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Abstract

Rationale: The molecular mechanism(s) by which mechanical ventilation disrupts alveolar development, a hallmark of
bronchopulmonary dysplasia, is unknown.

Objective: To determine the effect of 24 h of mechanical ventilation on lung cell cycle regulators, cell proliferation and
alveolar formation in newborn rats.

Methods: Seven-day old rats were ventilated with room air for 8, 12 and 24 h using relatively moderate tidal volumes
(8.5 mL.kg21).

Measurement and Main Results: Ventilation for 24 h (h) decreased the number of elastin-positive secondary crests and
increased the mean linear intercept, indicating arrest of alveolar development. Proliferation (assessed by BrdU
incorporation) was halved after 12 h of ventilation and completely arrested after 24 h. Cyclin D1 and E1 mRNA and
protein levels were decreased after 8–24 h of ventilation, while that of p27Kip1 was significantly increased. Mechanical
ventilation for 24 h also increased levels of p57Kip2, decreased that of p16INK4a, while the levels of p21Waf/Cip1 and p15INK4b

were unchanged. Increased p27Kip1 expression coincided with reduced phosphorylation of p27Kip1 at Thr157, Thr187 and
Thr198 (p,0.05), thereby promoting its nuclear localization. Similar -but more rapid- changes in cell cycle regulators were
noted when 7-day rats were ventilated with high tidal volume (40 mL.kg21) and when fetal lung epithelial cells were
subjected to a continuous (17% elongation) cyclic stretch.

Conclusion: This is the first demonstration that prolonged (24 h) of mechanical ventilation causes cell cycle arrest in
newborn rat lungs; the arrest occurs in G1 and is caused by increased expression and nuclear localization of Cdk inhibitor
proteins (p27Kip1, p57Kip2) from the Kip family.
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Introduction

Introduction of more gentle ventilation strategies -together with

surfactant replacement and antenatal corticosteroids- has improved

the survival rate of very premature infants. In parallel, the number

of infants with ‘new’ bronchopulmonary dysplasia (BPD) [1] has

also increased. Currently, infants born at #26 weeks of gestation are

at the greatest risk of developing such ‘new’ BPD [2], a syndrome of

arrested lung development with fewer and larger alveoli and

dysmorphic vasculature [3]. BPD can no longer be considered only

a pediatric disease because the substantial lung-function abnormal-

ities -and significant symptoms- persist into adulthood [4,5,6]. The

pathogenesis of BPD is incompletely understood and its treatment is

empirical, but mechanical ventilation remains a major risk factor.

Lung development between 24–32 weeks of gestation is

characterized by extensive vasculogenesis within the developing

terminal saccules, followed by secondary crest formation as well as

interstitial extracellular matrix loss and remodeling [7]. This tissue

remodeling requires well-coordinated regulation of cell prolifera-

tion and apoptosis. Recent studies have shown that prolonged

mechanical ventilation increases apoptosis and impairs alveolar

septation in newborn mice [8], however the effect of mechanical

ventilation on lung cell growth is mostly unknown. In vitro studies

have demonstrated that mechanical stretch (5% elongation, 60

cycles per min, 15 min/h for 24 h) and oxygen (95%) can inhibit

lung cell proliferation [9,10], but molecular mechanisms are yet to

be determined. Cell proliferation is a precisely coordinated set of

events regulated by interaction of gene products that activate or
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suppress cell cycle progression. A series of cyclins and cyclin-

dependent kinases (Cdk) act in concert to drive the cycle forward

through the G1, S and G2/M phases [11]. In mammalian cells,

G1/S transition is an important checkpoint in the cell cycle. Entry

into the cell cycle is initiated by mitogen-stimulated expression of

D-type cyclins which activate Cdk4/6. Shortly thereafter, cyclin E

expression is increased and cyclin E-Cdk2 complexes are formed,

promoting entry into the S phase [12]. While cyclin-Cdk com-

plexes positively drive progression of the cell cycle, Cdk inhibitors

(CKI) negatively regulate progression by binding to and in-

activating cyclin–Cdks [13]. There are two distinct CKI families in

mammalian cells: INK4 proteins, which block the progression of

the cell cycle by binding to either Cdk4 or Cdk6 and inhibiting the

action of cyclin D; and, Cip/Kip proteins that inhibit a broader

spectrum of cyclin-Cdk complexes [14,15,16].

