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Abstract: Cancer cells can survive and maintain their high proliferation rate in spite of their hypoxic
environment by deploying a variety of adaptative mechanisms, one of them being the reorientation
of cellular metabolism. A key aspect of this metabolic rewiring is the promotion of the synthesis of
antioxidant molecules in order to counter-balance the hypoxia-related elevation of reactive oxygen
species (ROS) production and thus combat the onset of cellular oxidative stress. However, opposite
to their negative role in the inception of oxidative stress, ROS are also key modulatory components of
physiological cellular metabolism. One of the major physiological cellular ROS sources is the NADPH
oxidase enzymes (NOX-es). Indeed, NOX-es produce ROS in a tightly regulated manner and control
a variety of cellular processes. By contrast, pathologically elevated and unbridled NOX-derived ROS
production is linked to diverse cancerogenic processes. In this respect, NOX4, one of the members of
the NOX family enzymes, is of particular interest. In fact, NOX4 is closely linked to hypoxia-related
signaling and is a regulator of diverse metabolic processes. Furthermore, NOX4 expression and
function are altered in a variety of malignancies. The aim of this review is to provide a synopsis of
our current knowledge concerning NOX4-related processes in the oncogenic metabolic adaptation of
cancer cells.
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1. Introduction

Cancer initiation, progression, and propagation are multifactorial and intertwined
events. One of the components of this intricate network is the cellular redox balance that is
sustained by an equilibrium between the production and elimination of reactive oxygen
species (ROS) [1–3]. ROS play an essential role in the modulation and maintenance of
oncogenic transformation at different levels. Indeed, ROS modulate the rewiring of cellular
metabolic pathways that are critical for cancer cell survival and proliferation [4–6]. In
addition, redox cues modify the composition of cancerous cells’ extracellular environ-
ment, the ingrowth of capillaries, and immune cell responses; thus, they contribute to the
modulation of the tumor’s metastatic capacity and therapy resistance [7–9] (Figure 1).

One of the cellular ROS sources enticing emergent interest in these oncogenic pro-
cesses is the family of NADPH oxidase enzymes (NOX-es) [10–12]. NOX-es produce ROS
as their unique enzymatic activity and are present in diverse organs with a cell-specific ex-
pression pattern. NOX-es deliver ROS in response to specific extra- and intracellular signals
in a timely and spatially controlled manner and thus regulate a plethora of physiological
processes [13,14]. However, a disruption of this coordinated NOX-derived ROS production is
associated with multitudinous pathological alterations, among them cancerogenesis [10–12,15].
In this regard, one of the most studied members of the NOX family is the isoform NOX4.
NOX4 is characterized by ubiquitous expression and continuous hydrogen peroxide (H2O2)
production, implying a generalized role for NOX4 in the maintenance of basal physiological
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redox homeostasis. The activity of NOX4 can be enhanced by hypoxia as well as by insti-
gating its mRNA transcription and/or protein translation [16–19]. Elevated NOX4 mRNA
and protein levels have been identified in cancers of diverse origins [10,20–27].
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Figure 1. Cellular redox homeostasis in cancerous cells. Cancer cells display enhanced ROS produc-
tion due to oncogene activation or loss of tumor suppressors and a relative oxygen and nutrient 
deficiency. To combat the onset of oxidative stress, cancer cells employ different defense mecha-
nisms by activating transcription factors (HIF1α, Nrf2, NFκΒ) to enhance the transcription of pro-
angiogenic and antioxidant genes. In addition, these factors also modulate metabolic gene expres-
sion to favor a metabolic shift to support the increased need for biomolecules and antioxidant mol-
ecules. AMPK is a sensor of nutrient status and can also support metabolic reorientation. Taken 
together, these pro- and antioxidant components promote tumor proliferation, survival, invasion, 
and metastasis [3]. ROS: reactive oxygen species; HIF1α: hypoxia inducible factor 1 alpha; AMPK: 
AMP-activated protein kinase; Nfr2: Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor 
erythroid 2-related factor 2; NFκΒ: nuclear factor kappa-light-chain-enhancer of activated B cells. 

One of the cellular ROS sources enticing emergent interest in these oncogenic pro-
cesses is the family of NADPH oxidase enzymes (NOX-es) [10–12]. NOX-es produce ROS 
as their unique enzymatic activity and are present in diverse organs with a cell-specific 
expression pattern. NOX-es deliver ROS in response to specific extra- and intracellular 
signals in a timely and spatially controlled manner and thus regulate a plethora of physi-
ological processes [13,14]. However, a disruption of this coordinated NOX-derived ROS 
production is associated with multitudinous pathological alterations, among them can-
cerogenesis [10–12,15]. In this regard, one of the most studied members of the NOX family 
is the isoform NOX4. NOX4 is characterized by ubiquitous expression and continuous 
hydrogen peroxide (H2O2) production, implying a generalized role for NOX4 in the 
maintenance of basal physiological redox homeostasis. The activity of NOX4 can be en-
hanced by hypoxia as well as by instigating its mRNA transcription and/or protein trans-
lation [16–19]. Elevated NOX4 mRNA and protein levels have been identified in cancers 
of diverse origins [10,20–27].  

Two major coordinators of oncogenic metabolic adaptation are the hypoxia inducible 
factor 1 (HIF-1) and AMP-activated protein kinase (AMPK), and in certain tumor types 
(e.g., glioblastoma, renal and gastric cell carcinomas) NOX4 has been recognized as a 
modulator of their signaling [28–34]. NOX4 is also entailed in the activation of the redox-
sensitive transcription factors NFκΒ and Nrf2 (nuclear factor kappa-light-chain-enhancer 
of activated B cells and Kelch-like ECH-associated protein 1 (KEAP-1)-Nuclear factor 
erythroid 2-related factor 2, respectively) [35,36]. Both NFκΒ- and Nrf2-mediated gene 
transcriptions are integral parts of cancer cell antioxidative defense mechanisms and met-
abolic reorientation [37,38]. Redox pathways and NOX enzymes in particular are increas-
ingly recognized as important features of cellular oncogenic reprogramming that provide 
therapeutic possibilities to combat cancer proliferation and invasion [39–43]. This review 
assembles recent data on redox signaling in the adaptation of cancer cell metabolism with 
a specific focus on the role of NOX4 in these processes.  

