailable()
- reserveRoom()
- cancel()

Reservation
Service

Needs 2 more electrons. 1 electron available

\ (a) Atomic Supply & Demand L (b) Web Service Supply & Demand
DNA
mRNA
{i’" Duciaus (c1) Molecular Blueprint (d1) Web Service Process Flow Template
LH\ AND-S: AND Split; AND-J: AND Join; X-8: XOR Split, X-J: XOR Join

\ FB: Flight Booking; TR: Taxi Reservatioin; HR: Hotel Reservation;
UGA CR: Car Rental; BR: Bike Rental; TAB: Tour/Atiraction Booking

T -
-
— tRNAfamino
— add complex
Ribosome @
AND-8
UGA
-—--
™ G
-

£Cau AGUNIUU GAA GAA GCU UUU GLU
==

SIS
destl o
estroyex -

(c2) Molecular Process Flow Instance J (d2) Web Service Process Flow Instance

Figure |

Analogies between Molecules and Web Services. (a)An oxygen atom has six electrons in its outer shell and needs
twomore electrons to fill the shell. Meanwhile, a hydrogen atom has one electron in its outer shell that can be shared with the
oxygen atom. Under the right condition, the oxygen atom shares one of its six electrons with each of the two hydrogen atoms.
This form of bonding (called covalent bonding) is what holds a water molecule together. (b) The composite travel service needs
to know whether a rental car is available within a given time period in a certain location. In addition, it also needs to know
whether there is a room vacancy at the same proximity. These inquiries can be fulfilled by invoking operations provided by
both the car rental and hotel services. (c) A gene-bearing portion of the DNA double helix is unraveled and information
contained in one of the two single strands is transcribed into a messenger RNA (mRNA) through molecular recognition (cl).
The mRNA is then detached from the DNA strand and serves as a template in the protein building process (c2). This process
involves a transfer RNA (tRNA), which collects amino acids required to build the protein and carries them to the mRNA.
Proteins are assembled on the mRNA one amino acid at a time. Links between adjacent amino acids called peptide bonds are
established as the protein chain grows. (d) A travel process flow template can be first constructed specifying the logic order of
sequential, concurrent (i.e., AND Split AND-S and AND Join AND-J) and alternative (i.e., OR Split OR-S and OR Join OR-J)
service invocations (d1). Upon receiving a request, a process flow for a composite travel service is instantiated and grows (d2)
based on this template.

Page 3 of 17

(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 10):S6

complete genetic blueprint that carries the information
required to manufacture the enzyme proteins, which in
turn are responsible for orchestrating our body's
chemistry. The progression from DNA to mRNA to
protein involves a molecular assembly line [23] that
follows a remarkable process (Figure 1(c)). Likewise,
Web service composition can also involve a complex
process (Figure 1(d)) using process template as blueprint
for process flow instances. The process template is
analogous to the blueprint carried by the mRNA and
the process flow instance is analogous to the protein
chain.

The similarities between Web services and molecules offer
some interesting insights. They suggest that like mole-
cules that compose from bottom up as if they are living
beings, Web service can also be treated as living beings
that recognize each other under the right conditions. The
process analogy indicates that recognition-triggered
service composition may extend to a flow network.
Such a flow network can be either designed from top
down or emerged from bottom up. As a result, instead of
having to search for interesting and useful Web service
compositions and composition networks exhaustively,
the compositions and composition networks could form
“naturally” from bottom up, similar to what is happen-
ing in the natural world.

Web serviceloperation recognitions

Similar to the molecular world, the natural formation of
service compositions is based on automatic recognitions
among Web services and their corresponding operations.
We have identified the following three service/operation
recognition mechanisms that are applicable to Web
service models of biological processes:

Promotion

When operation op, of service s, produces an entity (i.e.,
output parameter) that in turn provides service s;,, we say
that s, : op; promotes s, as shown in Figure 2(a).

Inhibition

When operation op, of service s, consumes an entity (i.e.,
input parameter) that in turn provides service s;,, we say
that s, : op; inhibits s, as shown in Figure 2(b).

Indirect Recognition

A target operation op, indirectly recognizes a source
operation ops, if ops generates some or all input
parameters of op, as shown in Figure 2(c). Indirect
recognition is in contrast to the concept of direct
recognition [20], where an operation can be directly
invoked by another. Direct recognition is applicable to
fields such as e-commerce but not pathway discovery

http://www.biomedcentral.com/1471-2105/10/S10/S6

and is thus not included here. These recognition
mechanisms form the basis of the filtering algorithms
[20] in our mining framework.

PathExplorer architecture

As we look for appropriate Web service mining frame-
work, the identification of the similarities between Web
services and molecules leads us to the relevance of drug
discovery methodologies used in the pharmaceutical
industry. A typical drug discovery process [24] involves
seven steps:

. Disease selection,

. Target hypothesis,

. Lead compound identification and screening,
. Lead optimization,

. Pre-clinical trial,

. Clinical trial, and

. Pharmacogenomic optimization.

N ULk W

There are several interesting observations about the
process described above. First, the drug discovery process
has adopted the strategy of screening molecules (step 3)
using “coarse-grained” filtering approach to quickly
reduce the search space from the focused library of
potential ligands to one that contains those most likely
to bind to a protein target with high affinity. It then
increases the computation complexity with better accu-
racy on a reduced search space for lead optimization
(step 4). With a much smaller remaining space, the
discovery process finally conducts more expensive
clinical study for drug evaluation. This is a powerful
strategy and can also apply well in the field of Web
service mining.

Web service screening could take advantage of some
“mining context” to scope down the searching space and
identify potentially composable Web services in an early
stage. The identification of the composability can be
achieved using a “coarse-grained” ontology-based filter-
ing mechanism. Automatic verification and objective
analysis can be applied next in a reduced pool of
candidate services. A more elaborate runtime simulation
mechanism can then be applied towards composed Web
service leads in a much smaller search space to
investigate the relationships among various composition
leads involved in the composition network. Finally,
expensive subjective usefulness analysis involving
human in the loop can be conducted in an even smaller
search space to distinguish those that are truly useful.

