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Identification and characterization of disease-associated vari-
ants in monogenic disorders is an important aspect of diag-
nosis, genetic counseling, prediction of disease severity, and
development of therapy. However, the effects of disease-associ-
ated variants on pre-mRNA splicing and mRNA degradation
are difficult to predict and often missed. Here we present a
generic assay for unbiased identification and quantification
of arylsulfatase B (ARSB) mRNA for molecular diagnosis of pa-
tients withmucopolysaccharidosis VI (MPSVI).We found that
healthy control individuals have inefficient ARSB splicing
because of natural skipping of exon 5 and inclusion of two
pseudoexons in introns 5 and 6. Analyses of 12MPSVI patients
with 10 different genotypes resulted in identification of a 151-
bp intron inclusion caused by the c.1142+2T>C variant and
detection of low ARSB expression from alleles with the
c.629A>G variant. A special case showed skipping of exon 4
and low ARSB expression. Although no disease-associated
DNA variant could be identified in this patient, the molecular
diagnosis could be made based on RNA. These results highlight
the relevance of RNA-based analyses to establish a molecular
diagnosis of MPS VI. We speculate that inefficient natural
splicing of ARSB may be a target for therapy based on promo-
tion of canonical splicing.
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INTRODUCTION
Mucopolysaccharidosis VI (MPS VI; MIM: 253200) is a lysosomal
storage disease caused by disease-associated variants in the arylsulfa-
tase B (ARSB) gene and has an autosomal recessive inheritance. ARSB
enzyme deficiency results in failure to degrade glycosaminoglycans
(GAGs) within lysosomes, resulting in their accumulation and lyso-
somal pathology in multiple tissues. The most prominently affected
tissues include cartilage, bone, cornea, heart valves, and visceral
organs.1–6 Patients with MPS VI can be diagnosed with a slowly or
rapidly progressive form of the disease, although a broad clinical spec-
trum exists.5–8 Enzyme replacement therapy (ERT) for MPS VI,
where the human recombinant ARSB enzyme is administered weekly
174 Molecular Therapy: Methods & Clinical Development Vol. 19 Decem
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via intravenous infusion, has been available since 2005. ERT improves
body growth and symptoms in visceral organs and extends life expec-
tancy but has limited efficacy in connective tissues.8–12 The molecular
diagnosis of MPS VI is based on ARSB enzyme deficiency and the
presence of disease-associated variants in the ARSB gene.6 Current
diagnostic assays for identification of DNA variants are based on
sequence analysis of exons and short stretches of adjacent introns.
However, disease-associated variants outside of these regions are
missed in such analyses. In addition, the effects of variants on pre-
mRNA splicing and/or mRNA expression remain unknown.

To date, over 200 unique variants in the ARSB gene have been re-
ported,13 of which 37% are classified as likely pathogenic and 16%
as pathogenic, and insufficient data are available for classification of
�45% of variants. Currently �5% of the reported ARSB variants
have been reported to affect splicing, but it is likely that this is an un-
derestimation based on the reported frequency of splicing variants in
human disease.14,15 This amounts to up to �20% of disease-associ-
ated variants in general, implying that up to an additional �30 of
the 200 known ARSB variants for which insufficient information is
available or that are currently classified as missense might have an un-
documented effect on splicing, which should be investigated
further.14,16,17 The effect of variants on splicing are difficult to predict
in silico.18,19 Even when a strong effect on splicing is predicted, the
outcome of aberrant splicing is unclear.20 For instance, loss of a splice
site may result in exon skipping or inclusion, intron retention, and/or
utilization of a cryptic splice site. Depending on the number of nucle-
otides in the skipped or included sequence, the reading frame may
remain intact or become disrupted. The latter can result in mRNA
degradation via the nonsense-mediated decay (NMD) pathway and
can remain unnoticed unless this pathway is inhibited experimentally;
ber 2020 ª 2020 The Authors.
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for example, using cycloheximide (CHX). Identification of disease-
associated variants and understanding their mechanism of action is
becoming increasingly important to confirm the diagnosis, for genetic
counseling, and for development of novel therapies.20,21 Newborn
screening has been shown to be feasible for MPS VI.22–24 It will be
of great importance for newborn screening programs to have a full
understanding of ARSB disease-associated variants, including their
putative effects on RNA processing and stability.