Figure 1. Cellular redox homeostasis in cancerous cells. Cancer cells display enhanced ROS pro-
duction due to oncogene activation or loss of tumor suppressors and a relative oxygen and nutrient
deficiency. To combat the onset of oxidative stress, cancer cells employ different defense mechanisms
by activating transcription factors (HIF1α, Nrf2, NFκB) to enhance the transcription of pro-angiogenic
and antioxidant genes. In addition, these factors also modulate metabolic gene expression to favor
a metabolic shift to support the increased need for biomolecules and antioxidant molecules. AMPK is
a sensor of nutrient status and can also support metabolic reorientation. Taken together, these pro-
and antioxidant components promote tumor proliferation, survival, invasion, and metastasis [3]. ROS:
reactive oxygen species; HIF1α: hypoxia inducible factor 1 alpha; AMPK: AMP-activated protein
kinase; Nfr2: Kelch-like ECH-associated protein 1 (Keap1)-Nuclear factor erythroid 2-related factor 2;
NFκB: nuclear factor kappa-light-chain-enhancer of activated B cells.

Two major coordinators of oncogenic metabolic adaptation are the hypoxia inducible
factor 1 (HIF-1) and AMP-activated protein kinase (AMPK), and in certain tumor types
(e.g., glioblastoma, renal and gastric cell carcinomas) NOX4 has been recognized as a modu-
lator of their signaling [28–34]. NOX4 is also entailed in the activation of the redox-sensitive
transcription factors NFκB and Nrf2 (nuclear factor kappa-light-chain-enhancer of acti-
vated B cells and Kelch-like ECH-associated protein 1 (KEAP-1)-Nuclear factor erythroid
2-related factor 2, respectively) [35,36]. Both NFκB- and Nrf2-mediated gene transcriptions
are integral parts of cancer cell antioxidative defense mechanisms and metabolic reorienta-
tion [37,38]. Redox pathways and NOX enzymes in particular are increasingly recognized
as important features of cellular oncogenic reprogramming that provide therapeutic possi-
bilities to combat cancer proliferation and invasion [39–43]. This review assembles recent
data on redox signaling in the adaptation of cancer cell metabolism with a specific focus on
the role of NOX4 in these processes.

2. Regulation of Cellular Redox Homeostasis
2.1. Reactive Oxygen Species and Cellular Antioxidant Systems

ROS are short-lived, chemically highly reactive, oxygen-containing molecules, en-
compassing both oxygen radicals and non-radical molecules [44]. ROS are produced as
by-products in a continuous fashion by the mitochondria, the peroxisomes, microsomal
P450 enzymes, xanthine oxidase, cyclooxygenases, and lipoxygenases [45]. ROS can also
be generated in a purposeful manner by NOX enzymes that provide ROS in response to
specific physiological cues in a timely and spatially defined way [46–48]. The biologically
most significant cellular ROS are superoxide (O2

−), hydrogen peroxide (H2O2), and the
hydroxyl radical (OH) [44]. Superoxide is generated by the loss of an oxygen molecule and
is rapidly converted into H2O2 spontaneously or in an enzymatical reaction catalyzed by
superoxide dismutase (SOD). Hydrogen peroxide can also be directly produced by peroxi-
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somes, NOX4, and the Dual Oxidases 1 and 2 (DUOX1 and DUOX2) [49–51]. Superoxide
can interact with H2O2 in metal ion-assisted reaction, resulting in the formation of the
highly toxic OH [52]. The different ROS types are characterized by different strengths of
chemical reactivity, half-life, and diffusion capacity. Based upon these features, H2O2 is
considered as the most relevant cellular signaling ROS due to its relatively long life (10−5 s)
when compared to other ROS species, a wide range of chemical reactivity (10−8 µM: prolif-
eration inducer, 10−6 µM: growth arrest inducer, and 10−4 µM: apoptotic effect), and the
capacity to traverse biological membranes due to its neutral charge at physiological pH
values [53,54]. Hydrogen peroxide can also be transported by Aquaporin channels through
lipid membranes [54].

Cellular ROS originating from diverse cellular sources are promptly removed to either
prevent redox damage to biomolecules and cellular organelles or to terminate signaling
events [55,56]. ROS removal occurs through a network of antioxidant systems that com-
prise of SOD, catalase, and the glutathione, thioredoxin (Trx), and peroxiredoxin (Prx)
systems [57]. SOD enzymes convert superoxide anions to H2O2 and molecular oxygen in
the cytosol (SOD1), the mitochondria (SOD2), and in the extracellular space (SOD3) [58–60].
Catalase mediates the reduction of H2O2 to H2O and oxygen. Catalase plays a major role in
the degradation of H2O2 produced during the peroxisomal catabolism of very long-chain
fatty acids and also eliminates H2O2 derived from NADPH oxidases that is produced at
plasma membranes [49,61,62]. In addition to catalase, the elimination H2O2 relies mainly
on the glutathione and peroxiredoxin/thioredoxin systems that degrade H2O2 in a co-
ordinated and cyclic manner through a series of oxidation/reduction reactions [63–65].
First, H2O2 is reduced by glutathione peroxidase (GPX) by oxidizing the free sulfhydryl
(-SH) groups of glutathione (GSH) and converting it into glutathione disulfide (GSSG).
Then, GSH is regenerated for the next cycle of utilization by glutathione reductase (GR)
employing NADPH as an electron donor. In addition to glutathione, H2O2 can also be
degraded by the peroxiredoxin/thioredoxin system. Peroxiredoxins represent a family
of six small thiol proteins that catalyze the reduction of H2O2 to H2O both in the mito-
chondria and in the cytoplasm while they undergo oxidation [66]. Oxidized Prx proteins
are subsequently regenerated to their reduced form by thioredoxins. Thioredoxins (Trx)
are disulfide-containing proteins that are maintained in a reduced state by thioredoxin
reductase (TrxR) in a NADPH-dependent reaction [67]. The components of the cellular
H2O2 antioxidant defense systems are depicted in Figure 2.
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Figure 2. Cellular H2O2 elimination systems. Cellular H2O2 elimination can occur through different 
enzyme systems that allow the conversion of H2O2 into H2O [56]. GPX: glutathione peroxidase; GSH: 
reduced form of glutathione; GSSG: glutathione disulfide, oxidized form of glutathione; GR: gluta-
thione reductase; Prx: peroxiredoxin proteins; Trx-red: reduced form of thioredoxin; Trx-ox: oxi-
dized form of thioredoxin; TrxR: thioredoxin reductase. 
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tween the cell and its environment [1,74–79]. The clinical relevance of oxidative/reductive 
stress in oncogenic processes is well documented and is considered to be a compelling ther-
apeutic target in diverse cancer types [1,76,80]. One of the cellular ROS sources whose per-
turbed functions have been related to oncogenesis is the family of NOX enzymes. 
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NOX/DUOX family enzymes that are homologues of the phagocyte NADPH oxidase 
gp91phox/NOX2. There are five NOX and two DUOX isoforms termed NOX1, NOX2, NOX3, 
NOX4, and NOX5, and DUOX1 and DUOX2, respectively. NOX/DUOX enzymes are ex-
pressed in a cell-specific manner and beside the mitochondria constitute one of the major 
sources of intracellular ROS [10,50,86]. Structurally, all NOX enzymes are six-transmem-
brane proteins with a conserved core element containing four heme-binding histidines 
that allow trans-membrane electron transport and two cytoplasmic C-terminal sites that 
bind NADPH and FAD. Regulation of activity of NOX/DUOX enzymes is achieved 
through different molecular mechanisms allowing for controlled ROS production in re-
sponse to specific physiological cues [13,50,87,88].  

