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Abstract

Accurate and robust segmentation of anatomical structures from magnetic resonance

images is valuable in many computer-aided clinical tasks. Traditional codec networks are

not satisfactory because of their low accuracy of edge segmentation, the low recognition

rate of the target, and loss of detailed information. To address these problems, this study

proposes a series of improved models for semantic segmentation and progressively opti-

mizes them from the three aspects of convolution module, codec unit, and feature fusion.

Instead of the standard convolution structure, we apply a new type of convolution module for

the feature extraction. The networks integrate a multi-path method to obtain richer-detail

edge information. Finally, a dense network is utilized to strengthen the ability of the feature

fusion and integrate more different-level information. The evaluation of the Accuracy, Dice

coefficient, and Jaccard index led to values of 0.9855, 0.9185, and 0.8507, respectively.

These metrics of the best network increased by 1.0%, 4.0%, and 6.1%, respectively. Bound-

ary F1-Score reached 0.9124 indicating that the proposed networks can segment smaller

targets to obtain smoother edges. Our methods obtain more key information than traditional

methods and achieve superiority in segmentation performance.

Introduction

With the continuous development of society, people have become increasingly busy, and vari-

ous pressures of daily life and diseases (e.g., low back pain) have been discovered [1]. Over

four-fifths of the population is suggested to suffer from such diseases [2].

Spine problems have become one of the most common and urgent health problems in mod-

ern society. With the development of computer and digital information technologies, people

have increasingly focused on the acquisition and analysis of medical images. To improve the

feasibility of diagnosis and treatment before clinical diagnosis or spinal surgery, a doctor can

prioritize clinical analysis based on the patient’s medical image and efficiently obtain more

accurate clinical information from the segmented spinal image [3].

Magnetic resonance imaging (MRI) is known as the most sensitive non-invasive medical

image technique with an outstanding effect on the spinal structure [4]. With the application of

computer-aided diagnosis in the field of clinical diagnosis, doctors and scholars have increased
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visual research on spinal MRI. However, achieving the required segmentation accuracy of the

target is difficult because of the complex structure and variable shapes of the human spine and

the similarity of bone structures in other regions.

Several researchers have proposed many methods to achieve accurate spine segmentation,

including edge information-based segmentation [5], threshold-based segmentation [6], region

growing [6–9], active contour-based segmentation [10], and clustering-based segmentation

[11, 12]. However, segmentation efficiency is limited because of the complexity of the tradi-

tional method and noise from imaging devices.

Image segmentation research is constantly evolving with the development of deep learning

[13]. Compared with traditional segmentation methods, the deep convolutional network is

characterized by automatic feature extraction, which can achieve end-to-end training results.

Image segmentation algorithms based on deep learning mainly include the fully convolutional

network (FCN) [14], U-type network (U-Net) [15], V-type network (V-Net) [16], and SegNet

[17].

End-to-end and pixel-to-pixel convolutional neural networks are demonstrated as superior

to the most advanced semantic segmentation methods during their time. Their architecture

uses multilayer common convolution and pooling operations interchangeably. Finally, two

transformations are implemented: a transformation of the classification network to a segmen-

tation network and image-level classification to pixel-level classification. The operated objects

of the abovementioned models are mostly concentrated in a local area of the input image, and

the processing is similar to the sliding window model [17–20].

Olaf Ronneberger et al. [15] proposed a more concise network structure based on the FCN

structure using a U-Net segmentation model. U-Net is an extraordinary, advanced, and popu-

lar network model in the semantic segmentation of medical images. It comprises two parts,

namely encoding and decoding parts. The down-sampling operation in the encoding part

decreases the feature map resolution and increases the number of feature map channels to

obtain the feature maps of different dimensions. The up-sampling operation in the decoding

part reduces the number of feature map channels and gradually recovers the feature map reso-

lution. Meanwhile, U-Net has an FCN-like architecture that employs skip connection to avoid

losing details. The output segmentation map is then generated.

The U-Net architecture has three main advantages of segmentation tasks. First, the model

can handle global and local semantic information at the same time. Second, for an insufficient

training dataset, it can also be used for training to obtain an ideal result with a small number

of samples. Third, end-to-end segmentation training delivers the entire information to the

next step and directly generates a segmentation map such that the network can save the com-

plete semantic information of the input images. Many researchers have used this model for

MRI segmentation. Norman Berk et al. [21] used U-Net and its variant networks to segment

human knee joint images. Consequently, they obtained more accurate and efficient segmenta-

tion results. Some researchers have also proposed a spinal CT image segmentation method

based on U-Net [22, 23]. Gu et al. [24] integrated the proposed dense atrous convolution

(DAC) and residual multi-kernel pooling (RMP) blocks into an encoder-decoder structure to

capture more high-level features and preserve more spatial information.