Previously, we developed a generic approach for identification and
characterization of variants that affectGAA splicing in Pompe disease
and applied this assay to identify multiple novel splicing events
caused by disease-associated variants that were known or that were
missed by standard diagnostics.25–27 Here we tailored this assay for
detection ofARSB splicing inMPS VI and extended it to enable detec-
tion of ARSB transcripts that undergo mRNA decay. The ARSB
splicing assay yielded novel information at the RNA level for 4 pa-
tients with three different genotypes of 12 MPS VI patients in the
Netherlands, including an RNA-based molecular diagnosis of MPS
VI in a patient lacking ARSB disease-associated DNA variants. In
addition, it revealed inefficient canonical splicing of exons 5 and 6
in all analyzed patients and control individuals, providing a putative
target for a generic strategy forMPS VI based on improving canonical
splicing.

RESULTS
Healthy Control Individuals

The generic splicing assay consists of flanking-exon RT-PCR (using
primers in exons flanking the exon of interest) and exon-internal
RT-qPCR (using primers within the exon of interest) of all exons, fol-
lowed by Sanger sequence analysis of splicing products, as decribed.25

We tailored this assay to ARSB and included treatment with CHX to
inhibit NMD to detect aberrant splicing products that changed the
reading frame and caused a premature termination codon. Primary
fibroblasts of two healthy control individuals were used to validate
the approach. Flanking-exon RT-PCR analysis of all but the first
and last exons showed that all canonical splicing products were de-
tected at the expected sizes in healthy control individuals 1 and 2 (Fig-
ures 1A and 1B). Inhibition of NMD by treatment with CHX resulted
in identification of additional aberrant products in healthy control in-
dividual 1 (products 1–4). Healthy control individual 2 showed iden-
tical products, and, in addition, showed a lowly expressed product
(product 5) that was insensitive to NMD inhibition. Repeated ana-
lyses showed that product 5 can be easily missed in RT-PCR analysis,
likely because of its low abundance, and that it could also be detected
in control individual 1 in some cases (data not shown). Sequence
Figure 1. Splicing Analysis of Two Healthy Control Individuals

(A) Schematic overview of the ARSB gene with intron size, exon size, and exon number.

are indicated above the lanes. PCR products were separated by electrophoresis on a

individuals. Numbers besides the bands refer to the products analyzed in further detail. (

splicing events detected in healthy control individuals. Exons are indicated as green box

suggested in this drawing. Canonical splicing is indicated in black and alternative splici

Values are means relative to healthy control individual 1. GAPDH was used for normali

176 Molecular Therapy: Methods & Clinical Development Vol. 19 Decem
analysis showed that products 1 and 2 contained an inclusion of a
pseudoexon of 214 nt from c.1142+456 to c.1142+670 in intron 5.
Analysis of products 3 and 4 showed inclusion of a pseudoexon of
181 nt from c.1214–1523 to c.1214–1342 in intron 6. Product 5 was
the result of a perfect skip of exon 5, resulting in loss of 244 nt (Figures
1C and 1D). All of these products resulted in an out-of-frame product
that was predicted to undergo NMD. In agreement, products 1–4
were only detected after inhibition of NMD; however, product 5
was detected irrespective of CHX treatment, suggesting escape from
NMD. RT-qPCR analysis showed quantification of all ARSB exons
in healthy control individuals 1 and 2. The expression levels of all
exons were similar in both healthy control individuals, with slightly
lower levels in control individual 2 compared control individual 1
(Figure 1E). In summary, these results established the generic splicing
assay for ARSB and showed inefficient ARSB splicing in healthy con-
trol individuals.