2.3. The NADPH Oxidase 4 (NOX4) 
Historically, NOX4 was cloned from the kidney and thus, in initial publications, it 

was referred to as “Renox” [89,90]. However, subsequent studies established the presence 
of NOX4 in a wide variety of tissues and cell types, and currently, NOX4 is considered as 
a ubiquitously expressed NOX isoform [91]. NOX4 forms a heterodimer with p22phox that 
is necessary for NOX4 expression and activation [92]. The NOX4/p22phox complex also as-
sociates with Poldip2 (polymerase [DNA-directed] delta-interacting protein 2) that acts as 
a potent positive regulator of NOX4 activity [93]. The structure of NOX4 is depicted in 
Figure 3A. The full-length NOX4 mRNA codes for a protein of 67kDa that shares only 39% 
amino acid identity with the prototype phagocyte NOX2 [87]. The human NOX4 mRNA 

Figure 2. Cellular H2O2 elimination systems. Cellular H2O2 elimination can occur through different
enzyme systems that allow the conversion of H2O2 into H2O [56]. GPX: glutathione peroxidase;
GSH: reduced form of glutathione; GSSG: glutathione disulfide, oxidized form of glutathione; GR:
glutathione reductase; Prx: peroxiredoxin proteins; Trx-red: reduced form of thioredoxin; Trx-ox:
oxidized form of thioredoxin; TrxR: thioredoxin reductase.

Maintenance of a proper equilibrium between the antagonistic actions of ROS produc-
ing and eliminating systems is primordial for healthy cellular functions [68]. An inequity
between the capacities of the cellular pro- and antioxidant systems will lead to disturbed
redox homeostasis and promote the onset of oxidative or reductive stress [69–73]. Both
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stress conditions adversely affect cellular activities that are vital for the proper control of cell
stemness, proliferation, and metabolic adaptation, as well as the regulation of interaction be-
tween the cell and its environment [1,74–79]. The clinical relevance of oxidative/reductive
stress in oncogenic processes is well documented and is considered to be a compelling
therapeutic target in diverse cancer types [1,76,80]. One of the cellular ROS sources whose
perturbed functions have been related to oncogenesis is the family of NOX enzymes.

2.2. The Family of NADPH Oxidase Enzymes

ROS, when generated in a timely and spatially controlled fashion, are key elements in
the physiological regulation of various cellular functions and receptor signaling events [81–85].
One of the major sources of these cellular signaling ROS are the members of the NOX/DUOX
family enzymes that are homologues of the phagocyte NADPH oxidase gp91phox/NOX2.
There are five NOX and two DUOX isoforms termed NOX1, NOX2, NOX3, NOX4,
and NOX5, and DUOX1 and DUOX2, respectively. NOX/DUOX enzymes are expressed
in a cell-specific manner and beside the mitochondria constitute one of the major sources
of intracellular ROS [10,50,86]. Structurally, all NOX enzymes are six-transmembrane pro-
teins with a conserved core element containing four heme-binding histidines that allow
trans-membrane electron transport and two cytoplasmic C-terminal sites that bind NADPH
and FAD. Regulation of activity of NOX/DUOX enzymes is achieved through different
molecular mechanisms allowing for controlled ROS production in response to specific
physiological cues [13,50,87,88].