In this study we determined the effect of prolonged (24 h)

mechanical ventilation on lung cell cycle regulators, proliferation

and alveolar formation in a newborn rat model [17]. We

hypothesized that continuous cyclic (over)stretching of the

primitive airsacs would adversely affect proliferation of lung cells

by influencing cell cycle regulators.

Methods

Ethics statement
The study was conducted according to the guidelines of the

Canadian Council for Animal Care and with approval of the

Animal Care Review Committee of the Hospital for Sick Children

(protocol #7217).

Animal preparation
Timed pregnant Wistar rats (Charles River, Oakville, Quebec,

Canada) were allowed to deliver and immediately afterwards litters

were reduced to 10 pups. Newborn rat pups were anesthetized by

i.p. injection of 30 mg kg21 pentobarbital and a tracheotomy was

performed. The trachea was cannulated with a 1 cm 19G cannula

and connected to a rodent ventilator (FlexiVent Scireq, Montreal,

PQ). Spontaneously breathing, non-ventilated, littermates served

as sham controls. One pup per litter was ventilated and a

littermate was used as non-ventilated control. Isoflurane was used

as general anesthesia during the ventilation period and 0.9% saline

(100 ml.kg21/24 h) was administered subcutaneously by contin-

uous infusion with a 27G needle to prevent dehydration. First rat

pups at postnatal days 6, 7, 8, 9, 10 and 14 were ventilated to

assess lung cell proliferation. For all subsequent experiments 7-day

old rat pups were used. Preliminary experiments were performed

to determine ventilator settings [18]. Starting from a normal

respiratory rate for newborn rats (150 bpm), tidal volume was

adjusted to achieve normal blood gas values after the ventilation

period. Animals were monitored by ECG. Rectal temperature was

maintained at 37uC using a thermal blanket, lamp and plastic

wrap. At the end of the ventilation period a blood sample from the

carotid artery was taken for blood gas analysis prior to euthanasia.

Mechanical ventilation
Rat pups were ventilated with room air and moderate-VT

(8.5 mL.kg21, RR 150 min21, PEEP 2 cm H2O) for 8, 12 and

24 h. In a few cases, pups were ventilated for 4 h with high-VT

(40 mL.kg21, RR 30 min21, PEEP 2 cm H2O). The 7-day old

pups weighed 15.5–18.6 g. Dynamic compliance was estimated

every 4 h from data obtained during a single-frequency forced

oscillation manoeuvre, using a mathematical model-fitting tech-

nique according to the specifications of Scireq Inc. (Montreal, PQ).

Two h before completion of ventilation pups were injected ip with

50 mg/kg 5-bromo-2-deoxyuridine (BrdU). At completion of

ventilation a blood sample was taken from the carotid artery for

blood gas analysis and the animals killed by exsanguination. Lung

tissues were processed for histology or fresh frozen for molecular/

protein analyses.

Histology
After flushing whole lungs were infused in situ with 4% (w/v)

paraformaldehyde (PFA) in PBS with a constant pressure of 20 cm

H2O over 5 minutes to have equalized filling pressure over the

entire lung. Under these constant pressure conditions the cannula

was removed and the trachea immediately ligated. The lungs were

excised and immersed in 4% PFA in PBS overnight, dehydrated in

a ethanol/xylene series and embedded in paraffin. Sections of

5 mm were stained with hematoxilin and eosin or stained for

elastin using accustain artrazine solution (Sigma, St. Louis MO,

USA).

Immunohistochemistry
Following sectioning and antigen retrieval by heating in 10 mM

sodium citrate pH 6.0, sections were washed in PBS and

endogenous peroxidase was blocked in 3% (v/v) H2O2 in

methanol. Blocking was done with 5% (w/v) normal goat serum

(NGS) and 1% (w/v) bovine serum albumin (BSA) in PBS.

Sections were then incubated overnight at 4uC with either 1:50

diluted mouse anti-BrdU (Boehringer Mannheim, Germany) or

1:400 diluted rabbit anti-phospho-histone H3 (Millipore, Billerica,

MA, USA) antibodies (Lab Vision Corporation, Fremont,

Canada). Biotinylated rabbit anti-mouse IgG or goat anti-rabbit

IgG were used as secondary antibodies, respectively. Color de-

tection was performed according to instruction in the Vectastain

ABC and DAB kit (Vector Laboratories, Burlingname, CA, USA).

