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Abstract: Much research has been conducted in the area of machine learning algorithms; however,
the question of a general description of an artificial learner’s (empirical) performance has mainly
remained unanswered. A general, restrictions-free theory on its performance has not been developed
yet. In this study, we investigate which function most appropriately describes learning curves
produced by several machine learning algorithms, and how well these curves can predict the future
performance of an algorithm. Decision trees, neural networks, Naïve Bayes, and Support Vector
Machines were applied to 130 datasets from publicly available repositories. Three different functions
(power, logarithmic, and exponential) were fit to the measured outputs. Using rigorous statistical
methods and two measures for the goodness-of-fit, the power law model proved to be the most
appropriate model for describing the learning curve produced by the algorithms in terms of goodness-
of-fit and prediction capabilities. The presented study, first of its kind in scale and rigour, provides
results (and methods) that can be used to assess the performance of novel or existing artificial learners
and forecast their ‘capacity to learn’ based on the amount of available or desired data.

Keywords: data mining; machine learning; learning curves; learning process; power law

1. Introduction

Ever since the advent of machine-stored data, there have been problems with the
amount of data and the ability to store and process the data. In his seminal paper, E. F.
Codd introduced the concept of relational databases because it was needed for “protecting
users of formatted data systems from the potentially disruptive changes in data representation
caused by growth in the data bank and changes in traffic [1].” Back in 1970s, Codd defined a
“large” database as one having tables with 30 or more attributes.

Twenty years later, the concept of ‘data mining’ was introduced as a method of
knowledge discovery in databases [2,3]. There was a general recognition that there is
untapped value in greater collections of data and that such structures are indeed useful
not only as repositories of atomic pieces of information, but rather that the database as a
whole provides a lot of information, which can be used to guide business decisions and
ultimately lead to a competitive advantage.

The general recognition was that novel approaches need to be implemented to mine
the value from the data vaults. Typically, machine learning and artificial intelligence
tools were employed. Researchers and practitioners examined various methods that were
available and used them on a single dataset—the one they were trying to conquer. Very little
research was done on the general applicability of these methods, which is why researchers
were choosing the appropriate method by a trial and error approach. Once the problem
was successfully solved, authors rarely investigated further possible improvements in a
systematic way.

The possible improvements of a machine learner’s performance could come in several
ways. Firstly, by improving and optimizing the algorithm itself. Secondly, by changing
the internal parameters of a selected algorithm. Thirdly, the performance could be further
improved by employing larger amounts of data. Ideally, the algorithm’s output could be
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analytically determined as a function of these three tactics. Different theoretical approaches
provide estimates for the size of the confidence interval on the training error under various
settings of the learning-from-examples problem. Vapnik-Chervonenkis (VC) theory [4]
is the most comprehensive description of learning from examples. VC-theory provides
guaranteed bounds on the difference between the training and generalization error. How-
ever, it has serious limitations, such as that it is applicable only to simple algorithms with a
fixed ’capacity’, and requires an oracle that is never wrong. Hence, it was never used in
real-life implementations. On the other hand, standard numerical (and other statistical)
methods become unstable when using large datasets [5]. Theoretical approaches are unable
to provide answers as to how learning algorithms learn with a given input, thus creating
a research gap. Additionally, there are no methods developed to describe an algorithm’s
performance on unseen data.

In this paper, we systematically explore the influence of the amount of data on the
output of several machine learning algorithms and give a comprehensive description of
their general performance. The research question is formulated as follows: (a) which of the
models, in general, best describes the learning process of artificial learning algorithms, and
(b) which of the models can most accurately predict the future performance?

The results of our study are significant for practitioners and developers of machine
learning algorithms alike. Practitioners can use the results to verify if there is room for
improvement of the generated model’s performance if more data were available and
estimate the costs associated with additional data acquisition and preparation. Developers
can use the methodology presented in this paper when they compare their novel algorithm’s
performance with the existing ones in a systematic and rigorous way. To the best of our
knowledge, the present study is the first one using several machine learning algorithms on
such a large array of different datasets to obtain their performance envelopes.

The rest of the paper is organized as follows: the following section summarizes
the existing research done in the field of learning curve approximation and prediction.
In Section 3, the experimental setup is presented, while the results are discussed in Section 4.
The paper is concluded with final remarks in Section 5.

2. Related Works

Mathematical descriptions of human cognitive abilities have already been the subject
of substantial research. The idea behind this approach is based on the assumption that
an existing mathematical function can be used to describe an individual learning curve,
obtained from a given dataset. That is achieved by fitting the underlying parametric model
to the learning curve in order to estimate it. Various mathematical functions have been
studied extensively in literature in order to find the best parametric model to (a) interpolate
the learning curve over the span of observed values, and (b) extrapolate the remainder of
the curve beyond the range of known values.