Figure 2 [18] shows the architecture of PathExplorer,
which starts with scope specification, a manual phase
involving a domain expert defining mining context

Page 4 of 17

(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 10):S6 http://www.biomedcentral.com/1471-2105/10/S10/S6

(a) Promotion

e- Objective :
. Interaction
valuatio

Evaluation

— y
3:::::2;6 Simulation
7 "

Static
Verification

(b) Inhibition
—

op 3
s@— peey -)

‘Pathway Networks

(c) Indirect Recognition

S o
BN

—

<

ops

PathExplorer | WSMX - Running
=—=|WSML Services

The Web

QII Jetty - Running

——Legends————

WSDL Services
‘ service-
Scope Search Space s Web
csessssssesscsnsse B providing 1
Specification Determination entity Service
i . operation
y regular
- ¥ Mining Context \ 5 = entity
Hierarchy Focused Library inihibiiing
of Domain Functional .
Ontology areas
Indices

operation
P

o o Manual O Semi-Automatic @@ @ @ Automatic

Figure 2
PathExplorer Architecture. The left side shows the architecture of PathExplorer. The right side shows the three service/
operation recognition patterns that are used by the filtering algorithms in the screening phase.

including functional areas (e.g., cell enzyme, drug between Web services and their operations in the focused
functions) and/or locales (e.g., heart, brain) where library can be quickly established from bottom-up.
these functions reside. Based on such mining context, = These pathway segment leads are then semantically
PathExplorer establishes a hierarchy of domain ontology verified based on a subset of operation pre-and post-
indices to speed up later phases in the mining process. conditions involving binary variables (e.g., whether the
Scope specification is followed by several automatic input to an operation is activated) and enumerated
phases. The first of these is search space determination, properties (e.g., the locale of an operation input).
where the mining context is used to define a focused Finally, verified pathway segment leads are linked
library of existing Web services as the initial pool for together using our link algorithms for establishing
further mining. The next is the screening phase, where = more comprehensive pathway network.
Web services in the focused library would go through
filtering algorithms for the purpose of identifying Discovered pathways from the screening phase are input
potentially interesting leads of service compositions or to the evaluation phase, which consists of four sub-
pathway segments. The filtering algorithms are based on ~ phases. Objective evaluation identifies and highlights
the three service/operation recognition mechanisms interesting segments of a pathway by checking whether
described earlier. such linkages are novel (i.e., previously unknown). An
interactive session follows next with the user taking hints
Based on these recognition mechanisms coupled with a from these highlighted interesting segments within the
publication/subscription-based algorithm [20], linkages = pathway network and picking a handful of nodes

Page 5 of 17

(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 10):S6

representing services, operations and parameters to
pursue further. PathExplorer then attempts to link
these nodes into a connected graph using a subset of
nodes and edges in the original graph. This subgraph
provides the user the basis to formulate hypotheses. As
an example, such a hypothesis may state that an increase
in the dosage amount of Aspirin will lead to the relief of
pain, but may inadvertently increase the risk of ulcer in
the stomach. These hypotheses can be tested out via
simulation, which involves PathExplorer invoking the
relevant service operations, changing the quantity/
attribute value of various entities involved. Simulation
results showing the dynamic relationships between these
biological entities are then presented to the user, whose
subjective evaluation finally determines whether the path-
way in pursuit is actually useful.

Service-based modeling of biological processes

To model biological processes as Web services, we first
compiled a list of conceptual process models shown in
Figure 3 that are based on [25-27] and [28]. In addition
to describing process models, these sources also reveal
some simple relevant pathways that can be manually put
together. We use process models such as these as
references when we develop real Web services. We also
use simple pathways manually constructed here as
references when we check the correctness of pathways
automatically discovered using our mining algorithms.

Each of the conceptual process models is next captured
in a Java class and exposed through Axis2 [29] running
inside a Jetty Web server [30] as a WSDL [31] service.
Although the internal details of biological processes can
be modeled as WSDL Web services, WSDL itself does not
provide elaborate mechanism for expressing the pre- and
post-conditions of service operations. WSDL also lacks
the semantics needed to unambiguously describe data
types used by operation input and output messages. We
choose WSML [32] among others (e.g., Web Ontology
Language based Web service ontology (OWL-S) [33],
WSDL with Semantics (WSDL-S) [34]) to fill this gap due
to the availability of WSMX [21], which supports the
deployment of ontologies and Web services described in
WSML. We categorize biological entities within our
mining context into several ontologies. These include
Fatty Acid, Protein, Cell, and Drug. They would all refer to
a Common ontology containing generic entity types such
as Substance, the root concept of all entity types. We use
UnknownSubstance as a placeholder for process inputs
that are not fully described in the literature. We also
create a Miscellaneous ontology capturing definitions of
entity types found in the literature that don’t seem to
belong to any domain. Figure 4 shows several ontologies
including those for cells, proteins, fatty acids and the

http://www.biomedcentral.com/1471-2105/10/S10/S6

miscellaneous entities rendered in Web Service Modeling
Toolkit (WSMT) [35].

Using these ontologies, we then wrap the semantic
interfaces of existing WSDL services as WSML services.
WSML supports the descriptions of pre- and post-
conditions in the capability section and the ontological
type description in the interface section. Figure 5 gives an
example of each for the NF_kappaB_Rel service. To work
with WSML, we have made slight adaptations to our
screening algorithms so they can be applied directly to
WSML services. First, we add a provider property in the
non functional properties (nfp) section of each WSML
service to indicate the corresponding ontological type of
an entity that can provide the service. PathExplorer uses
this information to establish the relationship between a
service providing entity and the service it provides.
Second, we add a modelSource property in the nfp section
to indicate the source information that the model is
based on. Third, we add a providerConsumable property in
the nfp section to indicate to PathExplorer whether the
service providing entity should be consumed along the
invocation of its operation. For example, in order for
mucus (Figure 3(i)) to cover the wall of stomach, the
mucus itself will have to be consumed. Finally, our
validation algorithm has been customized to work with
the service interrogation APIs of the WSMX runtime
library for determining the overlap between the post-
condition of a source operation and the precondition of
a target operation. Unfortunately, WSML allows for the
specification of pre- and post-conditions for only an
entire service, but not its individual operations. Thus we
have to split services that each originally has multiple
operations into several services (e.g., NF_kappaB_Rel_1_-
Service and NF_kappaB_Rel_2_Service) so that different
conditions can be individually specified for these
operations. PathExplorer uses the name of these services
to keep track of their relationship and uses that
information to merge these services towards the end of
the screening phase. During simulation, PathExplorer
uses lowering/lifting adapters [19] to convert ontological
entity instances used by WSML services to/from Simply
Object Access Protocol (SOAP) messages used by WSDL
services.