All sections were counterstained with hematoxylin. For quantita-

tive analysis, digital images were captured using a Leica digital

imaging system at 206magnification with random sampling of all

tissue in an unbiased fashion. Images were captured randomly

from 15 non-overlapping fields from each slides, with 3 slides per

animal and 4 animals per group.

Morphometric analysis
Digital images were captured from either H&E- or elastin-stained

slides with random sampling of all tissue in an unbiased fashion.

Images were captured randomly from 15 non-overlapping fields/

slide with 3 slides/animal and 4 animals/group. Tissue fraction was

calculated from pixel counts of black/white images [19], mean

linear intercepts (Lm) were measured and calculated [20] and the

number of elastin-positive secondary septa determined.

Western blot analysis
Lung tissues were lysed, protein content measured [21] and

aliquots (40 g protein) were subjected to 10% SDS-PAGE and

transferred to PVDF membranes. After blocking with 5% (w/v)

skim milk in TBST (20 mM Tris, 137 mM NaCl, 0.1% Tween 20)

membranes were incubated with appropriate primary antibody

overnight in 4uC. Because of decreased BrdU incorporation and

cyclin D1 and E1 expression, we focused on CKIs inhibiting Cdk-2,

-4 and -6 [22]. Primary antibodies were rabbit anti-p15INK4B

(dilution of 1:500), rabbit anti-p16INK4A (dilution of 1:1000), mouse

anti-p21Waf1/Cip1 (dilution 1:500), rabbit anti-p27Kip1(dilution

1:500) and rabbit anti-p57Kip2 (dilution of 1:1000), rabbit anti-

cyclin D1 (dilution of 1:1000) (all from Cell Signaling Technology,

Danvers, USA) and rabbit anti-cyclin E1 (dilution of 1:1000) (Santa

Cruz Biotechnology, Santa Cruz USA). Primary phosphorylated

Ventilation Induces p27 and p57 Kip Proteins
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p27Kip1 antibodies were rabbit anti-p27Kip1 (pThr198) (dilution of

1:400) and rabbit anti-p27Kip1 (pSer10)-R (dilution of 1:2000; both

from Santa Cruz Biotechnology, Santa Cruz, USA), rabbit anti-

p27Kip1 (pThr157) (dilution of 1:300; R&D Systems Inc, Burlington,

Canada) and rabbit anti-p27Kip1 (pThr187) (dilution of 1:400;

Novus Biologicals, Littleton, USA). The next day the membranes

were washed TBST and incubated with either horseradish

peroxidase–conjugated anti-rabbit or anti-mouse IgG (dilution of

1:1000; Cell Signaling Technology, Danvers, USA). After several

washes with TBST, protein bands were visualized using an

enhanced chemiluminescence detection kit (Amersham, Piscataway,

NJ, USA). Band densities were quantified using Scion Image

software (Version 1.6, National Institutes of Health, Bethesda, MD,

USA). Equal protein loading was confirmed by immunoblotting for

b-actin of same membrane.

Quantitative RT-PCR
Total RNA was extracted from lung tissues and reverse

transcribed [14]. Complementary DNA was amplified for target

genes cyclin D1, cyclin E1 and p27 as previously described

[17,19]. For relative quantification, polymerase chain reaction

signals were compared between groups after normalization using

18S as internal reference. Fold change was calculated [23].

Stretch of epithelial cells isolated from fetal rat lungs
Distal fetal lung epithelial cells (day 19 of gestation) were

isolated as previously described [24]. Cells were cultured on type-1

collagen-coated BioFlex plates and subjected various durations of

cyclic continuous 17% stretch using a FX-4000 Flexercell Strain

Unit (Flexercell Int., NC, USA) [25]. Neither cell viability (trypan

blue exclusion) nor cell attachment was affected by the duration of

applied stretch regimen. Cell lysates were processed for Western

Blotting.

Statistical analysis
Stated otherwise all data are presented as mean 6 SD. Data

was analyzed using SPSS software version 15 (SPSS Inc, Chicago,

IL). Statistical significance (p,0.05) was determined by using one-

way ANOVA or Kruskal-Wallis test. Post hoc analysis was

performed using Duncan’s multiple-range test (data presented as

mean 6 SD) or Mann-Whitney test (data presented as median and

interquartile range).