In recent years, researchers have constantly tried improving the U-Net model. He et al. [25]

proposed a new method that substitutes an ordinary convolution module with a residual net-

work (ResNet). The method neither introduces additional model parameters nor increases the

computational complexity of the model. ResNet is also utilized to prevent gradient vanishing.

The generalized module consists of two layers of input information with a 3×3 kernel, a stride

size of 1, and a dilation rate of 1. The sum of the results and the input information is calculated

as the model output.

PLOS ONE Multi-path dense networks for MRI spinal segmentation

PLOS ONE | https://doi.org/10.1371/journal.pone.0248303 March 12, 2021 2 / 18

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0248303


The dense network, DenseNet [26], utilizes a more concise feature connection based on

ResNet. The overall architecture of DenseNet is equivalent to that of ResNet, but note that the

former uses a large number of skip connections to improve image feature utilization and

enhance the semantic segmentation effect. It sums up the output of all previous layers by a

concatenation operation; hence, it can obtain the subsequent layer input. The DenseNet func-

tion is modularized to obtain more universal convolutional units and achieve generalizability.

The generalized module consists of two layers of input information with a 3×3 kernel, a stride

size of 1, and a dilation rate of 1. A cross-fusion of information from each layer is used as the

final input of each operation level.

However, the encoder-decoder network has some disadvantages. U-Net, which is an

encoder-decoder model, finds it difficult to recover all the feature information of the input

images after obtaining the segmentation result by upsampling. The disadvantage of fewer data-

sets for medical image segmentation has always existed; therefore, inadequate samples have led

to overfitting.

Considering the problems of existing spinal segmentation methods, this study proposes a

new convolutional architecture based on typical codec networks. This architecture has been

improved across three aspects: convolution module, codec unit, and feature fusion. The exper-

imental results illustrate that our method achieves more accurate segmentation results than

traditional methods.

The main contributions of this work are summarized as follows:

1. We propose a new multi-path dense network for capturing more high-level features and

preserving more detailed information.

2. We improve the encoder-decoder structure in three aspects: convolution module, multi-

path network, and feature fusion.

3. We apply the proposed method in spine segmentation, with the results showing that the

proposed method outperforms state-of-the-art methods.

The remainder of this paper is organized as follows: Section 2 reviews some recent lumbar

spine segmentation methods and lumbar spine datasets; Section 3 introduces and analyzes the

proposed method in detail; Section 4 presents the experimental results; Section 5 provides rele-

vant discussions and Section 6 draws some conclusions.

Literature review

Researchers have considered deep learning as a rising subset of machine learning techniques

[27]. Rather than using pre-defined hand-crafted features, deep neural networks can learn

hierarchical features thoroughly from the input images [28]. Automated and semi-automated

detection and segmentation of spinal and vertebral structures from MRI is a challenging task

due to a relatively high degree of anatomical complexity [29]. The main problem is the pres-

ence of unclear boundaries and articulation of vertebrae with each other [30].

In recent years, several deep learning-based methods for vertebra segmentation have been

developed. Robert Korez et al. [31] designed a novel framework for the automated spine and

vertebrae detection and segmentation from three-dimensional (3D) computed tomography

images. Subsequently, they proposed an automated method for supervised segmentation of

vertebral bodies from 3D MRI that is based on coupling deformable models with convolu-

tional neural networks [29]. Marko Rak et al. [32] proposed an automatic approach for fast

vertebral body segmentation in 3D MRI of the whole spine. Jose Dolz et al. [33] proposed an

architecture based on U-Net for intervertebral disc localization and segmentation in multi-
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modal MRI, contributing to better data representation and discriminative power. Li et al. [34]

presented a novel multi-scale and modality dropout learning framework to locate and segment

the spine from four-modality MRI. Dominik GaweB et al. [35] combined multiple stages of

deep learning to recognize and separate different tissues of the human spine. Faisal Rehman1

et al. [36] presented a novel combination of the traditional region-based level set with deep

learning framework in order to predict shape of vertebral bones accurately. Martin Koları́k

et al. [37] designed a 3D Dense-U-Net neural network architecture implementing densely con-

nected layers for high-resolution 3D volumetric segmentation of medical image data.

Neural networks with deep layers contain enormous parameters and large-scale datasets can

be used for avoiding over-fitting [28]. Additionally, novel- and well-constructed datasets can

push deep learning research forward in various areas. The most widely used spine segmentation

dataset is the MICCAI Vertebrae Segmentation Challenge [38] and xVertSeg Challenge [39].