Existing studies largely disagree on the most appropriate parametric model to describe
and predict the learning process. Earlier studies often employed linear functions as bench-
marks in their comparisons against other potential mathematical functions [6–8]. Although
they were largely considered insufficient in their ability to describe the acquisition of new
knowledge, there were nonetheless isolated cases in which they were demonstrated to
provide the best goodness-of-fit. Logarithmic function was shown to be more promising.
In [7], the best fit was achieved on four datasets. However, the measure was bound to the
first portion of the learning curve, and was expected to perform worse for new points of
data due to the function’s inflexibility.

The exponential function is often considered to be an established way of describing
the acquisition of new knowledge [7–9]. As a result, the term power law has appeared [10].
In the last twenty years, however, some studies [11–13] have been suggesting that the
power law arose as a result of averaging exponential curves. Using various simulations,
the authors of the mentioned papers showed that if we monitor the progress of several
students, their collective learning curve will be more similar to the power law, even if
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individuals learn according to the exponential law [11]. The same applies to non-trivial
learning tasks, which can be divided into several differently demanding sub-tasks (i.e.,
when learning a foreign language, we are dealing with words and grammatical concepts
of varying complexity). The mentioned research papers claim that while the progress of
individual sub-tasks corresponds to the exponential law, the final progress of the entire
learning task is in accordance with the power law, due to the effect of averaging.

In the existing literature on the machine learners, the power law has been most
commonly considered the parametric model to offer the best fit. Frey and Fisher trained
decision trees and found that on a total of 12 out of 14 datasets, the power law achieved
the highest goodness-of-fit [6]. In [9,14], a three-parameter power function was compared
to several simple and complex mathematical functions, and discovered that the former
performed the best in most cases of comparison. Extended power law has been empirically
shown to yield a well-fitting learning curve for the analysis of various parameters such as
error and data-reliance in deep networks [15]. Recently, the power law has been employed
for the purpose of learning curve fitting in the deep learning [16], natural language [17],
medicine [18] and renewable energy domains [19].

However, other mathematical functions have also been successfully utilized in liter-
ature. Inverse power law was fit to a learning curve constructed on a small amount of
data [20]. The authors then explored how well the estimated learning curve fit the entire
learning curve on three large, imbalanced datasets, showing that the inverse power law
is a suitable fitting method for big data. An exponential model has been used to follow
and predict the spread of COVID-19 [21]. A weighted probabilistic learning curve model
composed of several individual parametric models (including exponential and logarithmic)
was empirically demonstrated to successfully extrapolate the performance for the purpose
of deep neural network hyperparameter optimization [22].

Such cases suggest that the power law is not necessarily the most appropriate para-
metric model in all settings. The empirical evidence suggests that the choice may be
dependent on the dataset and its properties, the classification learning method [23], the
learning curve construction and fitting parameters, and other activities, such as pretraining
and fine-tuning [15]. Generally speaking, the defined problem is the one that determines
the shape of the learning curve; and while for most problems, it is possible to determine
the best-fitting model, there are special cases for which the shape of the curve is difficult
to characterize [24]. For the time being, there is no ideal parametric model that would
be generally applicable in all situations, particularly in such cases as ill-behaved learning
curves. However, it might be possible to identify a parametric model with a sufficient
flexibility, and predictive ability [25].

One branch of research focuses on how a chosen parametric model can be adjusted
in order to better fit the learning curve. For example, Jaber et al. improves the traditional
power law model by taking into account the variable degree of memory interference that
occurs across the repetitions that represent the learning-forgetting process [26]. In a study
by Tae and Whang, a framework called Slice Tuner was proposed, which iteratively updates
learning curves with acquisition of new data in order to improve model accuracy and
fairness [27].

Another potential alternative approach is to empirically analyse the performance
of an individual learning algorithm on as many datasets as possible. A series of statis-
tical analyses can then be performed on the obtained results so that conclusions can be
drawn from them. Frey and Fischer [6] measured the performance of decision trees and
found that the shape of the learning curve can be described by the power law. Although
many authors are in agreement with their findings [8,28], there are some that reject these
claims [7]. In this paper, we improve and extend the empirical research carried out in [29].
The description, implementation and results of the experiment will be described in the
following subsections.



Entropy 2021, 23, 1123 4 of 21

3. Experiment
3.1. Experiment Design

As evident from the related work section of the paper, the two most commonly used
models for describing learning curves are the power and exponential models. In [29], four
models were used in total, namely the power, linear, logarithmic, and exponential models.
However, the results showed that the linear model was not appropriate for describing the
learning curve due to the basic shape of the linear function. Based on that, the linear model
was excluded from this experiment. This experimental decision also reduced the overall
complexity of the experiment, as fewer pairwise comparisons had to be conducted in the
statistical analysis.