2.3. The NADPH Oxidase 4 (NOX4)

Historically, NOX4 was cloned from the kidney and thus, in initial publications, it was
referred to as “Renox” [89,90]. However, subsequent studies established the presence of
NOX4 in a wide variety of tissues and cell types, and currently, NOX4 is considered as
a ubiquitously expressed NOX isoform [91]. NOX4 forms a heterodimer with p22phox that
is necessary for NOX4 expression and activation [92]. The NOX4/p22phox complex also
associates with Poldip2 (polymerase [DNA-directed] delta-interacting protein 2) that acts
as a potent positive regulator of NOX4 activity [93]. The structure of NOX4 is depicted in
Figure 3A. The full-length NOX4 mRNA codes for a protein of 67kDa that shares only 39%
amino acid identity with the prototype phagocyte NOX2 [87]. The human NOX4 mRNA
gives rise to five different splice variants with different ROS-producing capacities when
analyzed in a heterologous overexpressing cellular system in vitro [94] (Figure 3B). How-
ever, currently, little knowledge is available concerning the in vivo cellular and intracellular
expression pattern of these isoforms and their physio-pathological relevance in different
NOX4-mediated effects. The splice variants NOX4B and C lack the NADPH binding site
and both the NADPH and FADH binding sites, respectively. Consistently, NOX4B and C act
as dominant negative isoforms [94]. The other two NOX4 isoforms, NOX4D and E, are de-
void of transmembrane domains, implying that these variants are not membrane-associated.
NOX4E is also deficient in the NADPH binding domain and thus, it is uncapable of ROS
generation. On the contrary, NOX4D possesses ROS producing capacity that is comparable
to the full-length NOX4 (NOX4A) [94]. Anilkumar et al. identified NOX4D as a nucleus
resident isoform that mediates the redox-related upregulation of mitogen-activated kinase
(MAPK) activity in vascular cells [95]. Importantly, the presence of NOX4D protein in
nuclear membranes was demonstrated in selected acute myeloid lymphomas, and NOX4D-
mediated H2O2 production was an essential contributor to the genetic instability and
aggressive phenotype of these tumors [96].
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VI) connected by five loops (A–E) and an intracytoplasmic tail that contains binding sites for FAD 
(not shown) and NADPH. Two heme molecules (H in red box) are anchored to four histidine resi-
dues in helices III and V, allowing electron transport to oxygen molecules. H2O2 production takes 
place in the E loop. The protein p22 supports the stabilization of NOX4, while Poldip2 associates 
with p22 and contributes to the activation of NOX4 [92,93]. (B) NOX4 transcript variants [94]. Ex.= 
exon, the numbers refer to the numeration of exons. Empty box: exons present in the mRNA variant. 
Shaded boxes: missing exons from the mRNA variant. Triangle: early STOP codon. 

NOX4 possesses a constitutive activity, which is principally regulated at the tran-
scriptional/translational levels [17,18]. In addition, however, recent data indicated that 
NOX4-derived ROS production can be induced by hypoxia [16]. Interestingly, NOX4 re-
leases H2O2, but the exact mechanism of how NOX4 directly converts superoxide into 
H2O2 without a bona fide peroxidase domain remains at present incompletely understood 
[97]. The physiological importance of immediate H2O2 release is supported by the fact that 

Figure 3. (A) Structure of NOX4. NOX4 is comprised from six membrane-spanning alpha-helices
(I–VI) connected by five loops (A–E) and an intracytoplasmic tail that contains binding sites for FAD
(not shown) and NADPH. Two heme molecules (H in red box) are anchored to four histidine residues
in helices III and V, allowing electron transport to oxygen molecules. H2O2 production takes place
in the E loop. The protein p22 supports the stabilization of NOX4, while Poldip2 associates with
p22 and contributes to the activation of NOX4 [92,93]. (B) NOX4 transcript variants [94]. Ex. = exon,
the numbers refer to the numeration of exons. Empty box: exons present in the mRNA variant.
Shaded boxes: missing exons from the mRNA variant. Triangle: early STOP codon.

NOX4 possesses a constitutive activity, which is principally regulated at the tran-
scriptional/translational levels [17,18]. In addition, however, recent data indicated that
NOX4-derived ROS production can be induced by hypoxia [16]. Interestingly, NOX4 re-
leases H2O2, but the exact mechanism of how NOX4 directly converts superoxide into H2O2
without a bona fide peroxidase domain remains at present incompletely understood [97].
The physiological importance of immediate H2O2 release is supported by the fact that
NOX4-mediated activation of MAPK was absent in superoxide-generating NOX4 mu-
tants [97]. The continuous ROS-producing activity of NOX4 implies an important role for
NOX4 in the regulation of basal cellular redox tone [89,90,98]. Within the cell, the local
production and concentration of H2O2 are critical in determining its effects [99,100]. The
intra-cellular localization of NOX4-derived H2O2 production appears to be cell-type depen-
dent. For example, NOX4 protein has been detected in the endoplasmic reticulum (ER) and
nuclei of human airway smooth muscle cells and vascular endothelial cells [25,101], in focal
adhesions in vascular smooth muscle cells [102], in the mitochondria of renal mesangial
and endothelial cells [103], and in association with the cellular actin network [104,105].
These data are in line with the implication of NOX4 in the regulation of ER stress, DNA
damage, the modification of EC matrix, and mitochondrial ROS production as well as cell
tonicity and motility. Interestingly, the relationship between mitochondria and NOX4 are
bidirectional. Indeed, mitochondrial ATP produced through OXPHOS limits NOX4 activity
by binding to a specific ATP-binding motif in the C-terminus tail of NOX4 [106]. Conversely,
NOX4 represses mitochondrial biogenesis and Complex I activity [107,108].
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3. NOX4 in Tumor Cell Hypoxia, Redox Milieu and Metabolic Adaptation