Methods

Convolution module

Common convolutional structures have limited ability when it comes to obtaining input

image features; hence, based on the standard convolutional module, depth-wise asymmetric

bottleneck (DAB), which is a deep separable convolutional structure, was constructed [40].

DAB can extract more detailed information about the target and improve the ability to extract

image features. The special structure not only incorporates a one-dimensional convolution

structure for dimensionality reduction but also includes a residual structure. It is mainly used

to balance the accuracy and the running speed of image processing. The structure can also

effectively compress data and improve network efficiency and performance. Fig 1 shows that

the DAB structure employs a standard convolutional layer as input and puts it in two grouped

convolutional layers decomposed into two-layer convolutional layers with kernel sizes of 1×3

and 3×1. The 3×3 convolution is divided into two convolutions with kernel sizes of 1×3 and

3×1 to reduce the calculation. DAB then applies a 1×1 kernel as the output. The residual struc-

ture is introduced as part of the output.

The spine structure includes massive blocks and detailed branches [41]. We obtain more

detailed information by employing a micro codec (MC) convolutional module (see Fig 1),

whose structure is similar to that of the general convolutional module. Three convolutional

layers are considered, and one of which has a kernel size of 2×2, a stride size of 1, and a dilation

rate of 0. The second section applies a deconvolution operation, whose parameters are similar

to those of the first section. The last layer uses a common convolution with a kernel size of

3×3, a stride size of 1, and a dilation rate of 1. Each layer has its activation unit. Adding a

deconvolutional unit after the common-convolution operation can effectively accumulate the

semantic features and detailed information of the previous layer.

The abovementioned convolutional module has strong adaptability and can be embedded

in most deep neural networks; thus, we can derive different benefits from a variety of convolu-

tional modules.

Codec unit

In the encoder-decoder structure, the encoder and the decoder correspond to each other. In

other words, the spatial scale and the number of channels of a coding unit are related to their

corresponding decoding unit to enhance the image input data and simplify the preprocessing

on the training network.

We take the combination of the MC convolution module as an example. Fig 2 depicts the

three newly proposed multipath codec segmentation networks: MC N-type network
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Fig 2. Three network architectures. From left to right: MCN-Net, MCW1-Net, and MCW2-Net, respectively. The downsampling is a max-pooling operation and the

upsampling is a bilinear interpolation.

https://doi.org/10.1371/journal.pone.0248303.g002

Fig 1. Two convolutional architectures. On the left is the DAB and on the right is the MC.

https://doi.org/10.1371/journal.pone.0248303.g001
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(MCN-Net); MC W-type network1 (MCW1-Net); and MC W-type network2 (MCW2-Net).

N-Net consists of a precoding unit, a coding unit, and a decoding unit. W1-Net is composed

of two coding units and one decoding unit. W1-Net has composed of one coding unit and two

decoding units.

Based on the N-type network, MCN-Net (see Fig 2) substitutes common convolutional

modules with MC convolutional modules. Precoding is a feature extraction structure, in which

the convolutional and pooling layers alternately operate and resize the image to its original

size. Finally, the pre-encoded result is used as the input of the typical U-Net. The overall net-

work model is completed after making appropriate adjustments in the network structure.

Subsequently, the MCW1-Net (see Fig 2) is proposed considering the effect of combining

image features from different feature extractors. A new coding unit is added based on the con-

volution module that retains the original coding unit. The output result is then merged into

the down-sampling result of the last layer. Both the added and decoding units apply MC con-

volutional modules.

The convolution architecture has a smaller effect on image segmentation when the feature

extraction of the encoder reaches a certain level in the contractive path [14]. Furthermore,

increasing the efficiency is useful in recovering the image resolution and accuracy of the classi-

fication label in each pixel [17]. We adopt MCW1-Net to design MCW2-Net (see Fig 2) for

spine segmentation in MRI. The network retains the convolution module in the original

decoding unit and adds a new decoding unit, whose input is the output of the first up-sam-

pling layer. Finally, the two feature outputs of the decoder are fused in the output layer.

Because a single decoding unit will produce errors in the process of restoring resolution [42],

MCW2-Net is applied two decoding units to decrease the probability of deviation and improve

the accuracy.

Feature fusion

The convolutional operation in a deep neural network is the feature extraction of the input

data. The convolution kernel of any layer in the operation layer is the corresponding feature

extractor. It can extract shape, color, and other characteristics from the input image or the fea-

ture layer of the middle layer. The codec network uses two common feature fusion methods:

shortcut connection [25] and skip connection [15]. Both feature fusion methods integrate low-

dimensional features containing high-level semantic information into high-dimensional fea-

ture layers with semantic information loss [43], the whose merged result is taken as the output

data.