A few important improvements were introduced to the original experimental de-
sign [29]. The initial collection of datasets was expanded to 130 in total. The full list of
datasets can be found in the Appendix A. The work in [29] focused on finding the best-fit
learning curve for the C4.5 algorithm, which is a well-known implementation of decision
trees. In this study, however, three additional classification algorithms were utilized: neural
networks, Naïve Bayes, and support vector machines (SVM).

A more appropriate filtering of the constructed learning curves was also introduced.
Since many learning curves were ill-behaved as a result of too fine granularity, a larger step
increase had to be used. However, a coarser divide decreases the number of data points,
which can be problematic when fitting learning curves constructed from smaller datasets.
A balance between a fine and coarse divide was sought. The initial 10 instances [30] to
be added to the next fold was shown to be producing too coarse learning curves, hence
it was increased to 25. This choice reduced the number of ill-behaved learning curves to
a minimum, while at the same time allowing for smaller datasets to be employed in the
experiment. A more coarse divide into folds also resulted in a slightly lower computational
complexity when generating the learning curves.

Next, a modified version of the coefficient of determination R2 was employed. The
coefficient of determination R2 measures the goodness-of-fit of a statistical model. Its value
determines the proportion of variance of a dependent variable that can be explained or
predicted by the independent variables. A higher value means a higher goodness-of-fit [31].

This coefficient, sometimes referred to as the R-square, is usually used to fit linear
models, but it can also be used to fit nonlinear models. Depending on the purpose of use,
the procedures for calculating its value also differ, and in some cases the value R2 does not
necessarily represent a square of a given value. Consequently, the values of this metric can
also be negative.

Since different nonlinear functions were being fit with a different number of param-
eters, an adapted coefficient of determination R2, initially proposed by Theil [32], was
chosen, instead. The equation for calculating the coefficient is as follows:

R2
= 1− SSres/d fe

SStot/d ft
(1)

The values d ft and d fe represent degrees of freedom: d ft = n− 1 and d fe = n− p,
where n represents the number of instances in the population, and p represents the number
of parameters of the fitted mathematical function (including the constant). The value SSres
represents the sum of squares of residuals, and the value SStot represents the total sum of
squares. The two values can be calculated as:

SSres = ∑
i
(Yi − Ŷi)

2 SStot = ∑
i
(Yi −Y)2 (2)

where Yi represents the actual value, Y represents the average of the actual values, and Ŷi
represents the predicted value within the given model.
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The use of the mean square error (MSE) remained unchanged. The MSE is a measure
for estimating the differences between the true value Yi and the predicted value Ŷi. It is
defined as the mean of the square of the difference between the two values [33]:

MSE =
1
n
·

n

∑
i=1

(Ŷi −Yi)
2 (3)

The key difference between the metrics MSE and R2 is that the former measures the exact
deviation between the true and the predicted value, while the latter merely estimates the
proportion of variance. It is recommended to use MSE for pairwise comparisons and
statistical analyses, while R2 is easier to understand and is more suitable for interpretation
and presentation of the results.

Several changes were also made to the process of learning curve construction. The
most important was the introduction of stratification. In this sampling method, the share
of individual classes is calculated for the entire dataset. These proportions must then be
maintained when creating subsets. Throughout the incremental addition of new instances,
stratification ensures that each fold is a good representation of the entire dataset. It avoids
uneven distribution of instances into classes, which can happen in some cases when random
sampling is employed.

In order to measure the accuracy, each dataset had to be divided into learning and test
sets. Earlier studies employed k-fold cross-validation [28,29,34], with the number of folds
typically set to 10. This approach measures the error rate in a 10-fold run, and averages the
result over all 10 folds. In this study, the datasets were divided in the 80/20 ratio. This is
the simplest and least computationally demanding approach, which has also proven to be
considerably more stable compared to the k-fold CV [35], as shown in Figure 1.
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k-fold-CV (k=10)
80/20 learning/test set split

Figure 1. Comparison of methods for measuring accuracy in the construction of learning curves.

Individual learning curves were fitted to the following parameterized mathematical
functions: power ( fpow(x)), logarithmic ( flog(x)), and exponential ( fexp(x)).

fpow(x) = p1 + p2 · xp3 (4)

flog(x) = p1 + p2 · log(x) (5)

fexp(x) = p1 + p2 · ep3·x (6)

It can be seen from the equations that the number of parameters pi differs between in-
dividual functions. All of them have the intercept parameter p1 and the linear parameter p2,
while the exponential parameter p3 is present only for the power and exponential functions.
An example of fitting a learning curve with a power function is shown in Figure 2.
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In terms of statistical analysis of data, more appropriate statistical methods were
employed compared to [29]. Initially, the distribution of the data was verified using
Kolmogorov-Smirnov and Shapiro-Wilk normality tests which showed that most datasets
were not normally distributed. Instead of the classic t-tests and ANOVA, which assume
normal distribution of data, we opted for their nonparametric alternatives, namely the
Wilcoxon signed-rank test and Friedman’s test. We decided against using the Pearson’s
χ2 test to determine the goodness-of-fit because this statistical test is not suitable for non-
categorical data. Holm-Bonferroni correction was used instead of Bonferroni correction to
correct for type I errors [36].
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Figure 2. Fitting the learning curve to the power model.

