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Abstract: Background: Cerebrovascular events (CVE) are feared complications following tran-
scatheter aortic valve replacement (TAVR). We aimed to develop a new risk model for CVE prediction
with the application of multimodal imaging. Methods: From May 2011 to August 2019, a total of
2015 patients underwent TAVR at our institution. The study cohort was subdivided into a derivation
cohort (n = 1365) and a validation cohort (n = 650) for risk model development. Results: Of 2015 pa-
tients, 72 (3.6%) developed TAVR-related CVE. Pre-procedural factors of our risk model were history
of prior CVE, a larger aortic valve area (≥0.55 cm2), a large aortic angulation (≥48.5◦), and enhanced
calcification of the right coronary cusp (≥447.2 AU), left ventricular outflow tract (≥262.4 AU), and
ascending thoracic aorta (≥116.4 AU). Our risk model was superior for in-hospital CVE prediction
following TAVR in the establishment cohort (AUC 0.73, 95% CI 0.66–0.80; p < 0.001) compared to
other risk scores, such as the EuroSCORE II or the CHA2DS2-VASc score. Conclusions: Although
CVE prediction in patients undergoing TAVR is challenging due to the complex nature of the TAVR
procedure, our study highlights that multimodal imaging is a promising approach to generate a more
accurate risk model for CVE prediction.

Keywords: aortic stenosis; TAVR; percutaneous valve therapy; stroke; prediction; risk score

1. Introduction

In the last decade, transcatheter aortic valve replacement (TAVR) has become the
preferred alternative to surgical aortic valve replacement (SAVR) in patients with severe,
symptomatic aortic valve stenosis (AS) who are intermediate- or high-risk candidates
for surgery [1]. Technical advances of newer-generation prostheses and the increasing
experience of operators have led to a progressive decrease in periprocedural complications
and death following TAVR. Nevertheless, cerebrovascular events (CVEs) are still feared
adverse incidents with devastating consequences for patients’ daily living and increased
mortality [2–4]. The incidence of CVEs following TAVR is known to be related to patient-
specific, procedure-related, and post-procedural factors [5], as summarized in Figure 1.
However, to the best of our knowledge, there is no established risk model for prediction so
far. Therefore, this study aimed to identify predictors of CVE, and to develop a risk model
for in-hospital CVE following TAVR. The focus was on valvular and aortic calcium burden
assessed by pre-procedural multimodal imaging as well as procedure-related factors.
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Figure 1. Previously identified factors associated with cerebrovascular events after TAVR with 
three overlapping categories: patient-related factors, procedure-related factors, and 
post-procedural factors. AF = atrial fibrillation; AV = aortic valve; AVA = aortic valve area; BEV = 
balloon-expandable valve; TAVR = transcatheter aortic valve replacement; CVE = cerebrovascular 
event. 

2. Materials and Methods 
2.1. Study Population 

From May 2011 to August 2019, a total of 2015 patients underwent TAVR with 
transfemoral (n = 1694, 84.1%) or transapical access (n = 321, 15.9%) and self-expandable 
(n = 1399, 69.4%) or balloon-expandable prosthesis (n = 616, 30.6%) at our institution. In 
this single-center, retrospective analysis, only patients with pre-procedural con-
trast-enhanced CT assessment and entirely calculated CHA2DS2-VASC and HAS-BLED 
scores, as well as logistic EuroSCORE I, EuroSCORE II, and STS-PROM scores, were en-
rolled. TAVR was performed according to current guidelines between 2011 and 2019, 
under local anesthesia for TF access and general anesthesia for TA access. TF TAVR was 
performed with different generations of either the self-expandable CoreValve System 
(Medtronic Inc., Minneapolis, MN, USA) or the balloon-expandable SAPIEN System 
(Edwards Lifesciences, Irvine, CA, USA); TA TAVR was only performed with the bal-
loon-expandable SAPIEN System. 

2.2. Study Endpoints 
The primary study endpoint was defined as in-hospital CVE. According to the Valve 

Academic Research Consortium-2 (VARC-2) criteria, CVE is an acute episode of a focal or 
global neurological deficit caused by ischemic, hemorrhagic, or undetermined etiology, 
and confirmed by neurological specialists or neuroimaging (i.e., computed tomography 
or magnetic resonance imaging). CVE was further classified in transient ischemic attack 
(TIA), defined as neurological deficit less than 24 h in duration, CVE with persistence of 
symptoms for more than 24 h, and detection of new cerebral lesions by neuroimaging. 