A new dense network, called DenseXY-Net (X: the type of convolution module; Y: network

shape), which was constructed by a quick connection, was proposed to mitigate the effects of

information loss combined with densely connected layers of the deep dense network [26]. The

network was combined with the proposed convolutional modules and codec units, and the

dense feature fusion was realized by a concatenate function (see Fig 3). The new DenseXY-Net

concatenate the outputs of each convolutional layer in each coding unit with the correspond-

ing feature maps of the decoding unit.

The result of the convolution unit in each layer was saved and put into the dense skip con-

nection. Finally, the fusion features were cross-computed and merged into the feature convo-

lution unit of the classic U-Net. It can minimize the loss of information and obtain more

information in each convolutional layer.

DenseMCW1-Net was taken as an example. Fig 3 depicts its structure. The left side of the

W type is the precoding structure using the ordinary convolution module, whereas the right

side is the coding structure using four MC modules for down-sampling operation. The left and
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right sides are concentrated feature maps. The output map is obtained from the decoding

structure in the middle path. In this process, the encoding structure copies its information to

the decoding structure using skip connections. Finally, the decoding structure can obtain a

higher feature resolution and richer low-level information, which are beneficial for the restora-

tion of the target contours and segmentation mask generation.

Results

Experimental setup

Dataset. The experimental database was derived from SpineWeb’s high-anisotropy MRI

images of the lower back [44, 45], including 210 cases of MRI images of the human lower lum-

bar vertebrae and 50 cases of MRI images of the human cross-sectional spine. After removing

the original images without segmentation targets and their corresponding labels, the database

contained 2460 sets of original images and their corresponding labels. The sizes of the image

ranged from 512×512 to 1024×1024 px, and most of which were 880×880 px. Among the

remaining sets, 200 samples were randomly selected as the small dataset and divided into the

training, verifying, and testing sets with a ratio of 8:1:1. The images were resized to 512×512 px

Fig 3. DenseXY-Net structure. On the left is the DenseU-Net and on the right is DenseMCW1-Net.

https://doi.org/10.1371/journal.pone.0248303.g003

PLOS ONE Multi-path dense networks for MRI spinal segmentation

PLOS ONE | https://doi.org/10.1371/journal.pone.0248303 March 12, 2021 7 / 18

https://doi.org/10.1371/journal.pone.0248303.g003
https://doi.org/10.1371/journal.pone.0248303


and subsequently, data augmentation was applied to avoid the model overfitting, including

rotation, flip, translation, and mirroring. The changed spine images and their labels are used

as input images into the proposed network.

Experiment settings. During the training, we utilized the Adam optimizer [46] to train

our networks and its hyperparameters are set to the default values, where the initial learning

rate lr = 2e-3, betas = (0.5, 0.999). The maximum epoch is 300. The loss function is Binary

Cross-Entropy (BCE) loss function [47], which is defined as:

LBCEðy; ŷÞ ¼ � ðylogðŷÞ þ ð1 � yÞlogð1 � ŷÞÞ ð1Þ

Here, ŷ is the predicted value by the prediction model. It is widely used for classification

objectives as semantic segmentation is pixel-level classification [48].

The implementation was based on the public PyTorch platform. The training and testing

bed was Windows 10 system with an NVIDIA GeForce RTX 2080 TI graphics card.

Quantitative evaluation metrics

Six different evaluation metrics are employed to assess the performance of segmentation

results: accuracy, sensitivity, specificity, precision, Jaccard similarity, Dice coefficient, and

Boundary F1-Score (BF-Score), as defined in Table 1. These metrics were all expressed through

the calculated TP (true positives), FP (false positives), FN (false negatives), and TN (true nega-

tives). BF-Score is calculated from precision and recall values with a distance threshold to

decide whether a boundary point has a match or not [49]. It is experimentally found that the

distance threshold is set to 2 which is suitable for the evaluation. Besides, the parameters of the

networks are applied to compare differences in network complexity.

Analysis

The experiment was performed via inputting, preprocessing (such as data augmentation),

model training, postprocessing, and outputting. Under the same system, different network

models were used to train the model for the pixel-level segmentation of medical MRI spine

images to distinguish the target spine from the background. After preprocessing, the output

image of the segmented spine was converted to a binary image. Subsequently, we obtained the

evaluation metrics of spine segmentation by each network using the abovementioned indices.

Convolution module. As illustrated in Fig 4, the original images, labels, and predictions

were made through the proposed methods. In the labels and results, the white areas denoted

the area where the vertebrae lie in the original image, and the black areas were the background.

Compared with the prediction results, the designed segmented network was beneficial for

describing the features in medical spine images and represents more comprehensive details. In

addition, some models had different degrees of loss information during the experimental

Table 1. Six different evaluation metrics.