3.2. Experiment Execution

The first step in our experiment was to build the learning curves. Due to the large
number of datasets and machine learning algorithms used, the learning curve construction
process had to be fully automated.

For this purpose, a dedicated Java application that employed machine learning using
the Weka Java API [37,38] was created. The application also took care of the preparation
(stratification) and division of datasets into smaller (incremental) folds. An individual
learning curve—for a specific dataset and a specific machine learning algorithm—was
saved to a CSV file.

The construction of an individual learning curve was carried out according to the
following procedure:

1. All instances in a given dataset are randomly rearranged.
2. The dataset is stratified before it can be divided in the 80/20 ratio.
3. The first 80% of the instances are separated from the main set to become the learning

set . The remaining 20% of the instances comprise the test set.
4. All instances in the learning set are randomly rearranged.
5. The learning set is stratified before it can be divided into k folds. The number k is

obtained by dividing the number of instances in the learning set by 25 and rounding
the result down.

6. For each fold i ∈ {2, 3, 4 · · · k}, the following is executed:

(a) The first n = 25 · i instances are separated from the learning set and named the
learning subset.

(b) The selected classifier is trained on the learning subset.
(c) The accuracy (Err) of the classifier is measured on the test set.
(d) A pair of values (n, Err) is recorded.

7. All recorded values are saved to a CSV file.
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After successfully creating all of the learning curves, the process of fitting the curves
could begin. For this purpose, another dedicated Java application was developed so that
the entire process could be fully automated. Apache Commons Mathematics Library was
employed for this purpose. Their implementation of fitting nonlinear curves is based on
the Levenberg–Marquardt algorithm, which works on the Least Squares principle [39].

Fitting of the individual learning curves was performed according to the
following procedure:

1. The learning curve is read from the CSV file.
2. For each section of the learning curve i ∈ {1, 2, 3, 4}, the following is performed:

(a) All selected mathematical functions are fitted to the first i/4 points of the learning

curve. The fit results are named f (i)pow, f (i)log and f (i)exp.

(b) For every fitted mathematical function ( f (i)pow, f (i)log and f (i)exp), the MSE and R2

are calculated for the first i/4 points of the learning curve. The results of these
calculations are named MSE(i) and R2(i).

(c) For every fitted mathematical function ( f (i)pow, f (i)log and f (i)exp), the MSE and R2 are
calculated on the whole learning curve. The results of these calculations are
named MSE(i)

predict and R2(i)
predict.

(d) For every fitted mathematical function ( f (i)pow, f (i)log and f (i)exp) the value vector

(MSE(i), R2(i), MSE(i)
predict, R2(i)

predict) is derived.

3. All recorded values are saved to a CSV file.

It is apparent from the above procedure that each learning curve was fitted in quartiles,
thus simulating the incremental addition of knowledge in four major steps. For each
quartile, the metrics MSE and R2 were calculated twice. The first calculation was performed
on the same points that were fitted, thus measuring the quality of the fit; the second
calculation was performed on the entire learning curve, thus measuring the quality of the
extrapolation of the learning curve (i.e., the prediction of the rest of the learning curve).
Herein, it is necessary to point out that in the fourth quartile, the calculations are performed
on the whole learning curve, which means that the prediction of the remaining learning
curve was not feasible. In such cases, prediction could hypothetically be performed for
scenarios in which we would like to know the future performance of the classifier if more
data had been available. Based on that, it is possible to estimate the amount of data required
to get the desired performance.

Due to the division into four quartiles, additional requirements regarding the choice
of the learning curves were set. Each learning curve had to contain at least 20 points, or in
other words—the dataset needed to have at least 500 instances in total. In this case, the
learning curves in the first quartile would have at least five points, which is two more
than the absolute minimum necessary to fit a mathematical function with three parameters
(such as exponential and power functions). Due to this limitation, the number of datasets
employed in the experiment ultimately varied between 79 and 130. The largest number of
datasets was employed when an entire dataset was used for calculating the learning curve,
without having to be split into quartiles (Filter = none).

Nonetheless, the incremental fit of learning curves in quartiles is not always successful.
The algorithm used is not exact and may terminate in an error due to parameter limitations
and exceeding the maximum number of iterations. As a result, the data to be used in
the statistical analyses is further reduced. Because of that, the number of individual
learning curves employed in statistical analyses was marked accordingly (column ’N’ in
Tables 1 and 3). When no filter was applied (Filter = none), all 130 datasets were used.