  

Figure 1. Previously identified factors associated with cerebrovascular events after TAVR with three
overlapping categories: patient-related factors, procedure-related factors, and post-procedural factors.
AF = atrial fibrillation; AV = aortic valve; AVA = aortic valve area; BEV = balloon-expandable valve;
TAVR = transcatheter aortic valve replacement; CVE = cerebrovascular event.

2. Materials and Methods
2.1. Study Population

From May 2011 to August 2019, a total of 2015 patients underwent TAVR with trans-
femoral (n = 1694, 84.1%) or transapical access (n = 321, 15.9%) and self-expandable
(n = 1399, 69.4%) or balloon-expandable prosthesis (n = 616, 30.6%) at our institution. In this
single-center, retrospective analysis, only patients with pre-procedural contrast-enhanced
CT assessment and entirely calculated CHA2DS2-VASC and HAS-BLED scores, as well as
logistic EuroSCORE I, EuroSCORE II, and STS-PROM scores, were enrolled. TAVR was
performed according to current guidelines between 2011 and 2019, under local anesthesia
for TF access and general anesthesia for TA access. TF TAVR was performed with different
generations of either the self-expandable CoreValve System (Medtronic Inc., Minneapolis,
MN, USA) or the balloon-expandable SAPIEN System (Edwards Lifesciences, Irvine, CA,
USA); TA TAVR was only performed with the balloon-expandable SAPIEN System.

2.2. Study Endpoints

The primary study endpoint was defined as in-hospital CVE. According to the Valve
Academic Research Consortium-2 (VARC-2) criteria, CVE is an acute episode of a focal
or global neurological deficit caused by ischemic, hemorrhagic, or undetermined etiology,
and confirmed by neurological specialists or neuroimaging (i.e., computed tomography
or magnetic resonance imaging). CVE was further classified in transient ischemic attack
(TIA), defined as neurological deficit less than 24 h in duration, CVE with persistence of
symptoms for more than 24 h, and detection of new cerebral lesions by neuroimaging.

2.3. Risk Score Assessment and Validation

For risk score development, we subdivided our population into a derivation cohort
with TAVR from May 2011 to January 2018, including 1365 patients, and a validation cohort
with TAVR from January 2018 to August 2019, including 650 patients. In the derivation
cohort (n = 1365), we identified 60 patients (4.4%) with in-hospital CVEs. After exclu-
sion of incomplete datasets, and using 1:10 propensity score matching with the variables
age, sex, body mass index, and access route, we matched 56 patients with CVEs and
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521 patients without any new focal or global neurological deficits. A modified CONSORT
flowchart gives an overview of the patient population, selection process, and data analysis
(Supplementary Figure S1). For validation of the developed risk models, we performed
another 1:10 propensity score matching of patients in the validation cohort (n = 650). Finally,
12 patients with in-hospital CVEs were matched with 120 patients in the non-CVE group
(Supplementary Figure S2).

2.4. Statistical Analysis

Continuous data are described as the mean ± standard deviation (SD) for normal
distribution, and comparisons were performed using unpaired Student’s t-test and the
Wilcoxon rank-sum test. Categorical variables are presented as frequencies and percent-
ages, and comparisons were made using the chi-squared test and Fisher’s exact test. All
statistical tests were 2-tailed, and a value of p < 0.05 was considered statistically signifi-
cant. A multivariate logistic regression analysis using a purposeful selection of covariates
was performed to determine independent predictors of in-hospital CVE following TAVR,
including predictors with p < 0.05 in univariate analysis and those reported to have a well-
known impact on CVE following TAVR by consensus opinion and previously published
literature [3,5,6]. Receiver operating characteristic (ROC) analysis and Youden’s index—the
point at which the value of “sensitivity + specificity − 1” is maximal—were used to find
the optimal cutoff values for dichotomization of parameters containing continuous data.
Results were reported as odds ratios (OR) with associated 95% confidence intervals (CI)
and p-values. ROC analysis and areas under the ROC curves (AUCs) were performed to
compare the new risk scores with other common risk models. All statistical analyses were
conducted using SPSS version 23.0 (IBM SPSS Inc., Chicago, IL, USA).

3. Results
3.1. Baseline Patient Characteristics

In the derivation cohort (n = 1365), the patients’ mean age was 82.2 ± 5.2 years, and
56.3% were female. Patients in the CVE and non-CVE groups did not differ concerning
cardiovascular risk factors, pre-existing antiplatelet and anticoagulation medication, or
perioperative risk profiles (EuroSCORE II, STS Score). The only differences were observed in
the history of prior CVE (CVE 17.9% vs. non-CVE 8.6%; p = 0.026), bleeding risk according
to HAS-BLED score (CVE 3.7 ± 0.9 vs. non-CVE 3.5 ± 0.9; p = 0.048), and CVE risk
according to CHA2DS2-VASc score (CVE 5.2 ± 1.1 vs. non-CVE 4.8 ± 1.2; p = 0.009).
Compared to the derivation cohort, patients in the validation cohort (n = 650) differed in age
(79.4 vs. 82.2 years), gender (48.5% vs. 43.7% male), history of prior CVE (16.7% vs. 9.9%),
and risk profile (EuroSCORE II: 8.2% vs. 5.4%, STS Score: 7.6% vs. 4.5%). All baseline characteristics
for the derivation and validation cohorts are shown in Supplementary Tables S1 and S2, respectively.