Patient 1

Patient #1 is homozygous for c.1142+2T>C, which is located near the
splice donor of exon 5 (Figure 2A; Table 1). This variant has been
published before by our center.9 No splicing analysis has been re-
ported by us or others, but Garrido et al.28,29 reported that the similar
variant c.1142+2T>A induces skipping of exon 5. In silico splicing
prediction of both variants indicated loss of the canonical splice
donor of exon 5 (Figure 2F, left panel; data not shown). Flanking-
exon RT-PCR analysis of all exons showed the presence of canonical
splicing products for exons 2–4 but very low expression of canonical
splicing products for exons 5–7 (Figure 2B). After inhibition of NMD,
several splicing products for exons 5–7 were detected, suggesting that
the 30 part of the ARSB mRNA was mostly degraded under normal
growth conditions (see below for identification of these products).
Quantification of ARSB mRNA expression using exon-internal RT-
qPCR analysis of cells grown in the absence of CHX showed that
expression of exons 6–8 was below 10% of the levels in healthy control
individuals. Exons 1–5 showed expression of�50% of that of healthy
control individuals, suggesting that this part of the mRNA partially
escaped mRNA degradation. Flanking-exon RT-PCR analysis further
showed two aberrant splice products for exon 5: one with a low mo-
lecular weight (MW) (product 5) and one with a higher MW than ex-
pected (product 6). Expression of exon 5 products in the absence of
CHX was low in flanking-exon RT-PCR because of low expression
of exon 6, in which the reverse primer was located. Sequence analysis
indicated that product 5 was the result of complete skipping of exon 5.
However, this exon 5 skip cannot be attributed to the c.1142+2T>C
variant because it also occurs in healthy control individuals (Figure 1),
and there was no indication that the level of exon 5 skipping was
(B) Flanking-exon RT-PCR analysis of two healthy control individuals. Exon numbers

1% agarose gel. Asterisks indicate alternative splicing products detected in healthy

C) Sequence analysis of the aberrant splicing products shown in (B). (D) Cartoons of

es. Introns are depicted as lines. A broken line indicates that the intron is longer than

ng in red. (E) Exon-internal RT-qPCR analysis of healthy control individuals 1 and 2.

zation. Error bars indicate SD (n = 3).
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increased compared with the healthy control individuals. Product 6
was identified after NMD inhibition. Sequence analysis of this prod-
uct showed partial retention of intron 5 (Figures 2D and 2E, left
panels). This was confirmed using flanking-exon RT-PCR analysis
of exon 6, resulting in product 7, which was also larger than expected
and showed the same partial inclusion of intron 5 (Figures 2D and 2E,
right panels). Inclusion of the first 151 nt of intron 5 causes a shift in
the reading frame, likely causing mRNA degradation starting at exon
6. Interestingly, partial retention of intron 5 seemed to prevent utili-
zation of the cryptic splice acceptor seen in healthy control individ-
uals in intron 5 at c.1142+456 (as judged from the absence of a
band corresponding to product 1 (P1) and P2, as seen in Figure 1).
Px likely represented the canonical splicing product for exon 6, based
on size. Topo cloning followed by sequencing did not result in its
identification, likely because of its very low abundance. Similar to
healthy control individuals, inclusion of the pseudoexon in intron 6
was detected in this patient, as seen from the higher-MW P3 and
P4 for flanking-exon RT-PCR analysis of exons 6 and 7, respectively
(Figure 2B). Splicing prediction indicated the presence of a strong
cryptic splice donor at position c.1142+151, which is the new donor
that was indeed used in P6 and P7 and resulted in intron retention
(Figure 2F, right panel). Taken together, these results indicate that
c.1142+2T>C has the following effects: (1) it causes partial retention
of 151 nt of intron 5, which leads to a frameshift and degradation of
the downstream part of the mRNA; (2) it prevents utilization of the
pseudoexon in intron 5; and (3) it has negligible effects on exon
5 skipping.
Patients 2–9