Pathway visualization and establishment of interesting
subgraphs

To support pathway visualization, PathExplorer gener-
ates a Graph Markup Language (GraphML) file for each
discovered pathway network and uses yEd [36] to render
the corresponding graph. We have developed algorithms
in PathExplorer to help user, during the evaluation
phase, formulate hypotheses that would lead to the
identification of useful pathways extended from

Page 6 of 17

(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 10):S6

http://www.biomedcentral.com/1471-2105/10/S10/S6

1. NF-kB/Rel not phosphorylated

locale /= injury

MNeutrophil at injury

[COX2

recruit Neutrophil

produce LTB4

Produce COX2

Meutrophil
Service

©

Aspirin
Service

@

15-LO sgrvice LXA4 suppress inflammation 2. locale = cyfoplasm
. =
produce LXA4 LXA4 Service 1xB not phos/pboryfaied Ng:smei - -
/’ nee, ranslocate eate = nucleus
@) =P - -
— kB Service bind NF-cB/Rel T KEIRe!
bind Nociceptor, stimulate proinflammatory
n gene transcription
Nociceptor e e e
PGE2
Service (g)
Induce 15-LO COX1 Service produce PGG2 PGG2
15-LO Arachidonic Acid
(b)
locale = Endoplasmic Reticulum
Neutrophil ™ PLA2 Service e
At IE P_Liberated Arachidonic Acid

liberate AA
COX2 Service produce PGE2
()
nof covered
(probability: 1 - f(q.)) Cﬁ‘rgeach
; Stomach Cell ellService produce mucus PGI2

erode
stomach cell
Gastric
Juice
Service

Mucus 1
(of quantity g,,) Mucus Service cover stomach wall

%8B phosphorylated
7
1. IKK-g activated

2. IxB not phosphorylated

7]

kB

IKK-B Service phosphorylate kB

(e)

Pain signal at inflammation

Nogiceptor is Bnu_qqk

.,
sense Pain

___Jocal = inflammation

e

Pain signal in spinal cord

Nociceptor transmit Pain

Sel
b /»'ace/ = spinal cord

o

Relief signal in spinal cord

sense Relief

®
Figure 3

@

Pain signal at spinal cord

Pain signal at brain

transmit Pain

process Pain Brain Service

Spég?\“g:rd transmit Pain Relief

Relief signal at brain

Relief signal at spinal cord

(1)
® @ ® (Other models

]
Legends
Web Service

regular entity
P

providing the
operation

regular entity

inputs to semvice-

operation providing

meeting substance

precondition O operation
service-providing o AW

Web Service entity

Examples of Conceptual Process Model and Simple Pathway. Multiple examples of promotion, inhibition and indirect
recognition can be found in these pathways. For example, (a) shows that 15 LO provides an operation called produce LXA4,
which promotes the service of LXA4. (c) shows that upon injury, LTB4 recruits Neutrophil, promoting its service of producing
COX2. (i) shows that Gastric Juice's service can inhibit the services of both Stomach Cell and Mucus. Examples of indirect
recognition can be found in (h), where PLA2's service can liberate Arachidonic Acid, which can in turn be used as input to either
the produce PGG2 operation of COXIl's service or the produce PGE2 operation of the COX2 service. Examples of pre- and
post-conditions can be found in (g), where NF-xB/Rel when not phosphorylated can translocate from cytoplasm to cell
nucleus, where it can stimulate proinflammatory gene transcription. NF-xB/Rel's service, however, may be inhibited by the |1xB
service if NF-xB/Rel is bound by its corresponding operation when |xB is not phosphorylated.

Page 7 of 17

(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 10):S6

http://www.biomedcentral.com/1471-2105/10/S10/S6

— @ pgg2
\ ™ peroxidase /
\ ™= p @ pos2 «
L_I ‘e‘ ’ .‘"l
C‘— paizsynthase \ . PGG2
> S opaz [PGE2
Peroxidase @ thast 4
PGIZSynthase A
b o 7 TBXAS1 @ FattyAcidOntology
v -) Prostaglandin pd
— PGIZ. v P
(:_\,_J!S};:- @ ProteinOntology Enzyme i 6 @ pai2 J Fatty_ACidew o#Substance
) I_kappaB o » =N —a o
_ Protein PGH2
v L IKK_beta
™ co#Substance . ' Arachidonic_acid
2 !
- kb / <
@ pghz i
NF_kappaB_Rel coX 9 &
; q gastricjuice
@b nflkbr
o coxz
COX1 lw ke
] \ - 223187 3
/ . | 4
." & ox2 ¥ Gastric_Juice
@ coxl AZ3187 | LPS y— I
.ruin lammatory_Cykokine -
P i i ki LTB4
3 co#Substance o ¥ = Leukotriene
@ redCell YT Co=Mucus —)\ -
3 : e o_..migeﬁehsgnce
¥ % o ATP
el > Neutropt | Ak
\ Growth_Factor
I Thromboxane iR
& Stomach_Cell ! P
o Blood
g Cellontology i
@ stomachCell
TxAZ
— General Nodes ™ L¥A4
@ Ontology .
Concept » blood)
@ Instance ® baz N
+ External Modes @ Ixat

Figure 4

Example Ontologies Rendered in WSMT. These ontologies are used in WSML descriptions of Web services for
specifying the types of service providing entities and operation input and output substances.

interesting segments. The addition of the modelSource
property (Figure 5) in the nfp section allows PathEx-
plorer to identify novel (i.e., interesting) linkages
between service models in a discovered pathway network
by comparing the source indicator of linkages in the
pathway graph representing the three types of service/
operation recognitions as shown in Figure 2. PathEx-
plorer then automatically highlights these edges in the
graph, presenting them as visual aid to the user for
focusing more on nodes that may lead to the identifica-
tion of useful pathways. After the user selects nodes of
interest, PathExplorer attempts to link them into a
connected graph to the extent possible using steps
illustrated in Figure 6.

Connected graphs identified using the above process are
then presented to the user as basis for hypothesis
formulation. We list Algorithm 1 used to achieve steps
1 and 2 in Figure 7. We first construct two global
reference sets: E, for edges and N, for nodes (lines 1 and
2). Since we are trying to connect all interesting nodes,
the algorithm stops when N; < 1 (lines 4 to 6). The rest of
the algorithm aims at coalescing each group of nodes in
N, linked by interesting edges into one node. We first
construct S, (line 7) to initially contain all the interesting
edge references. For each remaining edge e picked from
S. (line 8), we construct a group node reference set S,
(line 9) and group edge reference set T,Te (line 10). A
coalesce() function (Algorithm 2 as shown in Figure 8) is

Page 8 of 17

(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 10):S6 http://www.biomedcentral.com/1471-2105/10/S10/S6

wsmlVariant _"http://www.wsmo.org/wsml/wsml-syntax/wsml-rule"
namespace { _"http://servicemining.org/SWSs/NF_kappaB_Rel_1_Service#",
po _"http://servicemining.org/Ontologies/ProteinOntology#",
dc _"http://purl.org/dc/elements/1.1#",
wsml _"http://www.wsmo.org/wsml/wsml-syntax#" }

webService NF_kappaB_Rel_1_Service
nfp

dc#contributor hasValue "George Zheng"

_"http://owner" hasValue _"http://ServiceMining"

_"http://modelSource" hasValue _"http://Serv1‘ceM1‘n1’n

_"http://provider" hasValue _"http: I/servicemining.oto]ogi es/
ProteinOntology#NF_kappaB_Rel"

_"http://providerConsumable" hasValue _"http://servicefining.org/true"

endnfp
importsOntology
po#ProteinOntology For simplicity, we use the index irv

Fig: 3 ay indication for modelSource

capability translocate

precondition
definedBy
?nfkbr memberOf NF_kappaB_Rel |
locale hasValue 71,
phosphorylated hasValue ?7p] and
(?1 = "cytoplasm") and
(?p = false).