In comparison to the validation cohort, patients in the derivation cohort were older
(82.2 ± 5.2 years vs. 79.4 ± 6.7; p < 0.001) and had significantly higher surgical risk (STS score
7.6 ± 6.9% vs. 4.5 ± 3.1%; p < 0.001) due to multimorbidity, with a higher proportion of chronic
diseases (e.g., arterial hypertension, pulmonary hypertension, peripheral vascular disease,
reduced LVEF) and, therefore, prolonged hospital stay (11.6 ± 8.1 days vs. 10.0 ± 7.4 days;
p = 0.040). All comparative baseline characteristics between the derivation and validation
cohorts are shown in Supplementary Table S3.

3.2. Study Endpoints

Of the 56 patients with CVEs in the derivation cohort, 15 (26.8%) developed TIA, and
41 (73.2%) suffered from CVEs with persisting neurological deficits and new cerebral lesions
in neuroimaging. Of the 41 CVEs involved, 29 had ischemic, 2 hemorrhagic, and 10 unknown
causes. Disabling CVE was defined as a modified Rankin Scale (mRS) ≥ 2 points, and oc-
curred in 48.8% (n = 20). The in-hospital stay was prolonged in patients with CVEs com-
pared to the non-CVE group (CVE 18.7 ± 14.1 days vs. non-CVE 10.9 ± 6.8 days; p < 0.001).
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In the validation cohort, the CVE group (n = 12) was equally subdivided into TIA (n = 6,
50.0%) and stroke (n = 6, 50.0%).

3.3. Model Development in the Derivation Cohort

The results of the univariate logistic regression for pre-procedural, intra-procedural
and post-procedural parameters are presented in Table 1. Significant pre-procedural pre-
dictors of in-hospital CVE included prior history of CVE (OR = 2.30, 95% CI 1.09–4.86;
p = 0.029) as well as high calcification of the ascending aorta (OR = 2.44, 95% CI 1.32–4.52;
p = 0.004) and the LVOT (OR = 2.48, 95% CI 1.08–5.66; p = 0.032). Intra-procedural predictors
included post-dilatation (OR = 2.26, 95% CI 1.19–4.30; p = 0.013) and snaring (OR = 6.60,
95% CI 1.81–24.15; p = 0.004), while aortic regurgitation above grade I (OR = 3.29, 95% CI
1.29–8.35; p = 0.012) and new pacemakers (OR = 2.98, 95% CI 1.04–8.5; p = 0.041) turned out
to be post-procedural predictors of CVE following TAVR. Covariates protective against in-
hospital CVE included high intima–media thickness (OR = 0.01, 95% CI 0.00–0.12; p < 0.001),
application of protamine (OR = 0.20, 95% CI 0.08–0.46; p < 0.001), and medication with
clopidogrel after TAVR (OR = 0.50, 95% CI 0.27–0.91; p = 0.023).

Table 1. Univariate logistic regression of pre-procedural, intra-procedural, and post-procedural parameters.

Parameter OR 95% CI p-Value

Pre-Procedural

Atrial fibrillation 0.99 0.55–1.77 0.965
Porcelain aorta 0.87 0.20–3.79 0.849

Prior CVE 2.30 1.09–4.86 0.029 *
Prior dialysis 0.93 0.37–3.14 0.902

AVA (cm2) 0.94 0.44–1.98 0.866
Cardiac index (l/min/m2) 0.50 0.25–1.01 0.054

IMT (mm) 0.01 0.00–0.12 <0.001 ***
Annulus ellipticity index 0.93 0.85–1.01 0.088

LVOT area (mm2) 1.00 0.99–1.00 0.097
Aortic angulation (◦) 1.03 1.00–1.06 0.072

AV Agatston score (AU) 1.00 1.00–1.00 0.089
RCC Agatston score (AU) 1.68 0.94–3.02 0.082
NCC Agatston score (AU) 1.00 1.00–1.00 0.048 *
LVOT Agatston score (AU) 2.48 1.08–5.66 0.032 *