We applied the splicing assay to 8 additional patients with missense
variants to assess whether these variants could also affect splicing. Pa-
tients 2 and 3 were homozygous for c.454C>T, located in exon 2. Pa-
tient 4 was heterozygous for c.629A>G and c.937C>G, which are
located in exons 3 and 5, respectively. Patient 5–8 were homozygous
for a disease-associated variant located in exon 5; patient 5 carried
c.971G>T, patients 6 and 8 carried c.937C>T, and patient 7 carried
c.995T>G. Patient 9 was homozygous for c.903C>G in exon 5 and
c.1151G>A in exon 6. All of these missense variants have a predicted
or demonstrated deleterious effect on ARSB enzyme activity.9 For all
of these variants, in silico prediction indicated no effect on splicing
(data not shown). Flanking-exon RT-PCR analysis of cells grown in
the absence or presence of CHX indicated normal ARSB splicing in
all cases (Figure S1). All analyzed patients showed inclusion of pseu-
doexons in introns 5 and 6, similar to healthy control individuals. We
conclude that the missense variants that were present in patients 2–9
did not induce detectable aberrant ARSB splicing.
Figure 2. Splicing Analysis of Patient 1

(A) A schematic overview of the ARSB gene, with the disease-associated variant indicate

RT-qPCR analysis of patient 1. Values are means relative to healthy control individual 1

analysis of the aberrant splicing products shown in (B). (E) Cartoons of aberrant splicing e

variant c.1142+2T>C comparedwith the wild type. The left panel shows the canonical sp

indicate higher scores in the algorithms.
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Patients 10 and 11

Patients 10 and 11 are siblings and compound heterozygous for the
c.629A>G missense variant located in exon 3 and the c.979C>T
nonsense variant located in exon 5 (Figure 3A). The c.979C>T variant
results in a premature translation termination codon with predicted
mRNA degradation via the NMD pathway. In silico splicing predic-
tion of both variants indicated no effects on splicing (data not shown).
Both variants have been classified previously as disease associated.9,30

Flanking-exon RT-PCR analysis showed all canonical splicing prod-
ucts in both patients, although the levels were severely reduced
compared with healthy controls. The expression levels of all exons
increased upon CHX treatment, indicating degradation by NMD.
The same non-canonical products (i.e., products with the pseudoex-
ons in introns 5 and 6) as in healthy controls were detected after
NMD inhibition (Figures 3B and 3C). The exon-internal RT-qPCR
assay confirmed the low levels of ARSB mRNA expression, which
were approximately 20% of the values of healthy control individuals
for all exons in both patients. These results indicate that these patients
have low ARSB mRNA expression. Although a 50% reduction in
mRNA expression can be explained by NMD of mRNA that is ex-
pressed from the c.979C>T allele, the cause of the additional 30%
reduction in mRNA expression from the c.629A>G allele is unclear.
Further research is needed to investigate whether this additional
reduction in mRNA expression is caused by c.629A>G itself or by
another, still unidentified ARSB sequence variant.

Patient 12

Patient 12 was diagnosed withMPS VI based on deficient ARSB enzy-
matic activity and clinical symptoms; however, no disease-associated
variants in the ARSB gene were found at the DNA level by standard
diagnostic analysis (Figure 4A). Flanking-exon RT-PCR showed
that all canonical splicing products were present at very low levels
(Figure 4B). This was likely due to degradation by NMD because
expression of all exons was elevated following inhibition of NMD us-
ing CHX. A very low level of expression for the canonical exon 4
product was detected (top band in RT-PCR of exon 4; Figure 4).
Exon-internal RT-qPCR analysis confirmed the low ARSB expres-
sion, with levels of all exons that were below 10% compared with
the levels of healthy control individual 1 (Figure 4C). Besides all ca-
nonical splicing products, an aberrant product (P8) with a low MW
was detected using flanking-exon RT-PCR analysis of exon 4. This
product was the result of a perfect skip of exon 4, as shown by
sequence analysis (Figure 4D). The size of exon 4 is 208 nt, and skip-
ping of this exon results in a frameshift, likely causing NMD. This was
indeed observed because the exon 4-skipped mRNA was more abun-
dant following inhibition of NMD (Figure 4E). In addition, we
observed that the pseudoexon in intron 5 (P1 and P2 in Figure 1)
d by a red solid line. (B) Flanking-exon RT-PCR analysis of patient 1. (C) Exon-internal

. GAPDH was used for normalization. Error bars indicate SD (n = 3). (D) Sequence

vents detected in patient 1. (F) Alamut Visual splicing prediction for five algorithms of

lice donor, and the right panel shows the splice donor used in P6 and P7. Larger bars
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Molecular The
seen in all individuals was lacking, likely because of the exon 4 skip,
but that the pseudoexon in intron 6 (P3 and P4 in Figure 1) remained
present.