postcondition
definedBy
?nTkbr memberOf NF_kappaB_Rel [
Tocale hasValue ?1] and
(?1 = "nucleus").

interface NF_kappaB_Rel_1_Servicelnterface

choreography NF_kappaB_Rel_1_ServiceChoreography
stateSignature NF_kappaB_Rel_1_ServiceStatesignature

importsOntology
po#ProteinOntology
in
concept po#NF_kappaB_Rel withGrounding _"http://servicemining.org:8001/
NFkappaBRel1?wsd1#wsd]1.interfaceMessageReference(NFkappaBRel/translocate/in0)"

out
concept po#NF_kappaB_Rel

transitionRules NF_kappaB_Rel_1_ServiceTransitionRules

Figure 5

Semantic Interface Description in WSML. Example WSML service for NF_kappaB_Rel: The capability section states for
the precondition that the input entity instance named nfkbr should be of type NF_kappaB_Rel (defined in the protein ontology).
In addition, nfkbr's locale should be cytoplasm and it should not be phosphorylated. The interface section states that input
entity NF_kappaB_Rel has grounding with the translocate operation of the corresponding WSDL service. The output from this
service operation should be mapped to NF_kappaB_Rel as defined in the protein ontology.

Page 9 of 17

(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 10):S6

Managed Expansion

Triggered Expansion
\

B~ ~ka -
A
k L
1" !/ b S x’/
/ Merge point ™. __ \
/' o Interesting edges }.\
T \ automatically detected (%)
)
\
e Nuclei containing \
\\ interegting nOQes spanned Interesting
\ by interesting edges nodes picked
s \ by user (w
~ i = \'. f/\)
At Lo
(@---
. S

)

Figure 6

Expansion of Interesting Segments in Composition
Graph. The expansion of interesting segments involves
three steps: |. Coalescing nodes (e.g., g, b, c) linked by
interesting edges into a group, 2. Converting interesting
nodes (e.g., t picked by user) and groups encompassing
interesting nodes (e.g., ¢, f) into nuclei, i.e., graph expansion
focus nodes, and 3. Incrementally expanding all the nuclei.
We use the heuristics of connecting all the interesting nodes
using as many interesting edges as possible. To achieve this,
whenever a newly encountered node is part of a non-nucleus
group (e.g., one that contains h, i and j), an additional
expansion is also triggered and the whole group are engulfed.
The expansion stops when all nuclei are connected or when
all nodes in the graph are visited.

then invoked to coalesce nodes that e connects. Using
coalesce(), we first move e from the interesting edge
reference set S, to the corresponding group edge
reference set T, (line 1). Then for each node n, which
is in N; but not S,, and which e connects to (line 2), we
add it into the corresponding group node reference set S,,
(line 3). If n is an interesting node (line 4) and S, is
already marked as interesting (line 5), then we know that
n is not the first interesting node in S,, thus we can
reduce the number N; of interesting node reference sets
by 1 (line 6). If S, is not yet marked as interesting, we
need to simply do so (line 8). We then recursively invoke
Algorithm 2 in Figure 8 for all other edges in S, that are
connected to n (lines 11 to 13). It is conceivable that S,,
T, and S,, may all change as a result of this coalescence
process. Going back to Algorithm 1 in Figure 7, code in
lines 12 through 31 aims at picking a node from each
group as the proxy for the whole group during the
incremental expansion phase (step 3). To achieve this,
we pick out the first node n, found in S, (line 12) and
convert it to a group node (line 13). Lines 14 through 19
converts 1, to a nucleus node and marks corresponding

http://www.biomedcentral.com/1471-2105/10/S10/S6

edges in the global edge set E, as already connected.
Lines 21 through 31 makes n, a surrogate node for all the
other nodes in the same group. In line 33, we also
convert interesting nodes (e.g., t in Figure 6) that are not
group nodes into nucleus nodes.

Managed expansion described in step 3 is achieved via
Algorithm 3 as shown in Figure 9. The algorithm first
checks whether there is only one interesting node and it
should simply stop (lines 1 to 3). If there are more than
one interesting node, it constructs T, used to keep track
of all visited nodes, to initially contain all nucleus nodes
(lines 4 and 5). The rest of the algorithm then
incrementally expands all the nuclei until they are all
connected (line 8 as N; - 1 edges are needed to connect
N; nuclei) or when all nodes in the graph have been
visited (line 26). In addition, we use variable progress
(lines 7, 9 and 12) to keep track of the progress of graph
expansion and stops algorithm if no progress has been
made during the last iteration (line 8). A distance
variable d is used to manage the incremental expansion.
As the expansion progresses, each of the encountered
nodes is checked to see whether its distance attribute is
already set. If this is not set (line 14), then the node must
be a newly encountered node and the algorithm sets the
distance (line 15), tags it as belonging to the same
nucleus group (line 16) and indicates that the node has
been visited by adding it into T, (line 17). If the node is
a previously visited node (line 18) and it is associated to
a nucleus group different from the current one (line 20),
then a merge point (see Figure 6) is potentially
encountered. To be sure, the algorithm checks whether
the edge extending to the node just encountered has
already been visited (line 21). If not, it marks the
corresponding edge in E, as connected and then invokes
connectPathToNucleus(), indicates that the edge has been
visited by adding it into S, (line 25), and checks whether
the stop criteria (line 26) have been met. Algorithm 4 in
Figure 10 lists the algorithm used in connectP athT
oNucleus() to mark all edges from the encountered node
and leading to the corresponding nucleus node as
connected. The traversal of a group node (line 3)
would trigger additional expansion (line 4) that would
mark all interesting edges in the corresponding group
also as connected.

Pathway simulation

Discovered pathway networks are first presented to the
user in yEd graphs with interesting linkages highlighted.
Once interesting nodes are picked by the user, PathEx-
plorer attempts to use the above process to link them
into a connected subgraph, an example of which is
shown in Figure 11 and highlighted with thick edges.
Such graphs are then presented to the user as basis for

Page 10 of 17

(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 10):S6

http://www.biomedcentral.com/1471-2105/10/S10/S6

Algorithm 1 Coalesce Interesting Nodes

Input: Global edge set Ea in composition graph, global node set Na in composition graph
Variables: Global edge references set Ej, global node reference set Ny, number of interesting node references N;, interesting
edge reference set S, group node reference set Sn, and group edge reference set Te

1: create Ey;
create Ny;
calculate N, from Ny;
if N; <1 then
return;
end if
move all interesting edges in E}, into Se;
while Je € Se do
create Sp,;
10: create T¢;
11: coalesce(e, Se, Te, Sn);

12: remove first node n, found in Sy;

13: convert ng to a group node by attaching S, to ng;