Ascending aorta Agatston score (AU) 2.44 1.32–4.52 0.004 **

Intra-Procedural

Prosthesis size (mm) 0.90 0.80–1.00 0.055
Self-expanding prosthesis 0.85 0.48–1.51 0.578

Procedure time (min) 1.00 1.00–1.01 0.361
Post-dilatation 2.26 1.19–4.30 0.013 *

Use of protamine 0.20 0.08–0.46 <0.001 ***
Valve dislodgement 1.10 0.38–3.23 0.860

Snaring 6.60 1.81–24.15 0.004 **

Post-Procedural

Post-interventional AR ≥ II◦ 3.29 1.29–8.35 0.012 *
Clopidogrel after TAVR 0.50 0.27–0.91 0.023 *

(N)OAC after TAVR 0.54 0.28–1.05 0.068
Statin after TAVR 0.61 0.35–1.08 0.089
New pacemaker 2.98 1.04–8.50 0.041 *

n = 577 patients
Parameters are shown with odds ratios (ORs), corresponding 95% confidence intervals (CI), and p-values
(* p < 0.05, ** p < 0.01, *** p < 0.001). AR = aortic valve regurgitation; AU = Agatston unit; AV = aortic valve;
AVA = aortic valve area; CVE = cerebrovascular event; IMT = intima–media thickness; LVOT = left ventricular
outflow tract; NCC = non-coronary cusp; (N)OAC = (new) oral anticoagulation; RCC = right coronary cusp;
TAVR = transcatheter aortic valve replacement.
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3.4. Risk Model I for In-Hospital CVE with Pre-Procedural Assessment

The results of the multivariate logistic regression for pre-procedural, intra-procedural,
and post-procedural parameters are found in Table 2. For practical applicability before
TAVR, we first created a manageable risk model with only pre-procedural determinants.
Regarding significance in univariate analysis and the current literature, six parameters
were identified for final analysis, namely, history of prior CVE (p = 0.008), aortic valve area
(p = 0.783), aortic angulation (p = 0.005), and MSCT-derived calcification measurements of
the RCC (p = 0.041), the left ventricular outflow tract (LVOT) (p = 0.067), and the ascending
aorta (p = 0.702), scored using Agatston units (AU).

Table 2. Multivariate logistic regression for pre-procedural, intra-procedural, and post-procedural parameters.

Parameter OR 95% CI p-Value

Pre-Procedural

Atrial fibrillation 4.10 0.74–22.60 0.106
Porcelain aorta 5.62 0.40–78.83 0.200

Prior CVE 9.47 1.82–49.27 0.008 **
Prior dialysis 0.29 0.01–6.76 0.442

AVA (cm2) 1.03 0.82–1.30 0.783
Cardiac index (l/min/m2) 0.33 0.08–1.33 0.118

IMT (mm) <0.01 <0.01–<0.01 <0.001 ***
Annulus ellipticity index 0.91 0.73–1.13 0.400

LVOT area (mm2) 0.99 0.98–1.00 0.004 **
Aortic angulation (◦) 1.11 1.03–1.20 0.005 **

AV Agatston score (AU) 1.00 1.00–1.00 0.447
RCC Agatston score (AU) 5.76 1.08–30.83 0.041 *
NCC Agatston score (AU) 1.00 1.00–1.00 0.591
LVOT Agatston score (AU) 3.58 0.91–13.98 0.067
Central LVOT calcification 0.63 0.16–2.48 0.510

Ascending aorta Agatston score (AU) 0.79 0.24–2.64 0.702

Intra-Procedural

Prosthesis size (mm) 1.32 0.90–1.93 0.158
Self-expanding prosthesis 0.15 0.02–0.91 0.039 *

Procedure time (min) 0.99 0.97–1.01 0.308
Post-dilatation 0.33 0.01–11.22 0.541

Use of protamine 0.03 0.00–0.24 0.001 **
Valve dislodgement <0.01 <0.01–<0.01 0.996

Post-interventional AR ≥ II◦ 25.73 0.92–718.63 0.056
Snaring 105 × 109 0.00–>105 × 109 0.997

Post-Procedural

Clopidogrel after TAVR 0.36 0.06–2.20 0.266
(N)OAC after TAVR 16.08 2.65–97.69 0.003 **

Statin after TAVR 5.32 1.18–23.99 0.030 *
New pacemaker 8.17 0.36–183.79 0.186

n = 345 patients, Nagelkerke R2 = 0.57, p < 0.001 ***
Parameters are shown with odds ratios (ORs), corresponding 95% confidence intervals (CI), and p-values
(* p < 0.05, ** p < 0.01, *** p < 0.001). AR = aortic valve regurgitation; AU = Agatston unit; AV = aortic valve;
AVA = aortic valve area; CVE = cerebrovascular event; IMT = intima–media thickness; LVOT = left ventricular
outflow tract; NCC = non-coronary cusp; (N)OAC = (new) oral anticoagulation; RCC = right coronary cusp;
TAVR = transcatheter aortic valve replacement.