Evaluation Metrics Formulas

Accuracy TPþTN
TPþTNþFPþFN

Sensitivity TP
TPþFN

Specificity TN
FPþTN

Precision TP
TPþFP

Jaccard similarity TP
TPþFNþFP

Dice coefficient 2�TP
2�TPþFPþFN

BF-Score 2�Precision�Sensitivity
PrecisionþSensitivity

https://doi.org/10.1371/journal.pone.0248303.t001
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prediction processing. Some information on the spine (i.e., white areas in Fig 4) was missed in

the segmentation results. Only changing the convolution module did not achieve good

performance.

In the quantitative analysis of the spinal segmentation experiment, we compared the results

of the convolution modules in the training sets. Table 2 described the evaluation. The table

recorded the evaluation metrics of three different types of neural network models on the small

experimental dataset. DABU-Net and MCU-Net replaced the ordinary convolution block with

the DAB and MC modules, respectively. A comparison of the performance evaluations in the

tables indicated that the proposed convolution module produced different degrees of effects

on different models. There was almost no difference in their network parameters. The DAB

module achieved a good improvement in Dice and Jaccard, that was, 0.8916 and 0.8069,

respectively. Both the DAB and MC modules obtained better results on the indices. The per-

formance was relatively boosted, and the robustness was high. There was little difference in

their total parameters. However, the BF-Score of DABU-Net and MCU-Net did not have obvi-

ous improvement. As shown in Fig 4, the segmentation results of the spine (in the red circle)

were not good, whose edges were not clear. Therefore, we designed a new multipath structure

and combined it with the convolution module to improve the segmentation performance.

Codec unit. Three new multi-path encoding and decoding structures were proposed (i.e.,

W1-Net, W2-Net, and N-Net) based on the classic U-Net encoding and decoding network. Fig

5 showed some examples for a visual comparison. A rough spine contour can be identified and

segmented when comparing the mask with the ground truth.

Fig 4. Sample results of spine segmentation (two adjacent slices). From left to right: original images, ground truth, U-Net, DABU-Net, and MCU-Net, respectively.

https://doi.org/10.1371/journal.pone.0248303.g004

Table 2. Evaluation metrics of the convolution module.

Model Type Accuracy Sensitivity Specificity Precision Dice Coefficient Jaccard BF-Score Parameters

U-Net 0.9749 0.8267 0.9947 0.9478 0.8785 0.7899 0.8809 131M

DABU-Net 0.9772 0.8492 0.9939 0.9431 0.8916 0.8069 0.8924 123M

MCU-Net 0.9765 0.8408 0.9941 0.9450 0.8874 0.8009 0.8921 131M

https://doi.org/10.1371/journal.pone.0248303.t002
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Table 3 showed a comparison of different structures. The proposed structures were better

than U-Net. The Jaccard of all three new networks can be higher than 0.81. A comparison

showed that W1-Net achieved 0.9830, 0.9042, and 0.8267 of accuracy, Dice, and Jaccard,

respectively, which were better than those obtained by the other methods. Compared with

U-Net, the Dice of the best structure increased from 0.8785 to 0.9042 by 2.6%, while the Jac-

card increased from 0.7899 to 0.8267, showing that the proposed W1-Net was beneficial for

spine segmentation. The parameters of the multipath networks were increased, but their

BF-Scores are higher than that of U-Net. W1-Net can achieve 0.8827 and its edges of the seg-

mented result are smoother.

The codec unit was used to experiment on the same dataset. Table 3 listed the five indices of

the neural network segmentation models. The networks used different codec paths as the

model frameworks for spine image segmentation. The MC and DAB modules were applied to

form six hybrid networks. The visual comparison of the networks showed in Fig 6.

Table 4 showed that the N-type multi-path network architecture only slightly improved the

spine segmentation BF-Score. The evaluation did not change much compared with the

improved convolution modules. In contrast, W1-Net with the MC module was found to

greatly improve the Jaccard, Dice coefficients, and BF-Score, which was valuable in continuous

research.

Feature fusion. The experiment was performed to compare the feature fusion results (see

Table 5). We compared the proposed DenseXY-Net to some classical deep-learning-based

methods [12, 13, 21]. The dense structure provided the network with more complete details of

layers, as shown in Fig 7. The edge results of DenseMCW1-Net (in the yellow rectangle) were

Fig 5. Sample results of spine segmentation (two adjacent slices). From left to right: original images, ground truth, U-Net, W1-Net, W2-Net, and N-Net, respectively.

https://doi.org/10.1371/journal.pone.0248303.g005

Table 3. Evaluation metrics of the multipath networks.