However, when the filters were applied, some datasets did not have the required
number of instances to produce enough data points for building the learning curve. We
ended up with 79 datasets that provided enough data points for all filters, and provided
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answers for all four algorithms. Due to each mathematical model’s specifics, some calcula-
tions of models’ parameters diverged and no learning curve was produced. Such a case is
presented in Table A3, for algorithm A in quartile 2 (see row 2), where power curve was not
calculated. In some cases, we were unable to calculate any model for a specific algorithm.
For example, when no filter was applied, there were a total of 130 datasets × 3 models =
390 potential learning curves. However, due to algorithms diverging and/or terminating,
only 352 learning curves were successfully calculated. The datasets that did not evaluate
one or more algorithms were used in the analysis in order to produce as many learning
curves as possible, thus allowing multiple comparisons.

The complete data for the incremental fitting of learning curves for all algorithms and
quartiles is given for a selected few datasets in the table in the Appendix B. The table shows
the raw values of the metrics MSE(i), R2(i), MSE(i)

predict, R2(i)
predict. Missing entries indicate

that the fitting was not successful for that configuration.

4. Results

In terms of fitting a single learning curve, the fit results of the selected mathematical
models are interdependent. In other words, the results of the obtained metrics (MSE and
R2) are interdependent within one learning curve and can be compared using pairwise
(dependent) tests.

Since the obtained results do not satisfy the assumptions required for parametric tests,
nonparametric tests in statistical analyses were used. Friedman’s test was employed for
simultaneous comparison of all three mathematical models, followed by pairwise post-hoc
tests using the Wilcoxon test of predetermined ranks.

Fitting the learning curves with different mathematical models was observed from
two different perspectives. Initially, the goodness-of-fit, which shows how well a particular
model can describe a part or the entirety of a learning curve that was examined. Then, its
ability to predict, which shows how well a particular model can predict (or extrapolate) the
remainder of the learning curve was investigated.

Figure 3 shows the extrapolation of the learning curve using the power and exponen-
tial model. Both models were fitted on the first quarter of the learning curve, while the
remainder was extrapolated—the milestone between interpolation and extrapolation is
marked by a vertical line. It can be seen from the figure that the power model proved to be
better at predicting the remainder of the learning curve.
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Figure 3. Fitting of the power and exponential model on the first quarter of the learning curve and
extrapolation on the rest of the learning curve. The first quarter is marked by a vertical line.
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4.1. Goodness of Fit

When comparing selected models in terms of goodness-of-fit, the MSE(i) was com-
pared first, followed by R2(i). A more favorable value of an individual metric—lower
MSE(i) and higher R2(i)—means higher goodness-of-fit.

The Friedman test was used to compare MSE(i) of both models simultaneously. The
results are shown in Table 1. Comparisons were performed for all four quartiles (Filter = i),
as well as the full dataset (Filter = none). “N” represents the number of instances used in
statistical comparisons. Due to limitations outlined in the previous section, the incremental
fit of learning curves by quartiles was conducted on a limited number of instances. Con-
versely, the fitting on the full dataset was carried out on all available instances. Type I error
corrections were performed for all five p-values in the table.

Table 1. Friedman’s test MSE(i) and R2(i).

MSE(i) R2(i)

Filter N χ2 df Sig. χ2 df Sig.

none 352 395.21 2 0.000 313.20 2 0.000
quartile = 1 228 89.40 2 0.000 55.50 2 0.000
quartile = 2 261 96.07 2 0.000 67.75 2 0.000
quartile = 3 276 105.80 2 0.000 100.78 2 0.000
quartile = 4 297 106.95 2 0.000 96.89 2 0.000

Due to the significant results of Friedman tests in the Table 1, post-hoc tests were
required. Pairwise comparisons were performed using the Wilcoxon test of predicted ranks.
The results of the pairwise comparisons of all three pairs are shown in Table 2. The table
consists of five parts, which are separated based on the filter. The last column for every
metrics marks the preferred model for describing the learning curves. If the p-value was
not significant, the more appropriate model was not determined. Type I error corrections
were performed for all 15 p-values in the table.

Table 2. Wilcoxon rank sum test—pairwise comparisons of MSE(i) and R2(i).