To simplify the risk model, metric risk model parameters were dichotomized by using
ROC analysis and Youden’s index for the calculation of cutoff values. Finally, another
multivariate logistic regression was performed with all dichotomized values, resulting in
risk model I for pre-procedural assessment, with attribution of one point for each value
(Table 3).



J. Clin. Med. 2022, 11, 3902 6 of 13

Table 3. Risk model I (pre-procedural parameters).

Parameter OR 95% CI p-Value

Prior CVE 1.94 0.85–4.43 0.114
AVA (≥0.55 cm2) 3.11 1.16–8.34 0.024 *

Aortic angulation (≥48.5◦) 2.32 1.20–4.49 0.013 *
RCC Agatston score (≥447.2 AU) 1.80 0.94–3.44 0.077

LVOT Agatston score (≥262.4 AU) 2.01 1.08–3.75 0.028 *
Ascending aorta Agatston score

(≥116.4 AU) 2.21 1.17–4.17 0.015 *

n = 532 patients, Nagelkerke R2 = 0.12, p < 0.001 ***
Parameters are shown with odds ratios (ORs), corresponding 95% confidence intervals (CI), and p-values
(* p < 0.05, *** p < 0.001). AU = Agatston unit; AVA = aortic valve area; CVE = cerebrovascular event; LVOT = left
ventricular outflow tract; RCC = right coronary cusp.

This resulted in a score with a minimum of zero and a maximum of six points. The
risk score showed a good prediction of in-hospital CVE, with an area under the curve of
0.73 (95% CI 0.66–0.80; p < 0.001) (Figure 2A) and the best performance for scores of four
and five points compared to the non-CVE group (p < 0.01) (Figure 3A).
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Figure 2. Risk score models I and II in comparison with established risk scores in the derivation and
validation cohorts. (A) ROC analysis for risk score model I in the derivation cohort. AUC = 0.73 (95%
CI 0.66–0.80), p < 0.001. Sensitivity = 70.6%; specificity = 69.0%; PPV = 19.5%; NPV = 95.7%. (B) ROC
analysis for risk score model II in the derivation cohort. AUC = 0.79 (95% CI 0.73–0.86), p < 0.001.
Sensitivity = 74.5%; specificity = 68.2%; PPV = 19.9%; NPV = 96.2%. (C) Comparative model discrim-
ination for risk score models I and II, and established risk scores for the derivation cohort. (D) ROC
analysis for risk score model I in the validation cohort. AUC = 0.53 (95% CI 0.37–0.68), p = 0.77.
Sensitivity = 25.0%; specificity = 63.3%; PPV = 6.4%; NPV = 89.4%. (E) ROC analysis for risk score
model II in the validation cohort. AUC = 0.60 (95% CI 0.43–0.76), p = 0.08. Sensitivity = 66.7%;
specificity = 58.3%; PPV = 13.8%; NPV = 94.6%. (F) Comparative model discrimination for risk score
models I and II, and established risk scores for the validation cohort. AUC = area under the curve;
NPV = negative predictive value; PPV = positive predictive value; ROC = receiver operating characteristic.
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3.5. Risk Model II for In-Hospital CVE with Post-Procedural Assessment

To further evaluate the influence of intra-procedural and post-procedural factors on
the development of in-hospital CVEs, we created expanded risk model II. Therefore, three
intra-procedural parameters (non-use of protamine, aortic regurgitation above grade I,
and snaring) and two post-procedural parameters (no clopidogrel and no anticoagulation
following TAVR) were identified as independent predictors of in-hospital CVE (Table 4).
This resulted in a larger score with a minimum of 0 and a maximum of 11 points. Risk
model II showed an even better prediction of in-hospital CVE compared to risk model I,
with an area under the curve of 0.79 (95% CI 0.73–0.86; p < 0.001) (Figure 2B), and best
performance for scores of seven and eight points compared to the non-CVE group (p < 0.01)
(Figure 3B).

Table 4. Risk model II (pre-procedural, intra-procedural, and post-procedural parameters).