14: if S, is marked interesting then

15: for all e € T, do

16: mark as connected the edge in E, that e refers to;

17: end for

18: convert ng to a nucleus node by setting ng.nucleus = ng and ng.distance = 0;
19: end if

20: while 3n € S,, do

.1 £ for all e connected to n do

22: associate e with ng if it does not connect ng;

23: if e € Ep and thus is not interesting then

24: if one end of e connects to n such that n € S,, then
25: redirect that end of e to ng;

26: end if

pf end if

28: end for

29: remove n from S,;

30: remove n from Ny;

31: end while
32: end while

33: convert all interesting nodes that are not group nodes into nucleus nodes;

Figure 7

Algorithm covering steps | and 2 in Figure 6 for coalescing interesting nodes.

hypothesis formulation. We keep track of the pre- and
post-condition details of operation linking edges (not
shown in Figure 11) in our algorithm as such informa-
tion along with the ontological entity paths and WSML
service paths are needed when we try to invoke these
services during simulation. To ensure the correctness of
our algorithms, we compared segments within the
automatically discovered pathway network with those
constructed manually in Figure 3 and found them to be
consistent in all cases.

When an operation is to be invoked, the algorithm
checks two factors. First, it examines whether all the pre-
conditions of the operation are met. An operation that
does not have available input entities meeting its
preconditions should simply not be invoked. Second, it
determines how many instances are available for

providing the corresponding service. This factor is
needed due to the fact that biological entities of the
same type each has a discrete service process that deals
with input and output of a finite proportion. The
available instances of a particular service providing
entity will drive the amount of various other entities
they may consume and/or produce. For this reason, the
algorithm treats each entity node in a pathway network
such as one shown in Figure 11 as a container of entity
instances of the noted ontology type. In some cases, the
service provider is also used as an input parameter. For
example, the sensePain operation from the NociceptorSer-
vice in Figure 3(f) has a precondition stating that the
Nociceptor itself should be bound in order to provide this
service. In order to express this precondition, we decided
to include the service providing entity also as an input
parameter. In cases such as this, the number of service

Page 11 of 17

(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 10):S6 http://www.biomedcentral.com/1471-2105/10/S10/S6

Algorithm 2 Coalescing Group Nodes

coalesce(e, Se, Te, Syn)
Input: Global edge reference set IV,
Variables: Number of interesting node reference sets N,
1: move e from S, to T¢;
2: for all n connected by e such that n € (N, — S,,) do
Sn.add(n);
if n is interesting then
if S, is interesting then
Ni- -
else
mark S, as interesting;
end if
10: end if
11: for alle € Se such that ¢ connects n do
12: coa.lesce(e’, B Tan O)t
13: end for
14: end for

Figure 8
Algorithm for coalescing group nodes. This is invoked at line || in Figure 7.

Algorithm 3 Grow Interesting Subgraphs

Input: Global edge set Ea in composition graph, global node set N. in composition graph, global edge references set E}, global
node reference set N3, number of interesting node references N;, and temporary node reference set T,
Variables: distance d, set of paths S, connecting nucleus nodes, progress indication progress
1: if N; =1 then
2 return;
3: end if
4: create Th,;
5: add all nucleus nodes to Ty,;
6
T
8
9

d=1;
© progress = true;
: while S;.size < N; — 1 and progress = true do
: progress = false;
10: for all nu € Tn such that nu.distance = (d — 1) do
11z for all e € Ep such that e connects to nu do
12 progress = true;
13: identify the other node n that e connects to;
14: if n.distance is not set then
15: n.distance = d;
16: n.nucleus = nu.nucleus;
17 Th.add(n);
18: else
19: // Found a potential merge point
20: if n.nucleus # nu.nucleus then
21: if e € Sp then
2 mark as connected the edge in Ea that e refers to;
23: connect PathT oNucleus(T,, nu);
24: connect PathT oNucleus(Tn, n);
25: Sp.add(e);
26: if Sp.size() = N; — 1 or Th.size() = Ey.size() then
27 return;
28: end if
29: end if
30: end if
31: end if
32: end for
33: end for
34 d++;
35: end while

Figure 9
Algorithm covering step 3 in Figure 6 for growing interesting subgraphs.

Page 12 of 17

(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 10):S6 http://www.biomedcentral.com/1471-2105/10/S10/S6

Algorithm 4 Connect Path to Nucleus
connect PathToNucleus(Tn,n1)

Input: Global edge set E, in composition graph
Variables: Distance di, node n2 and edge e12

1: dy = ni.distance;
2: while dy > 0 do
if n1 is a group node then
mark as connected all interesting edges in E, referred to by nodes in the group;
end if
for all ns € Ty, such that no.d =d; — 1 do
find edge €15 connecting n; and no;
mark as connected the edge in E, that ejs refers to;
: ny = na;
10: break;
11: end for
12: di- -;
13: end while

Figure 10
Algorithm for connecting path to nucleus. This is invoked at lines 23 and 24 in Figure 9.

&) pathway.graphml - y&d
‘ Fle Edt View Layok Tooks Grouping Windows Help

RUHBPRAEON QAR E(D$ H B

[) pathway.graphenl * «rB
‘ activatelkiK_Bsta |
. TBXAS1Service
ParoxidaseService
1 betaSenica pioduceTrA2 TeA2 TrA2Senvice
' —] ' StamachCellSen
IKK_bati phosdhoniatel kappal ® PGI2SynthassSenics produceMucus e %
T Lo bindNF_kappaBRel paguenoR pap Mucus | e
\ _kappal
wettes POI2Senice MiidinEantc Stomach_Cell
\ —
' bindIKK_beta . producsPGH2 pep2 "
) I_kappaBSenice circulatePGH2 CApJNIcILy erodeStomachc
28envice Arachidonic_Acid Y GastricJuiceService ‘
: BloodSenvice
liberateArachidonicAcid
-_—
l producelxA4
COX1Senice
/ . == . <[] ' LXAdSenvice
induce_15_LO _15A0Semice
SpinalCordSenves
Connected subgraph
5 BrainSemvice
Nodes of interest
aceylateCOX1 p(z;keobby uses transmitPain
PGE2Senice 4 |
AspirinSeniice 3 transmitPainRelief
sensePain
bindNociceptor nocicepty
uceCOX2 coxz \\
[==] AN NoticeptorSenvice
| X
| 3 \\ — ‘ transmitPain senseRelief
! \ \
I \ \\ =
A
« »
1] I N \ |2
| \ Y
: . N
service providing entity ~ service operation
Figure 11

Discovered Pathway Rendered in yEd. For brevity, we display only shortened names for nodes in the graph. We keep the
full name containing either the ontological path for entity nodes or the WSML service path for both service and operation
nodes in a separate description field (not shown here). In addition, we omit in this Figure pre- and post-condition details of
operation linking edges such as the two forming a loop between operation coverStomachWall and entity Stomach_Cell. Such
details are kept by our algorithm and used during simulation. The precondition along the upper edge states that Stomach_Cell
is not covered by Mucus and the postcondition along the lower edge states that Stomach Cell is covered by Mucus.