Results

Physiologic data
Blood gases were in the normal range after 8, 12 and 24 h of

ventilation (Table 1). Mean airway pressures, peak pressures and

delivered VT remained constant up to 8 h of ventilation [18], but

altered slightly after 12 h of ventilation compared to baseline

(Table 1). Dynamic compliance of the respiratory system was

constant up to 8 h of ventilation [18] decreased after 12 h and

remained stable afterwards (Fig. 1). These results are indicative of

the impact of 8 h of ventilation that did not subsequently worsen.

Morphometric analyses
Seven-day old rat pups ventilated for 12 and 24 h had fewer and

larger alveoli when compared to the lungs of non-ventilated 8 day-

old pups (Fig. 2A). The tissue-to-air ratio corroborated these

findings; it decreased after 12 h of ventilation and declined further

during the next 12 h of ventilation (Fig. 2B). To quantify alveolar

development, we calculated the number of elastin-positive second-

ary crests per unit area (Fig. 2D). The number of secondary crests -

indicating alveolar formation- increased significantly between the

7th and 8th postnatal days in non-ventilated rat pups. The number of

secondary crests increased after 12 h of ventilation when compared

to day 7 controls. In contrast, the number of secondary crests was

significantly lower in pups ventilated for 24 h vs. non-ventilated day

8 control pups, even when corrected for tissue fraction. To further

evaluate alveolar development, we measured the mean linear

intercept (Lm; Fig. 2C). Ventilation increased the Lm after 12 h,

and more so after 24 h.

Together the data suggest that during the first 12 h of

ventilation alveolar space increases because of hyperinflation

while a further increase of alveolar space during the next 12 h of

ventilation is in part due to arrest in alveolar development as well

as hyperinflation.

Lung cell proliferation
Lung cell proliferation was assessed in non-ventilated vs.

ventilated rat pups at postnatal days 6, 7, 8, 9, 10 and 14. In

non-ventilated rats, the number of proliferating lung cells was

Figure 1. Dynamic compliance during 24 h of mechanical
ventilation. Dynamic compliance decreased during first 12 h of
ventilation with room air and low/moderate VT but remained stable
during the next 12 h. Data are mean 6 SD, n = 12 rat pups per time
group. *p,0.05 prolonged versus 1-min ventilation.
doi:10.1371/journal.pone.0016910.g001

Table 1. Blood gas analysis and airway pressures after 8, 12
and 24 h of ventilation.

8 hrs 12 hrs 24 hrs

pH 7.3960.07 7.2960.05 7.3060.05

pCO2 (mmHg) 44.366.4 35.866.2 39.464.5

pO2 (mmHg) 8368.4 87.4611.2 73.5611.7

BE (mmol/L) 24.262.3 23.961.6 25.262.1

Ppeak (cm H2O) 10.961.1 12.761.1* 13.161.3*

Pmean (cm H2O) 6.360.5 7.260.5* 7.560.6*

PEEP (cm H2O) 2 2 2

Frequency (breaths/min) 150 150 150

Delivered VT (ml/kg) 8.960.2 8.560.4* 8.460.2*

Values represent means 6 SD, n = 12 animals per group.
*p,0.05 versus values at 0 hrs. Ppeak, peak pressure; Pmean, mean pressure;
PEEP, positive-end expiratory pressure.

doi:10.1371/journal.pone.0016910.t001
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greatest at postnatal day 6 (BrdU labelling index: ,12%), which

declined gradually to almost undetectable at day 15 (Fig. 3).

Ventilation for 24 h clearly inhibited lung cell proliferation in pups

of all studied ages (days 6-14). Next, 7-day old rat pups were

ventilated for all subsequent experiments. Proliferation was not

affected by 8 h of ventilation (data not shown) but longer durations

of ventilation significantly decreased the number of proliferating

cells (Fig. 4A, B). The ratio of proliferating mesenchymal and

epithelial cells did not significantly differ between non-ventilated

pups and pups ventilated for 8 and 12 h, respectively (0.7360.05

vs. 0.6560.03 and 0.6760.1). Since a 12-h ventilation decreased

the total number of proliferating cells (Fig. 4B) the unchanged ratio

suggest that cell proliferation of both tissue layers was equally

affected by mechanical ventilation. Hardly any proliferating cells

were seen after 24 h of ventilation; in agreement with a reduction

in cell proliferation in both tissue layers. The almost total arrest

in lung cell proliferation by prolonged (24 h) ventilation was con-

firmed by anti-PH3 immunochemistry (PH3-positive cells de-

creased from 8 to 1% of total).