Parameter OR 95% CI p-Value

Prior CVE 1.86 0.75–4.66 0.183
AVA (≥0.55 cm2) 3.18 1.11–9.13 0.031 *

Aortic angulation (≥48.5◦) 2.49 1.24–5.01 0.010 *
RCC Agatston score (≥447.2 AU) 1.98 0.98–4.02 0.057

LVOT Agatston score (≥262.4 AU) 2.46 1.27–4.78 0.008 **
Ascending aorta Agatston score (≥116.4 AU) 2.28 1.15–4.49 0.018 *

Non-use of protamine 5.12 1.76–14.83 0.003 **
AR ≥ II◦ 2.77 0.91–8.42 0.072
Snaring 5.30 0.98–28.65 0.053

No clopidogrel after TAVR 2.64 1.22–5.72 0.013 *
No (N)OAC after TAVR 2.49 1.23–5.03 0.011 *

n = 532 patients, Nagelkerke R2 = 0.23, p = 0.006 **
Parameters are shown with odds ratios (ORs), corresponding 95% confidence intervals (CI), and p-values
(* p < 0.05, ** p < 0.01). AR = aortic valve regurgitation; AU = Agatston unit; AVA = aortic valve area;
CVE = cerebrovascular event; LVOT = left ventricular outflow tract; (N)OAC = (new) oral anticoagulation;
RCC = right coronary cusp; TAVR = transcatheter aortic valve replacement.
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3.6. Comparison to Other Risk Scores for CVE Prediction

For the derivation cohort, our new developed risk models I (AUC 0.73, 95% CI 0.66–0.80;
p < 0.001) and II (AUC 0.79, 95% CI 0.73–0.86; p < 0.001) for pre-procedural and post-
procedural assessment appeared to have better predictive values for in-hospital CVE after
TAVR than previously used risk scores such as EuroSCORE II (AUC 0.50; 95% CI 0.43–0.58;
p = 0.950), STS score (AUC 0.57, 95% CI 0.49–0.65; p = 0.12), CHA2DS2-VASc score (AUC
0.62, 95% CI 0.55–0.70; p = 0.004), or HAS-BLED score (AUC 0.59, 95% CI 0.51–0.69;
p = 0.027) (Figure 2C, Table 5).

Table 5. Comparison of risk scores in CVE prediction after TAVR (derivation cohort).

Parameter AUC 95% CI p-Value

Modell I 0.73 0.66–0.80 <0.001 ***

Modell II 0.79 0.73–0.86 <0.001 ***

EuroSCORE II 0.50 0.43–0.58 0.950

STS score 0.57 0.49–0.65 0.120

HAS-BLED 0.59 0.51–0.69 0.027 *

CHA2DS2-VASc 0.62 0.55–0.70 0.004 **
AUCs, 95% CIs, and p-values (* p < 0.05, ** p < 0.01, *** p < 0.001) of the compared risk models. AUC = area under
the curve; CI = confidence interval; STS = Society of Thoracic Surgeons.

3.7. Validation of the New Risk Models

The developed risk models I and II were applied to patients in the validation cohort (n = 132),
aiming at the prediction of in-hospital CVE. While no difference in CVE prediction could
be observed for risk model I with pre-procedural assessment (AUC 0.53, 95% CI 0.37–0.68;
p = 0.77), risk model II with post-procedural assessment only narrowly missed a significant
difference in CVE prediction (AUC = 0.60, 95% CI 0.43–0.76; p = 0.08). The results of the risk
model I validation are shown in Figure 2D, while those of model II are shown in Figure 2E.
In comparison to other risk scores for CVE prediction in the validation cohort, neither
our newly developed risk models I and II nor any of the other four examined risk scores
achieved statistical significance (Figure 2F, Table 6).

Table 6. Comparison of risk scores in CVE prediction after TAVR (validation cohort).

Parameter AUC 95% CI p-Value

Modell I 0.35 0.18–0.52 0.092

Modell II 0.42 0.24–0.60 0.359

EuroSCORE II 0.60 0.44–0.76 0.251

STS score 0.47 0.29–0.65 0.716

HAS-BLED 0.44 0.28–0.61 0.514

CHA2DS2-VASc 0.39 0.24–0.54 0.204
AUCs, 95% CIs, and p-values of the compared risk models. AUC = area under the curve; CI = confidence interval;
STS = Society of Thoracic Surgeons.

4. Discussion

The incidence of stroke and TIA was similar to that reported in prior studies [3–5,7,8],
with 3.6% of our patients developing new neurological deficits within the first few days
after TAVR. This study demonstrates that the risk of CVE following TAVR is associated
with (A) calcification burden of the device landing zone, namely, the RCC as a surrogate
parameter of the aortic valve, LVOT, and ascending aorta calcification burden; (B) higher
mechanical forces during the implantation process, caused by larger aortic angulation, snar-
ing, and residual aortic regurgitation; and (C) lack of post-procedural dual antithrombotic
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or anticoagulation treatment. Our developed risk model was superior to both established
risk scores for outcome prediction (EuroSCORE II and STS score) mentioned in the cur-
rent guidelines [1], as well as the risk scores examined for CVE prediction after TAVR in
previous studies (CHA2DS2-VASc score and HAS-BLED score) [9,10]. Nevertheless, the
reliability of CVE prediction is limited due to the infrequency of this event. To the best of
our knowledge, this is the first risk model developed for in-hospital CVE following TAVR
including multimodality imaging for quantification of calcification burden, highlighting
the importance of pre-procedural MSCT analysis.