Model Type Accuracy Sensitivity Specificity Precision Dice Coefficient Jaccard BF-Score Parameters

U-Net 0.9749 0.8267 0.9947 0.9478 0.8785 0.7899 0.8351 131M

W1-Net 0.9830 0.9201 0.9892 0.8912 0.9042 0.8267 0.8827 161M

W2-Net 0.9817 0.9186 0.9880 0.8796 0.8971 0.8155 0.8715 191M

N-Net 0.9814 0.9101 0.9884 0.8841 0.8953 0.8123 0.8801 181M

https://doi.org/10.1371/journal.pone.0248303.t003
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better than those of other networks (in the green rectangles). The ground truth (blue) and the

segmented result(red) are overlapped into one image (purple). It can be seen from Fig 7 that

the classic networks have fewer purple areas (overlapped areas) in the green rectangles. Den-

seMCW1-Net can segment a smaller target and obtain smoother edges.

Compared with typical networks, such as U-Net, the proposed network for spine segmenta-

tion improved the accuracy, Jaccard similarity index, and Dice coefficient. In particular, using

the MC module and the W1-type structure had a superior effect on image segmentation and

capturing feature details. The segmentation results of the proposed method were more similar

to the ground-truth maps than those of other techniques. In addition, the new DenseXY-Net

based on U-Net achieved better accuracy than the traditional methods.

DenseMCW1-Net had 0.9855, 0.9185, and 0.8507 of accuracy, Dice coefficient, and Jaccard

similarity index, respectively. These values were better than those obtained by other methods.

More detailed vertebral bodies can be segmented and their edges were clearer. Its BF-Score

greatly exceeded that of ordinary codec networks, but its number of parameters was much

higher than those of other classic models. The Jaccard similarity index was also greatly

improved. The Dice coefficient and BF-Score increased by nearly 3% and 8%, respectively. In

other words, DenseMCW1-Net was beneficial for spine segmentation. Moreover, other hybrid

methods with a dense structure can obtain better results than the previously proposed

methods.

The cross-validation approach is used to evaluate the performance of the network and

obtain as much valid information as possible from the small dataset. We chose respectively the

four best classic and proposed networks (AttU-Net, CE-Net, DenseMCW2-Net, and Den-

seMCW1-Net) and applied a five-fold cross-validation approach. The results were listed in

Fig 6. Sample results of spine segmentation (two adjacent slices). From left to right: original images, ground truth, MCW1-Net, MC W2-Net, MC N-Net,

DABW1-Net, DABW2-Net, and DABN-Net, respectively.

https://doi.org/10.1371/journal.pone.0248303.g006

Table 4. Evaluation metrics of the combination.

Model Type Accuracy Sensitivity Specificity Precision Dice Coefficient Jaccard BF-Score Parameters

MCW1-Net 0.9847 0.9279 0.9903 0.9010 0.9135 0.8420 0.8925 155M

MCW2-Net 0.9840 0.9155 0.9908 0.9052 0.9095 0.8352 0.8885 185M

MCN-Net 0.9796 0.8981 0.9875 0.8755 0.8853 0.7956 0.8458 182M

DABW1-Net 0.9844 0.9037 0.9921 0.9187 0.9099 0.8360 0.8912 155M

DABW2-Net 0.9838 0.9217 0.9899 0.8967 0.9082 0.8328 0.8844 189M

DABN-Net 0.9845 0.9228 0.9905 0.9042 0.9125 0.8402 0.8687 174M

https://doi.org/10.1371/journal.pone.0248303.t004
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Table 6. Four boxplots of classic and proposed networks over the five-fold cross-validation

were also shown in Fig 8. It can directly visualize the different performances of different net-

works. From the table and figure, it can be observed that the performance of the proposed

DenseMCW1-Net is the best on metrics among all the compared methods for spine segmenta-

tion. In Fig 8(A)–8(C), the three networks (AttU-Net, CE-Net and DenseMCW2-Net) have

outliers and the proposed DenseMCW1-Net has little changes. On the contrary, the proposed

network in Fig 8(D) has two outliers, but it can be seen that the values are higher than those of

the other three networks so the proposed network is significantly better than the other three

networks. In Table 6, we found that the performance of the segmentation model is relatively

good and stable. The overall accuracy is 0.9817 which proves the effectiveness of Den-

seMCW1-Net. The result of the network is similar to the above results. Second, Jaccard is

0.8346 and Dice coefficients is 0.8958, indicating that DenseMCW1-Net have relatively large

overlapped areas (ground true and predicted image). Finally, the overall BF-Score on the spine

image dataset is 0. 9055, which proves that the proposed DenseMCW1-Net can segment

clearer edges.

Table 5. Evaluation metrics of feature fusion.