MSE(i) R2(i)

Filter Pair Z Sig. Best Model Z Sig. Best Model

none log–exp −12.76 0.000 Exponential −13.77 0.000 Exponential
pow–exp −4.90 0.000 Power −5.47 0.000 Power
pow–log −16.28 0.000 Power −15.78 0.000 Power

quartile = 1 log–exp −6.98 0.000 Exponential −6.35 0.000 Exponential
pow–exp −1.50 0.133 — −0.73 0.469 —
pow–log −7.62 0.000 Power −6.89 0.000 Power

quartile = 2 log–exp −6.13 0.000 Exponential −7.10 0.000 Exponential
pow–exp −2.36 0.018 Power −2.44 0.015 Power
pow–log −8.10 0.000 Power −7.78 0.000 Power

quartile = 3 log–exp -6.61 0.000 Exponential −7.37 0.000 Exponential
pow–exp −2.59 0.010 Power −3.32 0.001 Power
pow–log −8.33 0.000 Power −8.24 0.000 Power

quartile = 4 log–exp −6.10 0.000 Exponential −6.73 0.000 Exponential
pow–exp −3.13 0.002 Power −3.84 0.000 Power
pow–log −8.55 0.000 Power −8.47 0.000 Power

After analyzing the MSE(i), we proceeded with analyzing the R2(i). Following the
same procedure as before, the Friedman test was performed first, followed by pairwise
comparisons using the Wilcoxon test of predicted ranks. The results of both statistical
procedures are shown in Tables 1 and 2. Since the value of R2(i) is generally restricted to
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the interval [0, 1], the statistical distribution of values on the box-and-whisker plot were
also shown (see Figure 4).

Exponential model Logarithmic model Power model

0.0

0.2

0.4

0.6

0.8

1.0

R
2

Figure 4. Statistical distribution of the R2(i) value.

The power model had the highest median, followed by the exponential model, and
finally the logarithmic model. With the exception of the first quartile (quartile = 1), the
power model proved to be the most appropriate. It is followed by the exponential, and
finally, the logarithmic model.

4.2. Prediction

To compare mathematical models in terms of their prediction capabilities, a statistical
analysis of the MSE(i)

predict and R2(i)
predict was performed. For both metrics, the model was

initially fit on a part of the learning curve, and then measured its adequacy on the entire
learning curve. This way, the basic model could be extrapolated. A more favorable value
of an individual metric—lower MSE(i)

predict and higher R2(i)
predict—means a greater ability to

predict unknown data.
The statistical analyses in this subsection are analogous to the ones performed in

the previous subsection, so they were not described in more detail. The results of the
Friedman comparison tests for MSE(i)

predict and R2(i)
predict can be found in Table 3. Table 4

contains pairwise comparisons of MSE(i)
predict and R2(i)

predict using the Wilcoxon predicate

rank test. The statistical distribution of the R2(i)
predict for the selected mathematical models is

shown on the box-and-whisker plot portrayed in Figure 5. Similarly to the goodness-of-fit
measure, the power model had the highest median, followed by the exponential, and the
logarithmic model.

Table 3. Friedman’s test MSE(i)
predict and R2(i)

predict.

MSE(i)
predict R2(i)

predict

Filter N χ2 df Sig. χ2 df Sig.

quartile = 1 228 72.34 2 0.000 74.00 2 0.000
quartile = 2 261 54.51 2 0.000 50.85 2 0.000
quartile = 3 276 74.11 2 0.000 68.94 2 0.000
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Table 4. Wilcoxon rank sum test—pairwise comparisons of MSE(i)
predict and R2(i)

predict.

MSE(i)
predict R2(i)

predict

Filter Pair Z Sig. Best Model Z Sig. Best Model

quartile = 1 log–exp −4.94 0.000 Exponential −5.89 0.000 Exponential
pow–exp −1.63 0.104 — −2.97 0.003 Power
pow–log −6.92 0.000 Power −7.05 0.000 Power

quartile = 2 log–exp −4.32 0.000 Exponential −5.45 0.000 Exponential
pow–exp −3.51 0.000 Power −3.66 0.000 Power
pow–log −6.95 0.000 Power −7.16 0.000 Power

quartile = 3 log–exp −5.42 0.000 Exponential −6.18 0.000 Exponential
pow–exp −3.11 0.002 Power −3.93 0.000 Power
pow–log −8.10 0.000 Power −7.94 0.000 Power

1 2 3

−5.0

−4.0

−3.0

−2.0

−1.0

0.0

1.0

Quartile

R
2

Exponential model
Logarithmic model

Power model

Figure 5. Distribution of R2 (i)
predict by quartiles.

With the exception of the first quartile (quartile = 1) in the analysis of the metric
MSE(i)

predict, the power model again proved to be the most appropriate model for the
prediction (extrapolation) of learning curves. It was followed by the exponential, and
finally, the logarithmic model.

Since the model was fit to a portion of the learning curve, only the data for the first
three quarters is shown in the mentioned figures and tables. That is because the fourth
quartile represents the entire learning curve, for which any further predictions can no
longer be validated using the existing data.