4.1. Impact of the Aortic Root’s Calcification Burden

The more calcified the aortic and valvular structures, the higher the risk of debris
embolization through mechanical manipulation with wires, catheters, the catheter-loaded
device, and the new valve itself. In our analysis, independent predictors of in-hospital
CVE following TAVR were higher calcium volumes of the aortic valve (predominantly of
the RCC), the LVOT, and the ascending aorta. This relationship between the calcification
burden of the aortic root and the probability of CVE was partially described previously.
Tada et al. and Vlastra et al. described a higher risk of CVE following TAVR in patients with
a heavily calcified aortic valve, without examination of the ascending aorta or LVOT [3,11].
Our study is the first to consider all parts of the aortic root for calcium quantification,
resulting in pre-procedural cutoff values for RCC, LVOT, and ascending aorta calcium
volumes, summarized by risk score model I. Previous studies reported small aortic valve
areas with high pre-TAVR aortic peak gradients associated with early CVE risk, assuming
high calcium volumes of the aortic valve without quantification by MSCT [2,6,8,12]. In
our opinion, this is an incorrect conclusion in some cases due to different underlying flow
patterns of aortic stenosis. In (paradoxical) low-gradient stenosis, for example, aortic valve
calcium volumes might be low, yet the valve orifice area is small [13]. In our results, we
could not confirm the relationship between small aortic valve area and the risk of CVE; on
the contrary, larger aortic valve areas turned out to be predictive of CVE following TAVR in
risk model I. This finding might be classified as selection bias due to relevance in previous
studies, but it could also illustrate that not the aortic valve area but, rather, the calcium
volume is predictive of CVE, because the AVA is small anyway in severe aortic stenosis.

4.2. Procedure-Related Factors

Most early CVEs following TAVR are supposed to be procedure-related due to valve
positioning and the implantation process itself, causing disruption of calcific atheromatous
debris from the aortic arch and the native valve. The impact of tissue embolization during
TAVR was confirmed by histopathological analysis of captured debris in the cerebral protec-
tion filters of almost every patient examined [14,15]. Transcranial Doppler studies showed
that most high-intensity transient signals, as a surrogate of microembolization, occurred
during valve positioning and implantation [16], suggesting that the mechanical interaction
between the transcatheter valve and the calcified native aortic valve plays a major role in
periprocedural cerebral emboli. Furthermore, the number of solid emboli was correlated
with the aortic valve calcium score assessed by MSCT [17]. In the present study, procedural
factors associated with in-hospital CVE included snaring of the prosthesis stent frame after
valve prosthesis embolization, and increased mechanical force due to large aortic angula-
tion, resulting in higher rates of significant aortic regurgitation after TAVR. Several studies
support our finding that valve dislodgment and repositioning are predictive of early CVE
following TAVR [2,18]. Large aortic angulation is known to be associated with moderate-
to-severe aortic regurgitation [19]. Therefore, the CHOICE trial showed that significantly
more balloon post-dilatations were required after self-expandable valve deployment to
manage varying degrees of aortic regurgitation, aiming to reduce periprosthetic leakage of
the under-expanded valve [4]. In our study, balloon post-dilatation showed an increased
risk of in-hospital CVE in univariate analysis but failed to become an independent predictor
in multivariate analysis. Nonetheless, previous studies demonstrated an increased risk
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of CVE occurring within the first 24 h after the TAVR procedure as a result of the use of
balloon post-dilatation [2,5,6,8].

4.3. Patient-Related Factors

History of prior CVE is a well-known predictor and the most common risk factor
in studies investigating CVEs following TAVR [2–4,8,12,18,20], so it was included in our
analysis as well. However, no other factors associated with an increased atherosclerotic
burden were found to be associated with CVE following TAVR in our analysis, such as
chronic kidney disease, diabetes, coronary artery disease, peripheral vascular disease, or
carotid stenosis. One possible reason for this observation is the timing of CVE after TAVR.
Nombela-Franco et al. classified the incidence of CVE after TAVR as acute (≤24 h), subacute
(1–30 days), or late (>30 days) [8]. Most frequent thromboembolic events occur within
the first day after TAVR, with about half of them presenting immediately or within the
first few hours after implantation, and may therefore be considered procedural [8,14,20],
as described in our analysis of in-hospital CVEs. However, subacute and late CVEs were
associated with patient-related predictors, including factors associated with an increased
atherosclerotic burden—as described above—and new-onset atrial fibrillation [6,8,12,20].