Hypoxia, a reduction in cellular oxygen levels due to inadequate oxygen supply by
insufficient or malformed capillaries, is one of the hallmarks of solid tumors [109]. Tumor
hypoxia bears significant clinical importance, as it is associated with more aggressive tumor
growth and poor therapeutic outcomes [110–112]. In physiological conditions, hypoxia
entices a shift in cellular metabolism that ensures cell survival and a protection against oxida-
tive stress. However, this adaptive mechanism is also exploited by cancerous cells, allowing
them to thrive in conditions with insufficient oxygen and nutrient supplies compared to the
needs of their unbridled cellular growth [113,114]. In addition, these processes enable cancer
cells to evade immune surveillance and to modify their extracellular environment to support
invasion and metastasis [115,116]. One of the major hypoxia-related adaptive metabolic
mechanisms is the derivation of cellular glucose metabolism toward anaerobic pathways
(glycolysis and lactate production) while lessening the oxygen-reliant mitochondrial ATP
production [117,118]. Channeling pyruvate toward lactate has another advantage, as it
prevents the accumulation of cytosolic NADH and reduces ATP production, thus promoting
continuous glucose utilization by limiting the negative feedback effects of NADH and
ATP. In addition, this metabolic reorientation also promotes the production of reducing
equivalents (NADPH and reduced glutathione); therefore, it boosts the cellular antioxidant
capacity and affords biomolecule synthesis for proliferation [75,119,120] (Figure 4).
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high proliferation rate in a hypoxic environment. Glucose is reoriented toward glycolysis, produc-
ing pyruvate, which can be reduced to lactate and secreted in the extracellular space through the
MTC1 transporter or be carried into the mitochondria to be converted into acetyl-coA to feed the
TCA cycle. The rate-limiting activity of PKM2 leads to the accumulation of diverse glycolytic interme-
diaries fueling the pentose phosphate and hexosamine pathways to support nucleotide and fatty acid
synthesis and glycosylation processes, respectively. Other intermediaries (GA-3-P and 3-P-glycerate)
are channeled toward the synthesis of triglycerides, nucleotides, or fatty acids, or the production of
molecules implicated in DNA or protein methylation reactions. Intermediate molecules of the TCA
cycle (aspartate, succinyl-coA) can serve as precursors for nucleotides or heme. Mitochondrial citrate
can be shuttled into the cytoplasm and converted into pyruvate to boost NADPH production or de-
constructed to acetyl-coA to fuel fatty acid and cholesterol fabrication. Cancer cells preferentially use
glutamine and acetate as alternative energy sources that are transported through specific membrane
transporters (MCT and ASCT2) and are incorporated into the TCA cycle or acetyl-coA, respectively
(reviewed in [119]). Several pathways are implicated in NADPH production (see Figure 5 for details).
Dashed arrows indicate multiple step processes; solid arrows indicate direct one-step reactions;
critical enzymes are marked in blue. Glycolytic intermediaries: Glucose-6-P: glucose-6-phosphate,
Fructose-6-P: fructose-6-phosphate, GA-3-P: glyceraldehyde-3-phosphate, DHA-P: dihydroxyace-
tone phosphate, glycerol-3-P: glycerol-3-phosphate. Transporters: GLUT: glucose transporter, MTC:
monocarboxylate transporter, ASCT2: solute carrier family 1 member 2. Enzymes: PDH: pyruvate
dehydrogenase, MDH: malate dehydrogenase, ACLY: ATP citrate lyase, ME1: malic enzyme 1, LDH:
lactate dehydrogenase, PKM2: pyruvate kinase M2, ACSS2: acyl-coenzyme A synthetase short-chain
family member 2. TCA cycle: Krebs tricarboxylic acid cycle.

NADPH functions as a key reducing factor in several biosynthetic pathways as well as
in the reactions of two major antioxidant systems: the glutathione and Trx/Prx antioxidant
complexes [121]. NADPH is membrane-impermeable and is produced in a compartmental-
ized fashion in the cytosol as well as in the mitochondria to supply for local need [122–125].
In the cytosol, the majority of NADPH is derived from the pentose phosphate pathway
(PPP) through the reduction of NADP+ in two sequential reactions catalyzed by glucose-
6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (PGD).
Other cytosolic processes that generate NADPH are the reactions catalyzed by malic en-
zyme 1 (ME1) and isocitrate dehydrogenase 1 (IDH1) [126]. In the mitochondria, NADPH
can be produced by mitochondrial isoforms of ME and IDH (ME3 and IDH2, respec-
tively). Of particular interest for cancer metabolism is the contribution of mitochondrial
serine/glycine/folate metabolism to NADPH formation and antioxidant defense through
glutathione (a tripeptide consisting of cysteine, glycine, and glutamic acid) synthesis [126].
Indeed, cancerous cells divert approximately 10% of the 3-phosphoglycerate generated in
glycolysis toward 3-phosphohydroxy-pyruvate, a precursor of serine biosynthesis. Then,
serine is converted to glycine and used for refueling the one-carbon metabolism that pro-
vides a variety of essential components for macromolecule synthesis. Concerning redox
homeostasis, the complex cycles of the one-carbon metabolism provide cytosolic NADPH
and glutathione (reviewed in detail in [127]). In addition, to its role in the one-carbon
metabolism, serine is also an allosteric activator of the pyruvate kinase 2 (PKM2), an iso-
form of pyruvate kinase (PK) predominantly expressed in proliferating tissues. The role of
PKM2 in cancerogenesis is complex, but one of the most relevant aspects is that PKM2 shifts
glucose catabolism away from the normal mitochondrial respiratory chain toward lactate
production, thus contributing to tumor cell metabolic adaptation and supporting their
proliferation capacity [128].
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der normoxic conditions, the alpha subunit undergoes sequential hydroxylation and 
polyubiquitination, eliciting its degradation via the 26S proteasome. Hypoxia prevents 
HIF-1α hydroxylation, allowing the stabilized molecule to translocate into the nucleus. 
Once in the nucleus, HIF-α dimerizes with the HIF-1β/ARNT subunit and additional co-
activators initiating its binding to hypoxia-responsible elements (HREs) and prompting 
the transcription of target genes [133]. The most notable of these target genes is the vascu-
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Figure 5. Schematic representation of cellular NADPH-producing pathways. NADPH is mainly pro-
duced in glycolytic processes through the pentose phosphate pathway and during malate–pyruvate
conversion. In addition, the complex cytosolic and mitochondrial folate-mediated one-carbon cycles
provide NADPH. Lesser amounts of NADPH are provided by the direct phosphorylation of NAD+

and NADH. In the mitochondria, the enzymatically catalyzed reduction of NADP+ by NADH can
provide local NADPH (reviewed in [5]). Dotted lines indicate multistep processes, cytosolic enzymes
are marked in blue, mitochondrial enzymes are marked in green. cNADK: cytosolic nicotinamide
adenine dinucleotide phosphate kinase, mNADK: mitochondrial nicotinamide adenine dinucleotide
phosphate kinase, G6PDH: glucose-6-phosphate dehydrogenase, 6PGDH: 6-phosphogluconate dehy-
drogenase, ME1: malic enzyme 1, ME2/3: malic enzyme 2/3, ALDH1L1: 10-formyltetrahydrofolate
dehydrogenase 1, ALDH1L2: 10-formyltetrahydrofolate dehydrogenase 2, MTHFD1: methylenete-
trahydrofolate dehydrogenase 1, MTHFD2: methylenetetrahydrofolate dehydrogenase 2, NNT:
nicotinamide nucleotide transhydrogenase.