Page 13 of 17

(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 10):S6

providing instances will be determined by checking
further whether each of the service providing entity
instances also meets the precondition of the correspond-
ing operation.

In Algorithm 5 (see Figure 12), an initial number of
instances for each entity type et are first generated based
on function f(et) (lines 01-03). It is conceivable that an
expert may want to create different number of instances
at the beginning for different entity types. Next, we
conduct [iterations of operation invocations (lines 05-
31). We take a snapshot of the quantities at the end of
each iteration and before the very first iteration (lines 30
and 04). We determine the number of times the
corresponding operation should be invoked based on
the quantity of the corresponding service providing

http://www.biomedcentral.com/1471-2105/10/S10/S6

entity (lines 7 to 15). To make sure that an operation
from a service providing entity of a small quantity also
gets the chance to be invoked, a random number
generator is used (line 15). Upon invocation of the
operation, we remove corresponding entity instance
based on the truth table depicted in the lower right
corner of Figure 12. When we determine the provider
should be removed (lines 19 to 21), we remove the first
instance found in the corresponding container. Since the
provider is not the input parameter, it is consequently not
involved in the evaluation of the operation precondition.
Thus we can remove any one instance found in the
container. Lines 22 to 24 are for removing the input
parameter instance when the corresponding condition is
met. Finally, we add the output parameter instance to the
corresponding entity container (lines 25 and 26).

Algorithm 5 Simulation Algorithm

Input: Pathway Network PN, function f() determining initial number of instances for an entity type, total number of iterations
I, upper bound S for random number generator random with uniform distribution

Output: Statistics Stats

Variables: entity type et, entity instance container Container(et) of type et, operation op, input entity op:n, output entity

0Poyut and precondition oppre

1: for all et € PN do

2 Container(et) «— create f(et) instances;
3: end for
4: Stats «— Tally entity quantities in each container;
5 fori=0to I do
6 for all op € PN do

T
8
9

s «— op.get ProviderServce();
€tparameter +— Op.getInput Parameter().get EntityType(); type(provider)
etyrovider — S-getProvider EntityType(): = type(parameter)
10: if etparameter = €lprovider then Provider is
11: n « number of entities of type etppouider that match oppre consumable No Yes
12: else —
13: n «— number of entities of type etparameter 1 0
14: end if No
15: n «— n/S + ((random.nextInt(S) < (n modulo S))71 : 0); 0 0
16: for j =0tondo
17 if Jop;,, € Container(etparameter) : 0pin, matches oppre then 1 1 |
18: O0Pout +— invoke(op) with op;,; e
19: if etparameter 7 €tprovider/ provider is consumable then — - —--—————————— —@ : 0
20: Container(etprovider).remove(0); | i
21: end if P
22: if etparameter # €lproviderV Provider is consumable then === - - - - - - - o e oo - I Whether
23: Container(etparameter).remove(op:r); i parameter
24: end if i should be
35: ?parﬂmcicr - Dpou:»getE;léityTyPE()t { removed
6: Jontainer(etparameter)0 OPout); :
o7 end if i SRR Whether
28: end for provider
29: end for should be
30: Stats « Tally entity quantities in each container; removed
31: end for
Figure 12

Algorithm containing our simulation strategy. Lower right corner depicts logic for removing entity instance after
operation invocation. A value of | (or 0) indicates that the corresponding entity instance will (or will not) be removed after

the operation invocation.

Page 14 of 17

(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 10):S6

Results and discussion

Figure 11 shows an example pathway network discov-
ered using our mining algorithms. Simulation based on
Algorithm 5 in Figure 12 is then conducted on the
pathway network. Results obtained from each run by the
PathExplorer are compiled into an Excel spreadsheet,
which is then used to generate a plot such as those in
Figure 13 (for the graph in Figure 11), where the
horizontal axis is for the number of iterations and
vertical axis is for quantity. Figure 13(a) shows that when
the quantity of Aspirin is 10, there is no sign of stomach
erosion. When the quantity of Aspirin increases to 40 in
Figure 13(b), the quantity of stomach cell drops to
around 30 after 150 iterations of operation invocation.
This confirms the user hypothesis that Aspirin has a side
effect on the stomach. In addition, we also noticed that
given a fixed quantity of Aspirin, the reduction of the
initial quantity of COX1 also has a negative effect on the
stomach (Figure 13(c) and 13(d)). When the initial
quantity of COX1 is high, it takes longer for all the COX1
to get acetylated by Aspirin. As a result, enough PGG2
and consequently PGH2 and PGI2 will be built up to
feed into the produceMucus operation of the StomachCell-
Service. As the initial quantity of COX1 becomes smaller
and while the depletion rate of Mucus by GastricJuice-
Service remains the same, less Mucus is being produced
by the StomachCellService as less PGI2 becomes available.

While Figures 9(a) to 9(d) clearly illustrate the relation-
ships between Aspirin and Stomach_Cell, the relation-
ship between the dosage amount of Aspirin and the
sensation of pain is less obvious in these Figures. Except
for Figure 13(a), which shows some accumulation of
PainSignal when the quantity of Aspirin is 10, the rest of
plots show no pattern of such accumulation or the
variation thereof. A closer look at the highlighted
pathway in Figure 11 reveals that this is actually
consistent with the way the simulation is set up. Since
PainSignal is created and then converted by the Brain to
ReliefSignal, which disappears after it is sensed by
Nociceptor, this whole path at the bottom actually acts
as a 'leaky bucket’. To examine exactly what is going on
along that path, we decided to make two changes in the
simulation setting. First, we reduce the maximum
frequency of invoking the Brain service to half that of
Nociceptor. This creates a potential imbalance between
the production rate of PainSignal and ReliefSignal since
the processPain operation from the BrainService will be
consequently invoked less frequently than the sensePain
operation from the NociceptorService. Second, we disable
the senseRelief operation of the NociceptorService. This
essentially stops the leaking of the ReliefSignal that are
generated as a result of the PainSignal. When we apply

http://www.biomedcentral.com/1471-2105/10/S10/S6

only the first change to the simulation, the imbalance of
the processing rates for PainSignal and ReliefSignal results
in a net accumulation of PainSignal when the quantity of
Aspirin is 10 (Figure 13(e)). When the quantity is
increased to 40 (Figure 13(f)), we see there are some
occasional and temporary accumulation of PainSignal.
Finally, we apply the second change along with the first
one. Consequently, we notice that while the pattern of
PainSignal’s accumulation hasn’t changed much, there is
a consistent accumulation of ReliefSignal. Since each
PainSignal is eventually converted to a ReliefSignal by the
Brain according to the highlighted pathway in Figure 11,
the rate of ReliefSignal’'s accumulation actually provides a
much better picture on how fast PainSignal has been
generated. We see that as the dosage amount of Aspirin
increases, less ReliefSignal is generated, an indication that
less PainSignal has been generated. Thus it is obvious
that the increase of the dosage amount of Aspirin has a
positive effect on the suppression of PainSignal’s genera-
tion. This confirms the other half of user’s original
hypothesis.