To identify the genomic DNA variant that might be involved, we
performed sequence analysis of all exons and their boundaries (up
to 500 nt into the introns), but this failed to result in identification
of any disease-associated variant. Because ARSB has very large
intron sizes (8.9 kb for intron 3 and 69.4 kb for intron 4), it could
be a candidate for recursive splicing (RS). The predicted consensus
sequence AGGTRAGW used by Sibley et al.31 was present eight
times at several locations in intron 4, but targeted sequencing of
these regions did not reveal the presence of any ARSB DNA
sequence variant, and RNA sequencing (RNA-seq) analysis did
not reveal RS in ARSB (data not shown). Heterozygous SNPs
were detected at the DNA level in intron 2 and exon 5 and at the
RNA level at a 50/50 ratio in exon 5, arguing against a large gene
deletion or a promoter variant.

To examine the genomic organization, a SNP array of the patient
as well as of the parents was performed. This showed two maternal
gains of 484 kb and 225 kb on the X chromosome and two paternal
gains on chromosome 5 and 17 of 38 kb and 300 kb, respectively
(Figure 4F). The X chromosome gains and the gain on chromo-
some 17 did not contain any genes known to be involved in
splicing that could explain the results of the splicing assay. The
gain on chromosome 5 was located in 5q14.1, which is also the
location of the ARSB gene, and consisted of exons 2–4 of the
ARSB gene. Although the exact location of this gain could not be
determined, it is possible that it would disrupt one allele of patient
12 and cause skipping of exon 4. Nevertheless, it is unclear how
this putative mono-allelic disruption could explain the results of
the splicing assay because the results of the flanking-exon RT-
PCR and the exon-internal RT-qPCR suggested degradation of
both alleles. To examine this further, we analyzed the parents.
Both parents showed expression levels of ARSB that were �50%
of levels in healthy control individuals. The father contributed
the allele with the gain in 5q14.1, which might have disrupted
ARSB expression to a large extent and might have caused skipping
of exon 4. It is unclear why exon 4 skipping was minimally present
in the father and so abundant in the patient. The mother likely
contributed an allele with low ARSB expression, but it remained
unclear what the underlying DNA variant was. Irrespective of the
lack of an ARSB genotype for this patient, the results emphasize
that analysis at the RNA level using the generic splicing assay
enabled molecular diagnosis of MPS VI, consisting of low ARSB
mRNA expression and skipping of exon 4.

DISCUSSION
Aberrant ARSB Splicing in Healthy Control Individuals

ARSB is a very large gene (total size, 208 kb) with exceptionally large
introns; intron 1 is large at 15.7 kb, but introns 4, 5, and 6 are huge at
69.4, 46.1, and 57.3 kb, respectively. In comparison, the average size of
a human protein-coding gene is 67 kb, and the average intron size is
rapy: Methods & Clinical Development Vol. 19 December 2020 179
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Figure 3. Splicing Analyses of Patients 10 and 11

(A) Schematic overview of the ARSB gene, with the disease-associated variant indicated by a red solid line. (B) Flanking-exon RT-PCR analysis of patient 10. (C) Flanking-

exon RT-PCR analysis of patient 11. (D) Exon-internal RT-qPCR analysis of patients 10 and 11. Values are means relative to healthy control individual 1.GAPDHwas used for

normalization. Error bars indicate SD (n = 3).
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�6 kb.32 This poses several challenges for production of ARSB pro-
tein. First, the pre-mRNA transcript is long, so takes more time
than average for RNA polymerase II to generate a full-length tran-
script. Second, correct pre-mRNA splicing is a challenge because
long introns contain, on average, more competitive cryptic splice
sites, and long introns impose physical challenges for correct lariat
formation during splicing.