Cell cycle regulators
mRNA levels of lung cyclin D1 and E1 were significantly down-

regulated after 8, 12 and 24 h of ventilation while that of p27Kip1

was increased (Fig. 5A). Immunoblot (i.e. protein) analysis of lungs

ventilated for 24 h confirmed these mRNA changes of cyclin D1,

E1 and p27Kip1 (Figs. 5B, 5C, 6A). The amount of p27Kip1 was

1.5-fold increased after 12 h of ventilation (not shown). Other

members of the Cip/Kip family of CKIs were either increased

(p57Kip2, Fig. 6B) or unchanged (p21Waf/Cip1, not shown) by 24 h

of ventilation. In contrast, CKIs belonging to the INK4 family

Figure 2. Ventilation inhibits alveolar growth. (A) Histology after mechanical ventilation: (A1) non-ventilated 7-day old rat (A2) 7-day old rat
ventilated for 12 h, (A3) 7-day old rat ventilated for 24 h, (A4) non-ventilated 8-day old rat. (B) Mechanical ventilation for 12 and 24 h significantly
increased alveolar airspace (reduction in tissue-to-air ratio (A) as well as increase in mean linear intercept (D)) but decreased number of elastin-
positive secondary septa (C). Medians with 25th and 75th quartiles are shown, bars are 5th and 95th percentiles, n = 12 rat pups per time group. MV,
mechanical ventilation. * p,0.05.
doi:10.1371/journal.pone.0016910.g002
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were either reduced (p16INK4a) or not affected (p15INK4b) by 24 h

of ventilation (Fig. 6C, D). p27Kip1 can be phosphorylated at

different sites, which influences its localization and activity [26]. A

12 h ventilation decreased phosphorylation of p27Kip1at Thr157

(Fig. 7A) but did not affect phosphorylation of Thr198 (not shown).

However, mechanical ventilation for 24 h decreased p27Kip1

phosphorylation at Thr157, Thr187 and Thr198, thereby promoting

stability and nuclear localization (Fig. 7B–D). Similar -but more

rapid- changes in cell cycle regulators were noted when 7-day

newborn rats were ventilated with high VT. Although b-actin can

be responsive to stretch, no significant differences in b-actin

expression was noted between ventilated animals and controls (not

shown).

High VT reduced the amount of D1 and D2 cyclins within

1 hour, while that of Cdk inhibitors p27Kip1 and p57Kip2 increased

(Fig. 8A); in contrast, p16INK4a content was decreased by high-VT

ventilation.

We do not know in which particular tissue layer (epithelium,

mesenchyme) these changes occurred in vivo, but they at least occur

in epithelial cells as subjecting ex vivo fetal lung epithelial cells to

cyclic continuous 17% stretch resulted in similar patterns of

alteration in cell cycle regulators (Fig. 8B).

Discussion

The hallmark of ‘new’ BPD is arrested alveolarization [1], but

the molecular and cellular basis of the alveolar arrest remains

mostly unknown. Alveolarization occurs as the immature saccules,

which form the lung parenchyma at birth, are subdivided into

smaller units by the formation and extension of secondary septa;

new tissue ridges are lifted off the existing primary septa and grow

in a centripetal direction into the airspaces. This process, called

septation, is mainly postnatal (human: 36 weeks-infancy; rat:

Pnd5–Pnd21) [7,27]. Before septation of the air spaces starts, the

lung expands for a short period of time, and the cells of the inter-

airway walls actively proliferate, peaking at day 5 in rats and

steadily declining thereafter [28]. This active cell proliferation

takes place just at the beginning of the septation of the distal

airways. With the use of a newborn rat model [18] we demonstrate

here that mechanical ventilation for 24 h with room air and

moderate VT results in cell cycle arrest, and reduced alveolar

septation. This ventilation strategy (room air and moderate VT)

was chosen to avoid/minimize lung injury.

In rats, lungs at birth have a saccular appearance and

alveolarization is an exclusively postnatal (between P4 and P21)

event, which makes this model relevant to the infant population

developing BPD. However, major differences exist between

mechanically ventilated newborn rats and premature born infants.