Type I error correction was performed on all three p-values for the Table 3, and all
nine p-values for the Table 4.
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5. Conclusions

When presenting the results from both aspects (fit quality and ability to predict), it
was apparent that, in general, the power model proved to be the most appropriate choice
for describing learning curves and thus machine learning algorithms’ performance. The
results of the conducted research are consistent with the findings of authors in the area of
machine learning, e.g., Frey and Fischer [6], Last [8] and Provost et al. [28].

Interestingly, the results contradict the findings of Heathcote et al. [11] who were
modeling and observing human cognitive performance and found out that the exponential
law is the best to describe an individual learner and that the power law may be observed
only at the generalization level. However, the power law was again better at describing a
combined motor-cognitive task [40]. There is additional research needed to explain why
and when human and machine learners might be different in their performances.

The novelty of our research is in providing a systematic and concise answer regarding
the shape of learning curves produced by artificial learning algorithms. No previous
study has utilized a broad set of datasets and statistically validated the results. The
studies mentioned here and in the related works have been working with mostly singlular
machine learners and at best with a few datasets. As opposed to other studies, we have
systematically investigated the performance and ability to predict of four commonly used
machine learning algorithms over a substantial number of datasets, employing rigorous
statistical methods.

The prevailing power law should be researchers’ first choice when measuring the
performance of a learner at the individual level (a single machine learning algorithm) or
at the generalized level (several algorithms). However, consistent with the observations
of [15,23], a combination of decisions taken during the machine learning process (e.g., com-
bination of datasets, selected classifiers, fitting parameters, pretraining, fine-tuning, etc.)
determine the shape of the learning curve.

Our results can serve as important input to the practitioners who try to improve their
results by changing the internal parameters of the machine learning algorithm used. The
question for the practitioners is whether these changes lead to shifting the learning curve, or
to a better generalization. Determining whether or not the change(s) affect the power-law
exponent can lead to immense accuracy improvements. These can be implemented early in
the process.

We have shown that for most problems it is possible to determine the best-fitting
model and the best predicting model, but that there are special cases where the learning
curve is difficult to characterize.

Future work should examine these cases in greater detail with the intention to identify
and describe combinations of characteristics for which the power law is not the most
suitable descriptor. A prominent area of the future studies is the impact of using data
processing techniques (e.g., filtering, augmentation, cleaning) on the learning curves. Addi-
tionally, further studies should seek to find out which model is best for a specific algorithm.
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A.Č.; validation, B.B., A.Č. and L.B.; formal analysis, A.Č.; investigation, A.Č.; data curation, A.Č.;
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Abbreviations

The following abbreviations are used in this manuscript:

AI Artificial intelligence
ANOVA analysis of variance
API application programming interface
ARFF Attribute-Relation File Format
CSV comma separated values
ML Machine Learning
MSE mean square error
SVM support vector machine
UCI University of California Irvine

Appendix A

The datasets used in our experiment were obtained from the UCI Machine Learning
Repository [41]. There was a total of 184 datasets that focused on multivariate classification
problems. However, some of the identified datasets were not appropriate for the task of
constructing and fitting the learning curves, which is why they had to be removed. The
primary criteria to determine the suitability of an individual dataset included: the number
of instances, the availability of the dataset, and the format of the data.

If the dataset was already divided into learning and test sets, both sets were combined
prior to the experimental procedure. Some of the published datasets were not dataset at all,
but data created by random generators. Such cases were excluded as well.

Data format was also important. The tool that was used to implement machine
learning, Weka, supports several forms of input data, however its native ARFF format
proved to be the best for our purposes. Since the vast majority of datasets in the UCI
repository were not available in this format, alternative solutions were sought. Several
third-party repositories were found online, containing most of the collections from the UCI
repository. The remaining datasets that could not be found in online repositories were
manually converted. The few datasets that could not be converted to the desired format
were discarded.

Finally, since datasets were split into quartiles, it was important to ensure that the
learning curves contained enough data points. For that purpose, the required minimum
number of instances in the collection was set to 500. The final number of datasets that met
all the requirements was 79.

Table A1 displays a list of all datasets that provided enough data points for analyses
to be conducted on individual quartiles. The meaning of the columns is as follows. The
Dataset column indicates the name of the ARFF file, which in most cases matches the name of
the dataset uploaded to the UCI repository [41]. The Number of attributes column indicates
the number of attributes that represent potential decision criteria for classification. The
Number of instances column marks the number of valid instances included in a given dataset.

Table A1. A list of 79 datasets from the UCI repository [41] that contained 500 or more instances.

Dataset Number of Attributes Number of Instances

ada_agnostic 49 4562
ada_prior 15 4562
analcatdata_authorship 71 841
analcatdata_dmft 5 797
analcatdata_halloffame 18 1340
anneal 39 898
anneal.ORIG 39 898
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Table A1. Cont.