Simulation results such as these presented in Figure 13
provide useful information to a pathway analyst. They
can be used to determine whether further more
expensive in vitro and/or in vivo experiments are needed.
If enough details are captured in the process models that
the simulation is based on, then the simulation itself
would present an inexpensive and accessible alternative
to existing in vitro and/or in vivo exploratory mechan-
isms. Using the service-oriented simulation environ-
ment, the interrelationships among various entities
involved in the pathway network can now be exposed
in a more holistic fashion than traditional text-based
pathway discovery mechanisms, which inherently lack
the simulation capability.

Conclusion

We proposed to model biological processes as Web
service to bridge the gap between free-text description
and traditional computer models of these processes. We
presented our service mining tool named PathExplorer
and demonstrated the feasibility of applying our service
mining strategy to the discovery of pathways linking
service models of biological processes. We described
how PathExplorer identifies interesting segments in a
pathway graph and automatically establishes a con-
nected graph linking nodes that the user is interested in
exploring. The graph, which is highlighted inside the
discovered pathway network provides the user the basis
for formulating hypothesis, which can then be tested out
through simulation.

Page 15 0of 17

(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 10):S6 http://www.biomedcentral.com/1471-2105/10/S10/S6

((a) Aspirin = 10 (b) Aspirin = 40)

70 - 70

60 60
ol 50
i el 1\
| 40 40 __|
b ““1\
Q| 30 30
O
o
A WL N N

10

SR PR R P ER D PO PSSP SR PR PO P PP
(c) Initial COX1 =120 (d) Initial COX1 = 680
120
100
& 80
b3
1l
E
5
2
P PR P EP LR E R PP P)
s |+Stomach_Cell ——Mucus =e—PGI2 —e—PainSignal —e—COX1 =—PGG2 +COX2| s
(e) Aspirin = 10 (f) Aspirin = 40
70 1y 70
euJ 60

y Al ol Y
5 st A el R\

senseRelief enabled
8

S ERLL DS O PSS TR P DAL R LS PSP S

Brain service invocation reduced by half
o
o
<2
%
k2

(g) Aspirin = 10 (h) Aspirin = 40

TR DR PR DR D PP SR P PR PO D PSSP P

("~ Brain service invocation reduced by half
senseRelief disabled

‘—0—PGE2 ——Stomach_Cell —i—ReliefSignal —e—Bound_Nociceptor —¢—PainSignal —#—COX1 —a—COX2 ~

Figure 13
Simulation Results.

Page 16 of 17

(page number not for citation purposes)

BMC Bioinformatics 2009, 10(Suppl 10):S6

List of abbreviations used

GraphML: (Graph Markup Language); OWL-S: (Web
Ontology Language based Web service ontology); SOAP:
(Simply Object Access Protocol); WSDL: (Web Services
Description Language); WSDL-S: (WSDL with Seman-
tics); WSML: (Web Service Markup Language); WSMT:
(Web Service Modeling Toolkit); WSMX: (Web Service
Modeling eXecution environment); XML: (eXtensible
Markup Language).

Competing interests
The authors declare that they have no competing
interests.

Authors’ contributions

George Zheng and Athman Bouguettaya developed the
Web service modeling and mining framework. George
Zheng applied it to the discovery and analysis of
biological pathways. Athman Bouguettaya supervised
the project, reviewed and approved the final manuscript.

Acknowledgements
We would like to thank Maciej Zaremba from the National University of
Ireland for his help on WSMX related issues.

This article has been published as part of BMC Bioinformatics Volume 10
Supplement 10, 2009: Semantic Web Applications and Tools for Life
Sciences, 2008. The full contents of the supplement are available online at
http://www.biomedcentral.com/1471-2105/10%issue=S10.

References

I. GenBank. http://www.ncbi.nlm.nih.gov/Genbank/.

2. Database of Interacting Proteins. http://dip.doe-mbi.ucla.edu/.

3. Kyoto Encyclopedia of Genes and Genomes. http://www.
genome.jp/kegg/.

4. Kanehisa M, Goto S, Hattori M, Aoki-Kinoshita KF, Itoh M,

Kawashima S, Katayama T, arki M and Hirakawa M: From

genomics to chemicalgenomics: new developments in

KEGG. Mucleic Acids Research 2006, 34:354-357.

UniProtKB/Swiss-Prot. http://www.ebi.ac.uk/swissprot/.

COPE - Cytokines Online Pathfinder Encyclopaedia. http:/

www.copewithcytokines.de/.

Cohen): Bioinformatics: An Introduction for Computer

Scientists. ACM Computing Surveys 2004, 36(2):122—158.

8. Brent R and Bruck J: Can computers help to explain biology?.
Nature 2006, 440(23):416—417.

9. Karp PD, Paley S and Romero P: The Pathway Tools Software.
Bioinformatics 2002, 18(Suppl 1):5225-5232.

10. de Jong H and Page M: Qualitative Simulation of Large and
Complex Genetic Regulation Systems. Proceedings of the |4th
European Conference on Artificial Intelligence, Berlin, Germany 2000,
141-145.

Il. Tomita M, Hashimoto K, Takahashi K, Shimizu TS, Matsuzaki Y,
Miyoshi F, Saito K, Tanida S, Yugi K, Venter JC and CAH IlI: E-
CELL: software environment for whole-cell simulation.
Bioinformatics 1999, 15:72-84.

12. Biochemical Pathway Simulator. http://www.brc.dcs.gla.ac.uk/
projects/bps/.

13. COPASI. http://mendes.vbi.vt.edu/tiki-index.php?page=COPASI.

14. Cardelli L: Abstract Machines of Systems Biology. Transactions
on Computational Systems Biology Il 1999, 3737:145—168.

I15. Zheng G and Bouguettaya A: Web Service Mining for Biological
Pathway Discovery. Proceedings of the 2nd International Workshop
on Data Integration in the Life Sciences (DILS 2005), of Lecture Notes in
Computer Science San Diego, CA: Springer: Ludascher B, Raschid L
2005, 3615:292-295.

N ou

http://www.biomedcentral.com/1471-2105/10/S10/S6

16. Ng SK and Wong M: Toward Routine Automatic Pathway
Discovery From On-line Scientific Text Abstracts. Genome
Informatics 1999, 10:104-112.

17. Yao D, Wang], Lu Y, Noble N, Sun H, Zhu X, Lin N, Payan DG, Li M
and Qu K: PathwayFinder: Paving The Way Toward Auto-
matic Pathway Extraction. APBC ‘04: Proceedings of the Second
Conference on Asia-Pacific Bioinformatics Dunedin, New Zealand:
Australian Computer Society, Inc; 2004, 53-62.