Newborn rats have immature lung architecture at birth, but they

do not need mechanical ventilation to survive (likely due to

differences in airway structure, with large airways extending

almost to the lung periphery and quickly reducing in diameter to

the alveoli) and they do not lack surfactant. Infants with BPD

demonstrate interstitial thickening that may partly be due to

fibroproliferation while in rat pups mechanical ventilation of 24 h

caused cell arrest in both mesenchymal and epithelial cell layers.

Despite these differences, our results suggest that the observed cell

cycle arrest is due to increased expression of two CKIs (i.e. p27Kip1

and p57Kip2) that are members of the Cip/Kip family; the other

member, p21waf/Cip1, was not affected by 24 h of mechanical

ventilation.

Knock-in mouse models have shown that p27Kip1 and p57Kip2

are interchangeable in vivo [29], suggesting similar mechanisms of

regulation. Mechanical strain has been recognized as playing an

important role in the regulation of fetal lung cell proliferation.

Indeed the stimulatory effect of mechanical stretch (i.e. increased

intratracheal pressure) on fetal lung growth has been extensively

studied in tracheal occlusion (TO) models [30,31], where the

number of proliferating alveolar type II cells significantly increased.

Fetal sheep, exposed to TO during the alveolar stage of lung

development, showed an increase in alveolar type II cells between

days 2-4 after TO [31]. This proliferative response of fetal lung cells

to strain has also been demonstrated in vitro. Intermittent cyclic 5%

stretching (simulating normal fetal breathing movements) of distal

fetal rat lung cells (epithelial cells and fibroblasts) increased cell

proliferation [32]. However, a continuous cyclic 17% stretch

(simulating mechanical ventilation [33]) for 24 h inhibited fetal lung

cell proliferation (unpublished results), in agreement with our in vivo

findings of a proliferative arrest after 24 h of mechanical ventilation.

In the present study, continuous cyclic 17% stretch of fetal lung

epithelial cells caused similar alterations in cell cycle regulators as

observed in mechanically ventilated newborn lungs in vivo, namely

increased levels of p27Kip1 and a decrease in the amount of cyclin

D1. CKI members of the Cip/Kip family (p21WAF1/Cip1, p27Kip1

and p57Kip2) preferentially inhibit cyclin-Cdk2 complexes [16].

How mechanical stretch influences CKIs is unknown. In many

cancers, the ras/raf/mitogen activated protein kinase (MAPK)

pathway increases p27Kip1 proteolysis while downstream effectors of

the PI-3K pathway such as protein kinase B (also known as Akt)

predominantly regulate p27Kip1 subcellular localization [26].

Although the MAPK pathway is activated by ventilation/stretch

[34,35] we found nuclear p27Kip1 accumulation instead of

degradation. Thus, MAPK may regulate p27Kip1 differently in

normal compared to cancer cells. The PI3K-Akt pathway during

ventilation/stretch remains to be investigated. Mechanical ventila-

tion of newborn rats triggers an inflammatory response[17,18] and

various inflammatory mediators including tumor necrosis factor-a

(TNFa, interleukin-6 and transforming growth factor-b (TGF-b)

have been shown to induce p21WAF1/Cip1 expression [22,36,37].

Also p15Ink4b is induced by TGF-b [38]. In the current study,

TGFb1 mRNA expression was not changed after 24 h of ventilation

(data not shown) and, indeed, neither p21WAF1/Cip1 nor p15Ink4b

expression was affected by mechanical ventilation.

Figure 3. Ventilation inhibits BrdU uptake independent of
postnatal age. Although the BrdU labeling index decreased gradually
with advancing postnatal gestation, mechanical ventilation for 24 h
inhibited cell proliferation at every postnatal age. Medians with 25th

and 75th quartiles are shown, bars are 5th and 95th percentiles, n = 4 rat
pups per time group. *p,0.05.
doi:10.1371/journal.pone.0016910.g003
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The amount of p27Kip1 is regulated at the level of its synthesis

(transcription, translation), degradation and localization [39].