Cellular NADPH production is compartmentalized; however, mitochondrial NADPH
synthesis still can contribute to the maintenance of cytosolic NADPH pool through sub-
strate transport, e.g., citrate that can ultimately be converted into α-ketoglutarate with
concomitant NADPH release [129]. The diverse cytosolic and mitochondrial NADPH
producing pathways are depicted in Figure 5. Taken together, this metabolic rewiring
allows the efficient utilization of available nutrients and provides sustained production
of the components of the antioxidant systems to prevent the accumulation of harmful
oxidants. The importance of these metabolic changes in oncogenesis is underlined by
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data showing that enzymes catalyzing these reactions are often overexpressed or un-
derwent gain-of-function mutations in cancer cells [120]. In addition, the relevance of
these enzymes as pharmacological targets is reflected in the numerous clinical trials in
oncological settings [130].

Hypoxia-induced cellular responses are essentially coordinated by the hypoxia-inducible
transcription factors (HIFs) and the AMP-activated protein kinase (AMPK) [131,132]. En-
hanced signaling by HIFs and AMPK has been identified in diverse tumors and linked to the
cancerous rewiring of cellular metabolic processes [133,134].

HIFs function as primary oxygen-sensing transcription factors comprising of an oxygen-
sensitive α subunit (HIF-1α or HIF-2α) and a constitutively expressed β subunit
(HIF-β), also termed as aryl hydrocarbon receptor nuclear translocator (ARNT) [135].
Under normoxic conditions, the alpha subunit undergoes sequential hydroxylation and
polyubiquitination, eliciting its degradation via the 26S proteasome. Hypoxia prevents
HIF-1α hydroxylation, allowing the stabilized molecule to translocate into the nucleus.
Once in the nucleus, HIF-α dimerizes with the HIF-1β/ARNT subunit and additional
co-activators initiating its binding to hypoxia-responsible elements (HREs) and prompt-
ing the transcription of target genes [133]. The most notable of these target genes is the
vascular endothelial growth factor (VEGF) that is mandatory for neo-capillary formation
and diverse metabolic enzymes [117,118]. The relationship between ROS and HIF-1 is
bidirectional. Indeed, ROS can stabilize HIF-1α and thus increase its transcriptional activity
by interfering with its hydroxylation and ubiquitination [135]. On the contrary, HIF-1α can
induce transcriptions of ROS eliminating genes (SOD and catalase) and divert metabolic
pathways to replenish the levels of reduced glutathione leading to enhanced ROS eradi-
cation [118]. The crucial role of HIF-1α-mediated metabolic switch in the defense against
redox stress is supported by in vitro data demonstrating that embryonic fibroblasts derived
from HIF-1α-deficient mice fail to convert from oxidative to glycolytic metabolism when
placed in hypoxic conditions and ultimately die due to excessive ROS accumulation [136].
HIF protein levels are increased in diverse cancer types [137]. The clinical relevance of
elevated tumor HIFs levels are demonstrated by their association with poor outcomes in
gastric cancer, hepatocellular carcinoma, and breast cancer [138–140]. HIF-1 inhibitors are
considered as viable agents in the treatment of advanced or refractory cancers, and several
compounds are currently undergoing clinical trials [141].

NOX4 is a target gene of the hypoxia-sensitive transcription factor HIF-1α [142]. Con-
versely, NOX4-derived H2O2 is necessary for the hypoxia-related stabilization of both
HIF-1α and HIF-2α [32,92,143–145]. HIF-1-mediated mRNA upregulation of glucose trans-
porter 1 (GLUT1), lactate dehydrogenase A (LDHA), and pyruvate kinase isoform M2
(PKM2) required NOX4-derived ROS production to promote glycolytic switch in thyroid
and in diverse non-small cell lung cancer cell lines [92,146]. In addition, in thyroid cells,
NOX4 acted as a glycolytic regulator through mitochondrial ROS production to sustain thy-
roid cancerous cell proliferation in vitro [92]. NOX4 also advanced cancerous glycolytic re-
programming in renal carcinoma cells through the inhibition of PKM2 acetylation-mediated
lysosomal-dependent degradation [106]. Importantly, in thyroid cells, NOX4-mediated
glycolytic switch was also reflected in increased extracellular acidification rate, which is
a read-out for lactate production [92]. One possible way to achieve hypoxia-independent
activation of HIF-1α is by lactate [147]. Lactate is produced in the glycolysis, and several
enzymes of this pathway are regulated by HIF-1α, providing a bidirectional regulatory
configuration to adapt metabolic processes to hypoxic conditions [147]. Lactate produced
and released by hypoxic cancer cells also serves as an intratumor metabolic fuel source pref-
erentially used by oxygenated tumor cells (metabolic symbiosis) [130]. High tumor lactate
is associated with increased risk of metastases and poor patient survival in head-and-neck
cancers providing a possible link to NOX4 in these tumors [148].