Indeed, we found that splicing of ARSB is rather inefficient; exon 5
was skipped, and pseudoexons in introns 5 and 6 were utilized in a
subset of transcripts. All of these aberrant splicing events resulted
in an out-of-frame transcript. Skipping of exon 5 was present at
low levels, produced an out-of-frame mRNA, but escaped NMD, as
is sometimes the case.33 Detection of exon 5 skipping in healthy con-
trol individuals should prevent misinterpretation of the effects of dis-
ease-associated ARSB variants in MPS VI.
180 Molecular Therapy: Methods & Clinical Development Vol. 19 Decem
Inclusion of pseudoexons in introns 5 and 6 did result in NMD and
could only be detected after CHX treatment. Their inclusion was
not obvious from in silico predictions (Figures S2 and S3). For the
pseudoexon in intron 5, the splice acceptor of exon 6 had a relatively
weak predicted strength, but the predicted strength of the cryptic
splice acceptor at c.1142+456 was much weaker. Interestingly, the
splice donor of this pseudoexon at c.1142+670 could not be predicted
by any of the programs used. Cryptic splices sites of the pseudoexon
in intron 6 were predicted in silico and were moderately strong. This
highlights the need for experimental testing of splicing outcomes.

Relevance of Aberrant Natural Splicing

Although, at first sight, pseudoexon inclusion or exon skipping in
healthy control individuals seem to be undesired forms of aberrant
splicing, these are actually known to be among the mechanisms to
regulate gene expression in various organisms ranging from plants
ber 2020
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Figure 4. Splicing Analysis of Patient 12

(A) Schematic overview of the ARSB gene; no disease-associated variants were identified for this patient. (B) Flanking-exon RT-PCR analysis of patient 12. (C) Exon-internal

RT-qPCR analysis of patient 12. Values aremeans relative to healthy control 1.GAPDHwas used for normalization. Error bars indicate SD (n = 3). (D) Sequence analysis of the

aberrant splicing products shown in (B). (E) Cartoon of the aberrant splicing event detected in patient 12. (F) SNP array results for patient 12 and parents.
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to humans. For example, it has been shown that many genes involved
in cell cycle regulation, splicing, development, tissue homeostasis, and
immune regulation are subject to alternative splicing to produce aber-
rant transcripts in healthy individuals.20,34–36 This may reflect the
need to rapidly regulate RNA expression levels during dynamic
Molecular The
cellular processes. In ARSB, natural aberrant splicing might be useful
to provide a level of regulation for turnover of GAGs in cartilage via
ARSB-mediated degradation, which is known to be highly dynamic in
response to mechanical stress.37 Natural aberrant splicing can also
play a role in human disease. Natural cryptic splice sites can overtake
rapy: Methods & Clinical Development Vol. 19 December 2020 181
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canonical splicing when a canonical splice site is weakened; for
example, as seen in b-thalassemia38–41 and in Pompe disease, caused
by the common c.-32-13T>G (IVS1) variant.42 However, in the case
of MPS VI, we did not observe simple competition between inclusion
of a canonical versus a pseudoexon. For example, in patient 1, the
c.1142+2T>C variant weakened the splice donor of exon 5, resulting
in retention of the most 50 part of intron 5 and inhibition rather than
promotion of utilization of the pseudoexon in intron 5. Cryptic splice
sites and pseudoexons also offer the opportunity to design antisense
oligonucleotides (AONs) that block utilization of cryptic splice sites
and promote canonical splicing in human disease.20,21,43 We and
others have shown recently that it is feasible for the lysosomal storage
disease Pompe disease to restore GAA expression after aberrant
splicing caused by several GAA variants, including c.1552-3C>G,
c.1256A>T, c.2190-345A>G,26 and the common IVS1 variant.42,44–
46 However, AONs that blocked the cryptic splice sites of the pseu-
doexons in ARSB introns 5 and 6 failed to promote canonical ARSB
splicing (Figure S4), suggesting a more complex underlying mecha-
nism for ARSB splicing. We speculate that the large sizes of introns
5 and 6 offer too many alternative options for splicing to allow a sim-
ple competition model between utilization of canonical splice sites
and the cryptic splice sites of the pseudoexons.