18. Zheng G and Bouguettaya A: Service Mining on the Web. IEEE
Transactions on Services Computing 2009, 2:65-78.

19. Zheng G and Bouguettaya A: Discovering Pathways of Service
Oriented Biological Processes. Proceedings of the 9th International
Conference on Web Information Systems Engineering (WISE), of Lecture
Notes in Computer Science Auckland, New Zealand: Springer: Bailey |,
Maier D, Schewe KD, Thalheim B, Wang XS 2008, 5175:189-205.

20. Zheng G and Bouguettaya A: A Web Service Mining Frame-
work. Proceedings of IEEE International Conference on Web Services
(ICWS) Salt Lake City, Utah, USA: IEEE Computer Society; 2007,

1096-1103.
21. Web Services Execution Environment. http://sourceforge.net/
projects/wsmx.

22. Zheng G and Bouguettaya A: PathExplorer: Service Mining for
Biological Pathways on the Web. Proceedings of the Workshop on
Semantic Web Applications and Tools for Life Sciences (SWAT4LS), of
CEUR Workshop Proceedings. Edinburgh, UK Burger A, Paschke A,
Romano P, Splendiani A 2009, 435: http:/ftp.informatik.rwth-
aachen.de/Publications/CEUR-WS/Vol-435/.

23. Ball P: Designing the Molecular World — Chemistry at the Frontier
Princeton, New Jersey: Princeton University Press; 1994.

24. Augen J: The evolving role of information technology in the
drug discovery process. Drug Discovery Today 2002, 7:315-323.

25. Aspirin. http://www3.interscience.wiley.com:8100/legacy/college/
boyer/047166179 | /cutting_edge/aspirin/aspirin.htm.

26. NF-kappaB Pathway. http://www.cellsignal.com/reference/path-
way/NF_kappaB.html.

27. Auyang SY: From experience to design — The science
behindAspirin. http://www.creatingtechnology.org/biomed/aspirin.
htm.

28. Landau M: Inflammatory Villain Turns Do-Gooder. http://focus.
hms.harvard.edu/2001/Augl0_200|/immunology.html.

29. Apache Axis2/Java — Next Generation Web Services. http:/
ws.apache.org/axis2/.

30. Jetty. http://www.mortbay.org/.

3l. Web Services Description Language (WSDL) I.1. http:/
www.w3.org/TR/wsdl.

32. The Web Service Modeling Language WSML. http://www.
wsmo.org/wsml/wsml-syntax.

33. OWL-S: Semantic Markup for Web Services. http://www.w3.
org/Submission/OWL-S/.

34. Web Services Semantics = WSDL-S. http://www.w3.org/Sub-
mission/VWSDL-S/.

35. The Web Service Modeling Toolkit (WSMT). http://source-

forge.net/projects/wsmt.
36. yEd - Java Graph Editor. http://www.yworks.com/en/product-

s_yed about.htm.

Publish with BioMed Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime.

Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and publishedimmediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here:

O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 17 of 17

(page number not for citation purposes)

http://www.biomedcentral.com/1471-2105/10?issue=S10
http://www.ncbi.nlm.nih.gov/Genbank/
http://www.ncbi.nlm.nih.gov/Genbank/
http://dip.doe-mbi.ucla.edu/
http://dip.doe-mbi.ucla.edu/
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
http://www.ebi.ac.uk/swissprot/
http://www.ebi.ac.uk/swissprot/
http://www.copewithcytokines.de/
http://www.copewithcytokines.de/
http://www.copewithcytokines.de/
http://www.ncbi.nlm.nih.gov/pubmed/16554784?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12169551?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10068694?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10068694?dopt=Abstract
http://www.brc.dcs.gla.ac.uk/projects/bps/
http://www.brc.dcs.gla.ac.uk/projects/bps/
http://www.brc.dcs.gla.ac.uk/projects/bps/
http://mendes.vbi.vt.edu/tiki-index.php?page=COPASI
http://mendes.vbi.vt.edu/tiki-index.php?page=COPASI
http://www.ncbi.nlm.nih.gov/pubmed/11072347?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11072347?dopt=Abstract
http://sourceforge.net/projects/wsmx
http://sourceforge.net/projects/wsmx
http://sourceforge.net/projects/wsmx
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-435/
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-435/
http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-435/
http://www.ncbi.nlm.nih.gov/pubmed/11854055?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11854055?dopt=Abstract
http://www3.interscience.wiley.com:8100/legacy/college/boyer/0471661791/cutting_edge/aspirin/aspirin.htm
http://www3.interscience.wiley.com:8100/legacy/college/boyer/0471661791/cutting_edge/aspirin/aspirin.htm
http://www3.interscience.wiley.com:8100/legacy/college/boyer/0471661791/cutting_edge/aspirin/aspirin.htm
http://www.cellsignal.com/reference/pathway/NF_kappaB.html
http://www.cellsignal.com/reference/pathway/NF_kappaB.html
http://www.cellsignal.com/reference/pathway/NF_kappaB.html
http://www.creatingtechnology.org/biomed/aspirin.htm
http://www.creatingtechnology.org/biomed/aspirin.htm
http://www.creatingtechnology.org/biomed/aspirin.htm
http://focus.hms.harvard.edu/2001/Aug10_2001/immunology.html
http://focus.hms.harvard.edu/2001/Aug10_2001/immunology.html
http://focus.hms.harvard.edu/2001/Aug10_2001/immunology.html
http://ws.apache.org/axis2/
http://ws.apache.org/axis2/
http://ws.apache.org/axis2/
http://www.mortbay.org/
http://www.mortbay.org/
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl
http://www.wsmo.org/wsml/wsml-syntax
http://www.wsmo.org/wsml/wsml-syntax
http://www.wsmo.org/wsml/wsml-syntax
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/OWL-S/
http://www.w3.org/Submission/WSDL-S/
http://www.w3.org/Submission/WSDL-S/
http://www.w3.org/Submission/WSDL-S/
http://sourceforge.net/projects/wsmt
http://sourceforge.net/projects/wsmt
http://sourceforge.net/projects/wsmt
http://www.yworks.com/en/products_yed_about.htm
http://www.yworks.com/en/products_yed_about.htm
http://www.yworks.com/en/products_yed_about.htm
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Results
	Conclusion

	Background
	Methods
	Analogies between molecules and Web services
	Web service/operation recognitions
	Promotion
	Inhibition
	Indirect Recognition

	PathExplorer architecture
	Service-based modeling of biological processes
	Pathway visualization and establishment of interesting subgraphs
	Pathway simulation

	Results and discussion
	Conclusion
	List of abbreviations used
	Competing interests
	Authors’ contributions
	Acknowledgements
	References