Alongside HIF-1, another major coordinator of hypoxia-related adaptation is AMPK.
AMPK is regarded as a key nutrient and energy sensor that synchronizes the adaptive
response to energy stress [149]. AMPK is a heterotrimeric Ser/Thr kinase composed of
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one catalytic subunit (α) and two regulatory subunits (β and γ). The activation of AMPK
relies on two intertwined mechanisms: the direct allosteric activation of the γ subunit by
AMP (to a lesser extent ADP) and the reversible phosphorylation of the α subunit on its
Thr172 residue. AMPK is phosphorylated by liver kinase B1 (LKB1) in response to energy
depletion and by Ca2+/calmodulin-dependent kinase β (CaMKKβ) upon an increase in
cytoplasmic Ca+ concentrations. Dephosphorylation (inactivation) of AMPK is elicited
by protein phosphatases 2A and 2Cα (PP2A and PP2Cα). AMPK phosphorylation is
a prerequisite for AMP-induced activation. However, once bound, AMP furthers AMPK
phosphorylation by inducing conformational changes that protect AMPK against dephos-
phorylation [150]. ROS-mediated signals can increase AMPK activity both by a direct and
an indirect way in a concentration-dependent manner. Physiological amounts of ROS might
directly activate AMPK by a non-canonical pathway through oxidation or the glutathiony-
lation of two cysteine residues (Cys299/Cys304) of AMPKα [151]. However, pathologically
elevated ROS concentrations might lead to AMPK activation in an indirect fashion by
inhibiting mitochondrial ATP synthesis with a consequent rise in AMP levels [152]. AMPK
regulates a large variety of metabolic processes and controls mitochondrial health [149,153].
Concerning metabolism, activated AMPK enhances ATP-producing catabolic processes,
including glucose uptake and glycolysis, and FA uptake and β-oxidation, and it suppresses
ATP-consuming anabolic processes, such as gluconeogenesis and glycogen storage as well
as FA, cholesterol and protein synthesis [132]. Through these actions, in non-cancerous cells,
AMPK coordinates available nutritional resources to support cell endurance and advances
stress resistance. In line with these functions, operational AMPK signaling is essential for
cell survival under metabolic strain [30]. However, the role of AMPK in cancerous cells
is more complex and context dependent [30]. Indeed, metabolic plasticity mediated by
enhanced AMPK signaling might provide an initial advantage for tumor cells to confront
their nutrient-poor environment. Conversely, however, the loss of AMPK signaling and
thus a loss of cellular energy sensing might be beneficial for oncogenic proliferation by re-
moving AMPK inhibitory effects on HIF-1-mediated glycolytic shift [154,155]. Diminished
AMPK activity in high-glucose conditions was reported to enhance NOX4-dependent ROS
production that contributed to human colon cancer cell growth and invasiveness [34]. The
importance of uncovering signaling interactions between NOX4 and AMPK was also high-
lighted by data demonstrating that the pharmacological activation of AMPK suppresses
mitochondrial oxidation and primes mitochondria apoptosis, leading to lessened tumor
burden of acute myeloid lymphoma in mice [156].

Hypoxia induces neovascularization, the directed ingrowth of newly formed capillar-
ies in the tumor mass to cater to the enhanced need of tumor cells for oxygen and nutrients.
Neovascularization requires adequate hypoxia sensing, HIF-1α stabilization, and the ex-
pression of pro-angiogenic genes, e.g., VEGF and the glucose transporter 1 (GLUT1) [157].
Genetic NOX4 deficiency hampered these processes, resulting in slower growth of fibrosar-
comas in a chemically induced tumor model in mice in vivo [158]. In addition, in vitro
NOX4 enhanced retention of the VEGF receptor 2 (VEGFR-2) on the cell surface of endothe-
lial cells, contributing to their targeted migration [159]. In vivo, NOX4 expression was
detected in mouse brain neo-capillaries upon ischemia insult, suggesting that NOX4 plays
a key role in hypoxia-induced capillary formation [160].

Redox-sensitive transcription factors are induced in response to elevations in cellular
ROS levels and are key elements in diverse adaptive mechanisms that allow cancer cell
survival, proliferation, and propagation [37,38,161]. Two main transcription factors whose
signaling has been related to NOX4-mediated ROS in particular are NFκB and Nrf2 [35,36].

The members of the NFκB family of transcription factors enhance the transcription
of a large number of genes that modulate cellular survival, proliferation, and apopto-
sis [162]. In its uninduced state, NFκB activity is repressed by association with its inhibitor
IκB. Following the onset of oxidative stress, IκB undergoes phosphorylation, triggering
its degradation and the liberation of NFκB. Once released, NFκB translocates to the nu-
cleus and initiates the transcription of its target genes [163–165]. NFκB regulates several
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metabolic pathways to promote oncogenesis. In particular, NFκB upregulates hexokinase
2 expression and represses mitochondrial oxidative phosphorylation with a net outcome of
promoting the Warburg effect [166,167]. Dysregulation within the NFκB signaling pathway
is observed in diverse cancer types, and modulation of this pathway was suggested as a pos-
sible novel approach in cancer therapy [37,168,169]. In melanoma cells, NOX4-derived ROS
production was described as a promoter of NFκB activation, sustaining cancer progression
and metastasis [35].

Nrf2 is a member of a family of conserved proteins that are essential components of the
cellular defense mechanism against oxidative stress [170,171]. Under unstressed conditions,
Nrf2 is restrained in the cytosol by its associated inhibitor termed Kelch-like ECH-associated
protein (KEAP1). When associated, KEAP1 facilitates the ubiquitination and subsequent
proteasomal degradation of Nrf2 [172–174]. An increase in cellular ROS induces oxidation
and the successive dissociation of KEAP1 from Nrf2, which then allows Nrf2 nuclear
translocation [175,176]. Once in the nucleus, Nrf2 initiates the gene transcription of diverse
genes of antioxidant defense [177–179]. Interestingly, the Nrf2–KEAP1 complex has also
been detected in conjunction with the outer mitochondrial membrane, potentially allow-
ing to combat increased mitochondrial ROS in a direct manner [180–183]. Nrf2-induced
antioxidant gene transcription comprises genes of all four metabolic enzymes that gen-
erate NADPH and enzymatic components, maintaining functional glutathione and Trx
antioxidant systems [184]. Indeed, Nrf2 upregulates expressions of G6PD, PGD, ME1,
and IDH1, heightening cellular NADPH levels [185–188]. Concerning the glutathione
system, Nrf2 controls key enzymes of glutathione biosynthesis (glutamate–cysteine ligase,
(GCL), and glutathione S-transferases (GST)) and glutathione reduction (glutathione perox-
idase (GPX2) and glutathione reductase (GR)) [189–192]. In addition, Nrf2 upregulates the
expressions of TXN and thioredoxin reductase [193,194]. The mutation of Nrf2 or Keap1
can disrupt their interactions, leading to enhanced signaling by Nrf2 [195]. Nrf2 over-
activation has been linked to diverse aspects of cancer cell auto-protection mechanisms
and tumor development. Indeed, Nrf2 induces the expression of ROS-scavenging genes
(e.g., catalase, GST, and Txn/Prx) and promotes GSH production and recycling [196–199]. Con-
cerning NOX-mediated signaling, Nrf2 mediates redox adaptation in NOX4-overexpressed
non-small cell lung (NSCL) cancer cells [36].