Unexpected Aberrant Splicing and mRNA Expression in MPS VI

Patients

We found that the c.1142+2T>C variant in patient 2 caused intron
retention of the most 50 part of intron 5 by utilizing a predicted
cryptic splice acceptor site (patient 1; Figure 2). A similar variant,
c.1142+2T>A, has been described in the literature. In that case,
only cells from the father that carried c.1142+2T>A were analyzed
in the absence of CHX. It was concluded that this variant causes skip-
ping of exon 5. However, we found that exon 5 skipping also occurs in
healthy control individuals, opening the possibility that c.1142+2T>A
was not the cause of the exon 5 skip and that this variant may also
cause intron 5 retention. This would require further analysis of cells
grown in the presence of CHX because the intron retention product
can be easily missed in normally growing cells because of NMD.

Patient 1 in the present study showed NMD of only the 30 part of the
mRNA (Figure 2). At present we do not have an explanation for this
observation. Aberrant splicing around exon 5 shows variable levels of
NMD; exon 5 skipping occurs in healthy and diseased individuals,
causes a frameshift, but does not induce NMD, whereas a premature
termination codon in exon 5 does induce NMD (caused by c.979C> T
in patients 10 and 11; Figure 3). Although exons 1–5 encode the ARSB
signal peptide and the sulfatase domains, exons 6–8 encode the C ter-
minus of the ARSB protein, for which no conserved domain is pres-
ently known.47,48 Future experiments are needed to elucidate the
mechanisms underlying regulation of NMD around exon 5.

Patients 10 and 11 contained the c.629A>G variant on the second
allele. ARSB mRNA expression was 20% rather than the expected
50% for all exons (the other allele underwent NMD), indicating
that the c.629A>G allele was associated with low expression.We spec-
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ulate that this missense was linked to another variant that was respon-
sible for the low mRNA levels of this allele (for example, a promoter
variant), which needs further analysis. Nevertheless, this result high-
lights the value of quantitative analysis of ARSBmRNA expression to
detect effects on mRNA expression levels.

A Complex Case: Molecular Diagnosis at the mRNA Level

Patient 12 was deficient in ARSB enzyme activity, but no DNA vari-
ants could be identified by standard diagnostics. We found a number
of aberrations, including low mRNA expression of all exons, skipping
of exon 4, and gain ofARSB exons 2–4 in 5q14.1, which is the location
of the ARSB gene. This helped to establish the molecular diagnosis at
themRNA level, but we could not identify the DNA variants that were
responsible. Below we discuss possible scenarios for this patient.

The father contains gain of ARSB exons 2–4 in 5q14.1 on one allele.
He has �50% ARSB mRNA expression from both alleles (data not
shown) and shows very low but detectable skipping of exon 4 (Fig-
ure S5). We hypothesize that the gain of ARSB 2–4 landed in the
ARSB gene to induce exon 4 skipping and disrupt ARSB expression
via NMD. However, the father had only minor levels of exon 4 skip-
ping compared with patient 12. We hypothesize that patient 12 may
contain a de novo variant in cis or in trans that results in worsening of
exon 4 skipping and NMD.

The mother also has low ARSB mRNA expression of �50% of the
levels of healthy control individual 1 levels (data not shown). No dis-
ease-associated ARSB variant was detected in the mother. A heterozy-
gous SNP was detected in exon 5 in mRNA from patient 12 at a 50%
ratio in the absence and presence of CHX (data not shown), indi-
cating that both alleles were expressed. This argued against a simple
scenario in which the maternal allele underwent NMD. The underly-
ing molecular mechanism remained obscure and may suggest a
de novo variant in the maternal allele that caused low mRNA expres-
sion in patient 12.

Conclusions

In conclusion, of 12 MPS VI patients who were present in the
Netherlands at the time of analysis, we identified novel aberrant
splicing/mRNA expression events in 4 patients with three different
genotypes. This highlights the need to implement systematic diag-
nostic analyses at the mRNA level to establish a molecular diagnosis
and to understand the pathogenic mechanism of ARSB variants that
can cause MPS VI. For future diagnostic implementation of the
generic splicing assay, we anticipate that next-generation sequencing
will be useful to make this assay suitable for diagnosis of a broad spec-
trum of human diseases within a single run.