During the G0 phase, it accumulates in the nucleus and inhibits

cyclin-Cdk complexes. In response to growth stimuli, p27Kip1

translocates from the nucleus to the cytoplasm during G1 phase and

is degraded by the proteosome after ubiquitination [39], permitting

Figure 4. Ventilation inhibits lung cell growth. Immunohistochemistry ((A1) non-ventilated 7-day old rat, (A2) 7-day old rat ventilated for 12 h,
(A3) 7-day old rat ventilated for 24 h, (A4) non-ventilated 8-day old rat) illustrates reduction in BrdU uptake (brown color) with duration of ventilation.
(B) BrdU labeling index significantly decreased after 12 and 24 h of mechanical ventilation. Medians with 25th and 75th quartiles are shown, bars are
5th and 95th percentiles, n = 12 rat pups per time group. MV, mechanical ventilation. * p,0.05.
doi:10.1371/journal.pone.0016910.g004

Ventilation Induces p27 and p57 Kip Proteins
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the cell cycle to progress to S phase. Several signaling pathways that

alter p27Kip1 phosphorylation influence its subcellular localization

and function. For example, phosphorylation of the following

essential sites regulate important functions: Thr157 prevents nuclear

import; Ser10 mediates nuclear export; Thr198 promotes cytoplas-

mic translocation and increases p27-dependent motility, which may

be important to prepare cells for shape changes in later phases of the

cell cycle; and, Thr187 results in proteolysis [26,39]. In the present

study, mechanical ventilation of 24 h increased the transcription of

p27Kip1 and altered its phosphorylation: less phosphorylation of

Thr157 (increasing nuclear import), Thr198 (decreasing nuclear

export) and Thr187 (reduced proteolysis). No significant changes in

Figure 5. Impact on cyclin D, cyclin E and p27Kip1 expression. Mechanical ventilation for 24 h significantly decreased cyclin D1 and E1 mRNA
(A) and protein (B and C) levels in lungs of 7-day old rats. In contrast, p27 kip1 mRNA increased (A). Inserts in (B) and (C) show cyclin D1 (B) and cyclin
E1 (C) immunoblots of lung tissue of 7-day old rats ventilated for 24 h and non-ventilated 8-day old rats (controls). Blots were reprobed with b-actin
for equal loading and transfer. Medians with 25th and 75th quartiles are shown, bars are 5th and 95th percentiles; qPCR, n = 6 rat pups per time group;
immunoblot, n = 3 rat pups per time group. MV, mechanical ventilation. *p,0.05 versus non-ventilated group, 1 p,0.05 versus 24 h ventilation.
doi:10.1371/journal.pone.0016910.g005
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Ser10 phosphorylation were noted (not shown). Together, these

alterations in p27Kip1 phosphorylation favour its nuclear localiza-

tion and stability. In addition, the reduced phosphorylation of

p27Kip1 at Thr157 and Thr198 negatively affects the assembly

function of p27Kip1 for cyclinD1-Cdk4, thereby negatively affecting

cell cycle progression [26].

The second family of CKIs are INK4 proteins (p16INK4a,

p15INK4b, p18INK4c and p19INK4d); they inhibit cyclin D-dependent

kinases Cdk-4 and -6 [14,15] and, are thus specific for early G1

phase. In the present study, we found a significant reduction in

p16INK4a protein after ventilation with low, moderate or high VT. In

addition to Cdk inhibition and G1 growth arrest, p16INK4a plays a

role in regulating apoptosis. It has been shown that p16INK4a-

deficiency increases apoptosis in osteosarcoma U2OS and mouse

embryonic fibroblast (MEF) cells exposed to ultraviolet (UV) light

[40], because of down-regulation of the anti-apoptotic protein Bcl-2.

In contrast, the pro-apoptotic protein Bax was down-regulated in

p16INK4a expressing cells [40]. Thus, p16INK4a appears to control

apoptosis through the intrinsic mitochondrial death pathway.

Prolonged mechanical ventilation has been shown to significantly

increase lung cell apoptosis in newborn mice lungs [8]. Although

p16INK4a levels were decreased in the present study, it remains yet to

be determined whether it plays a role in ventilator-induced

apoptosis.