Model Type Accuracy Sensitivity Specificity Precision Dice Coefficient Jaccard BF-Score Parameters

U-Net[15] 0.9749 0.8267 0.9947 0.9478 0.8785 0.7899 0.8351 131M

FCN [14] 0.9828 0.9297 0.9882 0.8828 0.9044 0.8266 0.8542 992M

AttU-Net [50] 0.9854 0.9116 0.9927 0.9245 0.9171 0.8475 0.8972 133M

R2U-Net [51] 0.9760 0.8901 0.9851 0.8494 0.8674 0.7669 0.8068 149M

CE-Net [24] 0.9828 0.9426 0.9869 0.8762 0.9067 0.8305 0.8592 110M

DenseU-Net 0.9827 0.9260 0.9885 0.8884 0.9055 0.8287 0.8831 271M

DenseDABN-Net 0.9806 0.9120 0.9874 0.8734 0.8908 0.8049 0.9001 299M

DenseDABW2-Net 0.9835 0.9235 0.9892 0.8955 0.9079 0.8330 0.8909 289M

DenseDABW1-Net 0.9840 0.9274 0.9897 0.8965 0.9107 0.8369 0.8972 279M

DenseMCN-Net 0.9846 0.9285 0.9902 0.9011 0.9133 0.8421 0.8730 295M

DenseMCW2-Net 0.9849 0.9184 0.9914 0.9113 0.9140 0.8429 0.9119 287M

DenseMCW1-Net 0.9855 0.9316 0.9908 0.9075 0.9185 0.8507 0.9124 283M

https://doi.org/10.1371/journal.pone.0248303.t005

Fig 7. Sample results of classic and proposed networks. Top row: Examples of the spine were tested in the six classic methods (U-Net, FCN, AttU-Net, R2U-Net,

CE-Net, DenseU-Net, respectively). Bottom row: the six proposed DenseX-Net.

https://doi.org/10.1371/journal.pone.0248303.g007
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The experimental results illustrate that the sensitivity of the DAB module combined with

different structures was slightly higher than that of the typical U-Net. Meanwhile, the MC

module used in the different structures mainly strengthened the Jaccard and Dice coefficients.

Compared with the N- and U-type networks, the W1-Net architecture made great progress in

the evaluation metrics. Besides, the Specificity and the Dice coefficient slightly improved. For

the proposed network structure, the DenseXY-Net architecture had advantages in terms of the

Jaccard similarity index and BF-Score.

Discussion

A series of improved models for segmentation of the MRI spinal images was proposed in this

study. Compared with the traditional codec structure network, the improved models were

optimized in three aspects: convolution module, codec unit, and feature fusion. The direction

of improvement is a progressive relationship. First, the improved convolution module was uti-

lized to replace the convolution module of the traditional codec network and capture feature

information. The improved networks combined multiple codec units to obtain more detailed

information. Finally, a dense network was applied to integrate multi-level information. As a

result, the improved model can obtain more precise results in MRI spinal image segmentation.

We proposed herein two improved convolution modules: MC and DAB. The MC module

contains three layers of convolution operations. The convolution kernels are 2×2, 2×2, and

3×3. The second layer is a deconvolution. It is employed to restore the lost information during

the convolution process and capture more detailed information. The DAB convolution

Table 6. Five-fold cross-validation results of networks.

Model Fold Accuracy Sensitivity Specificity Precision Dice Coefficient Jaccard BF-Score