MATERIALS AND METHODS
Patients and Healthy Control Individuals

Patients were diagnosed with MPS VI at the Center for Lysosomal
and Metabolic Diseases of Erasmus MC, Rotterdam, the Netherlands.
Diagnosis was based on clinical symptoms, ARSB enzyme deficiency
in leukocytes and/or fibroblasts, and ARSB variant analysis. Analysis
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was performed on patient material obtained with informed consent.
For healthy control individuals, analysis was performed on material
for an unrelated disease obtained with informed consent. The study
protocol was approved by the Medical Ethical Committee at Erasmus
Medical Center, Rotterdam.

Nomenclature

The nomenclature of variants and splice sites is according to Human
Genome Variation Society (HGVS) standards (http://www.hgvs.org/
mutnomen/). RefSeq NM_000046.5 was used as a ARSB reference
transcript and NC_000005.10 as the genomic sequence.49

Splicing Prediction

Splicing prediction was carried out as described before.25 Alamut Vi-
sual version 2.6.1 was used to predict 50 and 30 splice junctions using
five different algorithms (see the description of algorithms at http://
www.interactive-biosoftware.com/doc/alamutvisual/2.6/splicing.
html).

Cell Culture

Primary human fibroblasts were cultured in high-glucose DMEM
(Lonza), 10% fetal bovine serum (Thermo Fisher Scientific), and
100 U/mL penicillin/streptomycin/glutamine (Lonza). Cells were
grown in the presence of 5% CO2. Cells were passaged at 80% to
90% confluency with TrypLE (Gibco). All cell lines were routinely
tested for mycoplasma infection using the MycoAlert Mycoplasma
Detection Kit (Lonza) and were negative. To inhibit NMD, 20 mg/
ml CHX (Sigma) was added to the medium 48 h prior to RNA isola-
tion. Phosphorodiamidate morpholino oligo (PMO) AON design and
treatment at 20 mM final concentration was performed as described
previously.26,42,44

RNA Isolation and cDNA Preparation

RNA was isolated using the RNAeasy Miniprep Kit with on-column
DNase treatment (QIAGEN) using guidelines provided by the manu-
facturer. 400 ng of RNA was used for generation of cDNA using the
iScript cDNA Synthesis Kit (Bio-Rad). The cDNA solution was
diluted 10 times before use in RT-PCR or RT-qPCR.

Flanking-Exon RT-PCR Analysis and Exon-Internal RT-qPCR

Analysis

Flanking-exon RT-PCR was performed with FastStart Taq Polymer-
ase (Roche) on a Bio-Rad S1000 thermal cycler. Exon-internal RT-
qPCR was carried out using iTaq SYBR Green Supermix (Bio-Rad)
on a cfx96rts cycler (Bio-Rad). All samples were measured in tripli-
cate and normalized against Glyceraldehyde-3-Phosphate Dehydro-
genase (GAPDH). All primer sets used for RT-qPCR showed high ef-
ficiency and specificity based on melting-curve analysis and standard
curve measurements. Primers are shown in Table S1.

Sequencing

Direct sequencing of products identified in flanking-exon RT-PCR
was performed using the Big Dye Terminator Kit v.3.1 (Applied
Biosystems). To obtain pure DNA samples, PCR products visible
Molecular The
on the gel were stabbed with a 20-mL pipette tip, and DNA on the
tip was resuspended in 10 mL H2O. A 1-mL aliquot was subsequently
used in a new PCR (as described above). Excess primers and dinucle-
otide triphosphates (dNTPs) were removed using FastAP thermosen-
sitive alkaline phosphatase (Thermo Fisher Scientific) according to
themanufacturer’s protocol. Alternatively, PCR products were cloned
into a pCR2.1-TOPO (Thermo Fisher Scientific) cloning vector ac-
cording to the manufacturer’s protocol, and then M13 primers were
used for sequencing (Table S1). Samples were purified with Sephadex
G-50 (GE Healthcare), and the sequence was determined on an
AB3130 genetic analyzer (Applied Biosystems).
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