Figure 6. Different effects on Kip and INK proteins. Mechanical ventilation for 24 h significantly increased p27 Kip1 (A) and p57 Kip2 (B) protein
levels. In contrast, p16 INK4a protein (D) was decreased by ventilation while p15 INK4b (C) was unchanged. Inserts show immunoblots of lung tissue of
7-day old rats ventilated for 24 h and non-ventilated 8-day old rats (controls). Blots were reprobed with b-actin for equal loading and transfer.
Medians with 25th and 75th quartiles are shown, bars are 5th and 95th percentiles; n = 3 rat pups per time group. *p,0.05 versus non-ventilated group.
doi:10.1371/journal.pone.0016910.g006
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Another risk factor for BPD is oxygen [1]. Hyperoxia has been

shown to interfere with cell-cycle progression in vitro [36,41,42]

and hyperoxia-induced G1 arrest appears to be mediated by

p21Waf1/Cip1[43,44]. The hyperoxic induction of p21Waf1/Cip1 is

p53-dependent [44] and its increase promotes survival of cells

exposed to continuous oxidative stress by maintaining anti-

apoptotic Bcl-2X(L) expression [45]. Hyperoxic-ventilated prema-

ture baboons delivered at 125 and 140 days of gestation have

increased p53 and p21Waf1/Cip1 expression [46,47]. In the present

study, we did not assess p53 but the absence of p21Waf1/Cip1

induction by 24 h of mechanical ventilation with room air suggests

that p53 is likely not involved in ventilation-induced cell cycle

arrest in these studies.

The increase of p27Kip1 and p57Kip2 by mechanical stretch in vitro

and in vivo coincided with a reduced expression of cyclins D1 and

E1, both of which are essential for cell cycle progression through G1

and entry in S phase. D-type cyclins are induced by mitogenic

stimuli in quiescent cells. After association with Cdk4/6 and

activation by Cdk activating kinase, they promote entry into the G1

phase, thereby triggering cyclin E expression. Cyclin E binds to

Cdk2 and facilitates transition from G1 to S phase [22]. Both

p27Kip1 and p57Kip2 are potent inhibitors of cyclin E-dependent

Figure 7. Effect on p27 kip1 phosphorylation. A 24 h-ventilation significantly decreased Thr157-phosphorylated p27Kip1 (A), Thr187-
phosphorylated p27Kip1 (B) and Thr198-phosphorylated p27Kip1 (C). Phosphorylation of threonine 157 was already reduced after 12 h of ventilation
(D). Inserts show immunoblots of lung tissue of 7-day old rats ventilated for 24 h and non-ventilated 8-day old rats (controls Blots were reprobed with
b-actin for equal loading and transfer. Medians with 25th and 75th quartiles are shown, bars are 5th and 95th percentiles; n = 3 rat pups per time group.
*p,0.05 versus non-ventilated group.
doi:10.1371/journal.pone.0016910.g007
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kinase Cdk2, but at high concentrations they also block Cdks4/6. In

addition, it is plausible that cell cycle progression is inhibited due to

the reduced phosphorylation of p27Kip1 at critical threonines

(Thr157, Thr198) which negatively affects the assembly function of

p27Kip1 for cyclin D1-Cdk4 complexes [48]. The down-regulation

of cyclin D1 and E1 expression suggests a G1 cell cycle arrest, a

conclusion that is supported by the absence of BrdU incorporation

(S-phase event) and positive PH3 staining (M-phase marker). In the

125-day premature born baboon model of BPD, the animals

received ventilator support and oxygen as needed to achieve normal

blood-gas values [49], and such treatment increased pulmonary

expression of cyclin D1 and E at day 6 while prolonged ventilation

and oxygen exposure led to a decrease in cyclin E [46]. It is possible

that lung cells were initially undergoing repair by increasing

proliferation, but that prolonged exposure impairs the expression of

cyclins, resulting in failure of repair and inhibition of further

development. Furthermore, increased levels of the Cdk inhibitor

p21Waf1/Cip1 in the baboon BPD model [46] suggests that G1

growth arrest may occur in infants with BPD. Unfortunately, the

expression of p27Kip1 or p57Kip2 has not been investigated in the

baboon BPD model.

In summary, we conclude that mechanical ventilation for 24 h

using moderate VT without supplemental O2 causes G1 cell cycle

arrest of lung cells in newborn rats due to increased transcription

and altered phosphorylation (in favour of nuclear localization) of

Kip CKIs, and down-regulation of cyclins D and E. This

proliferative arrest may cause a reduction in alveolarization,

resulting in alveolar simplification. Such identification of ventila-

tion-induced CKIs may have therapeutic potential for the

prevention -or treatment- of arrested alveolarization in ventilated

premature infants.
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