AttU-Net Fold 1 0.9791 0.8377 0.9947 0.9442 0.8825 0.7948 0.8405

Fold 2 0.9806 0.8505 0.9947 0.9433 0.8900 0.8058 0.8621

Fold 3 0.9807 0.8369 0.9964 0.9577 0.8895 0.8048 0.8694

Fold 4 0.9789 0.8483 0.9933 0.9332 0.8845 0.7960 0.8502

Fold 5 0.9832 0.8878 0.9931 0.9258 0.9027 0.8256 0.8690

Average 0.9805 0.8522 0.9944 0.9408 0.8898 0.8054 0.8582

CE-Net Fold 1 0.9800 0.8581 0.9937 0.9323 0.8882 0.8036 0.8883

Fold 2 0.9798 0.8410 0.9950 0.9445 0.8848 0.8989 0.8782

Fold 3 0.9810 0.8445 0.9959 0.9521 0.8917 0.8080 0.8954

Fold 4 0.9793 0.8612 0.9926 0.9248 0.8875 0.8017 0.8779

Fold 5 0.9840 0.9086 0.9918 0.9130 0.9078 0.8338 0.9030

Average 0.9808 0.8627 0.9938 0.9333 0.8920 0.8292 0.8886

DenseMCW2-Net Fold 1 0.9793 0.8358 0.9951 0.9478 0.8822 0.8954 0.9067

Fold 2 0.9807 0.8640 0.9933 0.9317 0.8921 0.8089 0.9018

Fold 3 0.9798 0.8537 0.9937 0.9317 0.8868 0.8003 0.9074

Fold 4 0.9785 0.8410 0.9939 0.9368 0.8816 0.7927 0.8853

Fold 5 0.9836 0.9045 0.9919 0.9140 0.9060 0.8306 0.9118

Average 0.9804 0.8598 0.9936 0.9324 0.8897 0.8256 0.9026

DenseMCW1-Net Fold 1 0.9844 0.9037 0.9921 0.9187 0.9099 0.8360 0.8921

Fold 2 0.9800 0.8352 0.9927 0.9521 0.8853 0.7988 0.9044

Fold 3 0.9804 0.8422 0.9955 0.9478 0.8880 0.8024 0.9032

Fold 4 0.9793 0.8404 0.9950 0.9452 0.8864 0.8000 0.9004

Fold 5 0.9843 0.9003 0.9931 0.9248 0.9095 0.8360 0.9274

Average 0.9817 0.8644 0.9937 0.9376 0.8958 0.8346 0.9055

https://doi.org/10.1371/journal.pone.0248303.t006
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Fig 8. Boxplots of classic and proposed networks. (A) Accuracy boxplots for four methods over five-fold cross-validation, (B) Sensitivity boxplots for four methods

over five-fold cross-validation, (C) Jaccard boxplots for four methods over five-fold cross-validation, (D) BF-Score boxplots for four methods over five-fold cross-

validation.

https://doi.org/10.1371/journal.pone.0248303.g008
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module decomposes the ordinary 3×3 convolution into two convolutions of 3×1 and 1×3 is

used to obtain multi-scale feature information. Residual structures are useful in preventing

gradient vanishing during the training process. The results in Table 2 showed that DABU-Net

and MCU-Net both exhibited a slight improvement, but the mask indicated that some details

were missing.

The effect of integrating different feature maps from different extractors should be consid-

ered to improve the efficiency of the recovery and classification accuracy of each pixel. The

improved convolution module is not very useful in the segmentation process when the encoder

reaches the limitation of feature extraction. Therefore, we designed and compared three new

multi-path structures and added an encoding, decoding, and pre-encoding path to obtain more

local information, such that the mask edge is smoother. The results in Table 3 showed that the

three networks (i.e., W1-Net, W2-Net, and N-Net) significantly improved compared to U-Net.

We then combined the two abovementioned modules and the three networks to form six hybrid

models (i.e., MCW1-Net, MCW2-Net, MCN-Net, DABW1-Net, DABW2-Net, and DABN--

Net). The results in Table 4 indicated that the hybrid networks were better than the three origi-

nal networks. The segmentation result of the MCW1-Net was the best.

We obtained more detailed edge information herein by employing a dense network to

strengthen the feature fusion ability and deliver more encoding information to the decoding

structure. The encoding structure copied its information to the decoding structure using skip

connections. Meanwhile, the decoding structure obtained a higher feature resolution and

richer low-level information, which are beneficial to the restoration of the target contours and

segmentation mask generation. Six dense hybrid networks (i.e., DenseMCW1-Net, Den-

seMCW2-Net, DenseMCN-Net, DenseDABW1-Net, DenseDABW2-Net, and DenseDABN--

Net) were proposed. The proposed networks can detect and segment smaller targets. The

results in Table 5 showed that the DenseMCW1-Net model had the best segmentation result.

Compared with the traditional segmentation method based on deep learning, the improved

method no longer required a large number of training samples. It also obtained more precise seg-

mentation results even though its number of parameters is much higher than those of other clas-

sic models. The experimental results illustrated that, when compared with various networks, our

network was still superior in obtaining abundant detailed information of the spine images. There-

fore, the model is generally slightly better than the traditional convolutional neural network.

Conclusions

This study proposed a series of improved models for the segmentation of MRI spinal images.

The network was adjusted by means of convolutional modules, coding units, and feature

fusion to gain a newly segmented network and improve the segmentation accuracy. Compared

with the traditional segmentation method based on deep learning, the improved method no

longer required a large number of training samples. More importantly, it obtained more accu-

rate segmentation results. The experimental results illustrated that compared to the same type

of network, the proposed network was still superior in obtaining abundant detailed informa-

tion of the target and effectively segmented the spine in the MRI images. However, some limi-

tations must be noted. The proposed network must still be improved considering the conflict

between accuracy and Dice coefficient for segmentation. Accordingly, we need to design a

lightweight and accurate spine segmentation network in the future.
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