4.4. Antithrombotic and Anticoagulation Treatment after TAVR

There is still uncertainty regarding the optimal antithrombotic regime after TAVR.
Although the ARTE trial suggested that single antiplatelet therapy after TAVR may be as
effective as dual antiplatelet therapy for prevention of ischemic events, with a lower risk of
bleeding [21,22], our results show a strong correlation between non-use of dual antiplatelet
therapy with clopidogrel and in-hospital CVE in risk score model II. The same effect could
be observed regarding non-use of non-vitamin-K direct anticoagulation (NOAC), regardless
of indication, although the recently published GALILEO trial reported a higher risk of
death, bleeding, and thromboembolic complications associated with rivaroxaban (10 mg
daily) after TAVR compared to antiplatelet therapy [23]. Our results have already been
verified in previous studies that recognized a higher risk of early CVE in TAVR patients
without dual antiplatelet therapy [2,6] or NOAC [7].

Regarding primary prevention of CVE, patients with an atrial-fibrillation-related
stroke showed benefit from pre-stroke statin in previous studies, with significantly lower
neurological deficit compared to those without pre-stroke statin therapy [24,25]. These
interesting results should be further explored in atrial-fibrillation-related cerebrovascular
events following TAVR due to paused anticoagulation during the TAVR procedure or
new-onset atrial fibrillation after TAVR.

Administration of protamine during TAVR decreased the risk of in-hospital CVE
in risk score model II. This result seems to be a paradox, because the use of protamine
antagonizes the effect of heparin during TAVR, and should therefore lead to a higher risk
of thromboembolic events. Evidence for protamine use during TAVR with regard to CVE is
rare, but protamine changes blood viscosity—an effect that can result in embolic as well
as hemorrhagic cerebral infarction. Al-Kassou et al. evaluated the safety of protamine
administration during TAVR with regard to bleeding complications as well as stroke [26].
As expected, the incidence of bleeding complications was significantly higher in the non-
protamine group, but stroke also tended to occur more often without administration of
protamine (3.6% vs. 1.5%, p = 0.08). This result supports our finding of the CVE-protective
effect of protamine, without any sufficient explanation.

4.5. Limitations

Several limitations should be considered when interpreting this study. The risk scores
used for comparison to our developed risk models were not created for the application of
CVE prediction after TAVR, but served as broad clinical comparison models with consid-
erable predictive value. As this was a single-center, retrospective study, there may exist
confounders that were not accounted for in our analysis. There might be temporal bias
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due to comparison of non-contemporary derivation and validation cohorts with significant
differences in baseline characteristics, due to the higher surgical risk of TAVR patients in
the recent past. The small number of in-hospital CVEs limits the power of our multivariate
logistic regression model, and selection bias due to matching factors cannot be excluded.
Therefore, this type of risk model should be regarded as a hypothesis-generating approach
that needs to be further developed into a risk model with a more satisfactory predictive
value in larger, randomized, controlled multicenter trials and large prospective registry
studies without the temporal bias of derivation and validation cohorts. At a minimum, we
tried to consider the rarity of CVEs by choosing a small matching ratio of 1:10, in contrast
to former studies, which usually chose a matching ratio of 1:4 for the investigation of CVEs
after TAVR.

5. Conclusions

Our new risk models appeared to be the best for in-hospital CVE prediction after
TAVR compared to other clinical risk scores previously used in the literature. However,
an accurate method for reliable CVE prediction seems to be impossible so far, although
many clinical and procedural risk factors are known. The expansion of TAVR therapy
in severe symptomatic aortic stenosis towards younger and lower-risk populations with
longer life expectancy will force us to discover the mechanisms determining CVE after
TAVR. Although the evolution of the delivery system, refined patient selection, and better
intra-procedural pharmacological protection may have contributed to a decrease in CVE
incidence, the morbidity and mortality associated with CVE after TAVR are still high.
Even if thromboembolic cerebral events remain neurologically inapparent, the effects on
cognitive impairment and long-term dementia are not well understood. Therefore, larger
multicenter trials with expanded neuroimaging are needed to quantify cerebral lesions,
instead of waiting for the stochastic clinical effects of CVEs. Those patients who might
benefit the most from transcatheter cerebral embolic protection devices should be identified
by risk prediction.
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