A summary of the different signaling molecules modulating NOX4-related cancer cell
proliferation, metabolic adaptation, and survival are depicted in Figure 6.
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NOX4-mediated ROS is essential for HIF1α-related glycolytic gene transcription and neovasculariza-
tion through VEGF expression [142,158]. PKM2 requires NOX4 to achieve for glycolytic switch in
certain cancer types [92]. NOX4 aides the activation of the transcription factors NFκB and Nrf2 [35,36].
NOX4-derived ROS directly modifies cellular redox balance and consumes the main antioxidant
molecule NADPH. AMPK links nutrient sensing to NOX4. Indeed, AMPK inhibits the hyperglycemia-
related upregulation of NOX4 expression and hampers the NOX4-related upregulation of p53 and
apoptosis in kidney podocytes [31]. Green arrows: enhancing effect, red line: inhibitory effect.

4. NOX4 as a Therapeutic Target in Cancers

Unrestrained NOX4 activity has been described in diverse cancers, and NOX4 is
now considered as a driving force in several cancer types [10]. In particular, upregulated
NOX4 protein expression was identified by tissue microarray analysis in a series of malig-
nancies including bladder, esophageal, head and neck, ovarian, and prostate carcinomas
and malignant melanoma [20]. Upregulated NOX4 expression mediated oncogenic pro-
liferation in renal cell carcinoma, melanoma, glioblastoma, and in ovarian and pancreatic
cancer [200–204]. In addition, increased NOX4 expression was related to poor prognosis
in colorectal cancer and was put forward as a compelling pharmacologic target in diges-
tive system malignancies [21,22]. Most interestingly, enhanced NOX4 expression was
reported in thyroid cancers and in thyroid cancer cell lines. siRNA-mediated knockdown
of NOX-4 abolished the upregulation of several metabolic enzymes involved in cancer
cell adaptation [25,27,92]. Currently, the precise mechanism of NOX4-related oncogenesis
in diverse cancer types is incompletely understood and is the focus of intensive research
efforts. Taking into consideration the ubiquitous expression pattern of NOX4, the link
between NOX4 and oncogenesis is likely multifaceted and cell context specific.

Cellular redox tone is a defining component in the regulation of cell fate deciding
between proliferation, growth arrest, or death [205]. Cancer cells can endure supraphysio-
logical levels of ROS, owing to their elevated antioxidant capacity. This feature accounts
for their resistance to oxidative stress and thus contributes to their ability for uncontrolled
proliferation in spite of unfavorable circumstances [206]. Therapeutic approaches targeting
tumor redox comprise two opposite attitudes. While some of these propositions consider
elevating cancer cell ROS levels in order to eventually overcome the limits of their antioxi-
dant defense systems, others imply decreasing ROS levels by using antioxidants or ROS
source-specific inhibitors [74,207]. However, these general ROS-targeted methods might
have limited success due to the important role of redox metabolism of anti-tumor immune
cells within or around the tumor mass [208]. The complexity of tumor cellular composition
and their redox-related alterations raised the necessity of precision targeting of different
ROS sources.

Inhibitors of NOX enzymes have been shown to slow tumor growth and promote
cancer cell death [25–27,106,143,209,210]. The clinical relevance of NOX inhibitors has been
further validated in 2019 when the World Health Organization (WHO) acknowledged
them as a novel therapeutic class with the root name “naxib” (NADPH oxidase inhibitors).
Among the NOX inhibitors, those that specifically restrain NOX4 activity gained particular
interest in cancer research due to the multiple links between NOX4-derived ROS produc-
tion and diverse aspects of tumor promotion, dissemination, therapy resistance, and that
some of these effects were related to the modulation of the metabolic adaptive responses
of tumor cells [21,22,27,29,36,211–217]. NOX inhibitors continuously evolve to improve
their NOX isoform specificity with the aim to ameliorate therapeutic targeting [218–220].
Currently, the efficient utilization of NOX inhibitors as anticancer drugs is hampered by
the lack of adequate information on several important issues. Firstly, tumors are com-
plex identities constituted of cancer cells, capillaries, connective tissue, and immune cells,
and NOX4-related redox pathways affect their functioning with different and often op-
posing pro- or anticancer outcomes. Secondly, NOX4 is a ubiquitously expressed NOX
isoform that mediates several physiologically critical cellular processes; thus, inhibition
of its activity might trigger perturbed cell function in healthy, extra-cancerous tissues.
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Thirdly, cellular redox molecules form interactive networks; thus, the inhibition of NOX4,
a specific component of this system, might reverberate on the overall redox tone and
lead to unfavorable outcomes. Lastly, NOX4-mediated ROS modulates diverse aspects
of cancer development, other than metabolic adaptation, most notably the signaling of
tyrosine kinase receptors and oncogenes that are often driving forces behind cancer cell
proliferation [25,221–223]. This complexity is reflected in the controversial results obtained
by several studies that investigated the role of NOX4 in oncogenesis. Indeed, data ob-
tained from in vitro studies and in vivo murine models of cancerogenesis and metastasis
implicated NOX4 both as a pro-and anti-oncogenic factor [105,202,224]. A part of these
opposing results might be attributed to the cellular distribution of NOX4. Indeed, studies
that evaluated the total cellular levels of NOX4 found that NOX4 was associated with
favorable prognostics in hepatocellular cancers (HCC) [225]. By contrast, when the lev-
els of nuclear NOX4 were separately analyzed in histological samples of human HCC,
high levels of nuclear NOX4 staining were correlated with poor patient outcomes [226].
These observations instigate further studies to uncover the cell-specific factors that govern
NOX4 activity and to identify the molecular targets of NOX4 in different cancer identities.
From a clinical standpoint, a recent study provided encouraging data demonstrating that
the NOX4 inhibitor GKT137831 (Setanaxib) was capable of overcoming immunotherapy
resistant tumor growth by suppressing the exclusion of CD8+ T-cells from the tumor cells’
environment in in vivo rodent models [227].

In conclusion, both cancer metabolism and redox systems remain promising therapeu-
tic targets [130]. NOX4 provides an intriguing link between these two systems, validating
further studies to afford detailed comprehension of NOX4-related signaling pathways,
their cell-specific redox interaction networks, and the support they provide in the metabolic
adaptation of different tumors.
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