Dataset Number of Attributes Number of Instances

australian 15 690
balance-scale 5 625
breast-w 10 699
car 7 1728
cardiotocography 23 2126
CH 37 3196
cmc 10 1473
cps_85_wages 11 534
credit-a 16 690
credit-g 21 1000
csb_ch12 7 1601
csb_ch9 4 3240
cylinder-bands 40 540
diabetes 9 768
eucalyptus 20 736
eye_movements 28 10,936
genresTrain 192 12,495
gina_agnostic 971 3468
gina_prior 785 3468
gina_prior2 785 3468
HY 26 3163
hypothyroid 30 3772
ilpd 11 583
irish 6 500
jm1 22 10,885
kc1 22 2109
kc2 22 522
kdd_ipums_la_97-small 61 7019
kdd_ipums_la_98-small 61 7485
kdd_ipums_la_99-small 61 8844
kdd_synthetic_control 62 600
kropt 7 28,056
kr-vs-kp 37 3196
landsat 37 6435
letter 17 20,000
mammographic_masses 6 961
mc1 39 9466
mfeat-factors 217 2000
mfeat-fourier 77 2000
mfeat-karhunen 65 2000
mfeat-morphological 7 2000
mfeat-pixel 241 2000
mfeat-zernike 48 2000
mozilla4 6 15,545
MU 23 8124
mushroom 23 8124
nursery 9 12,960
optdigits 65 5620
page-blocks 11 5473
pc1 22 1109
pc3 38 1563
pc4 38 1458
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Table A1. Cont.

Dataset Number of Attributes Number of Instances

pendigits 17 10,992
scopes-bf 21 621
SE 26 3163
segment 20 2310
sick 30 3772
soybean 36 683
spambase 58 4601
splice 62 3190
sylva_agnostic 217 14,395
sylva_prior 109 14,395
ticdata_categ 86 5822
tic-tac-toe 10 958
titanic 4 2201
train 15 5000
vehicle 19 846
visualizing_fly 2 823
vowel 14 990
waveform-5000 41 5000
wisconsin-diagnostic 31 569
yeast 9 1484

Additional analyses were carried out for learning curves that were constructed from
the full datasets (i.e., when no filters were applied). Since the full datasets contained
enough data points in all cases, the minimum number of instances requirement was not
relevant. Table A2 lists the remaining 51 datasets that contained fewer than 500 instances.
The analyses that were conducted on the datasets which were not split, employed all
datasets listed in Tables A1 and A2 (79 + 51 = 130 datasets).

Table A2. A list of 51 datasets from the UCI repository [41] that contained fewer than 500 instances.

Dataset Number of Attributes Number of Instances

analcatdata_braziltourism 9 412
analcatdata_broadwaymult 8 285
analcatdata_marketing 33 364
analcatdata_reviewer 9 379
arrhythmia 280 452
audiology 70 226
autos 26 205
badges_plain 2 294
baseball-hitter 24 322
baseball-pitcher 19 206
BC 10 286
Billionaires92 3 233
biomed 9 209
breast-cancer 10 286
cars_with_names 9 406
colic 23 368
colic.ORIG 28 368
credit 16 490
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Table A2. Cont.

Dataset Number of Attributes Number of Instances

db3-bf 29 466
dermatology 35 366
ecoli 8 336
GL 10 214
glass 10 214
haberman 4 306
HD 14 303
heart-c 14 303
heart-h 14 294
heart-statlog 14 270
HO 23 368
ionosphere 35 351
jEdit_4.0_4.2 9 274
jEdit_4.2_4.3 9 369
kc3 40 458
liver-disorders 7 345
monks-problems-1_test 7 432
monks-problems-2_test 7 432
monks-problems-3_test 7 432
mw1 38 403
primary-tumor 18 339
prnn_fglass 10 214
prnn_synth 3 250
rmftsa_propores 5 289
schizo 15 340
seeds 8 210
sonar 61 208
spect 23 267
spectf 45 349
usp05 17 203
V1 16 435
VO 17 435
vote 17 435

Appendix B

The Table A3 shows the experimental results of a comparison of eight selected math-
ematical models used to describe the shape of the learning curves. The meaning of the
columns is as follows. The Dataset row preceding the tables and the Algorithm and Quartile
columns show a combination of the selected dataset, the classification algorithm, and the
size of the learning set. For each of the selected metrics (MSE(i), R2(i), MSE(i)

predict and

R2(i)
predict), the “Exp”, “Log” and "Pow” columns show the metric values for each quartile

and selected mathematical models.
Algorithm legend: (A) decision trees: J48, (B) neural networks: Multilayer Percep-

tron, (C) Naïve Bayes: Naïve Bayes, and (D) support vector machines: SVM. Mathematical
model legend: (Exp) exponential model, (Log) logarithmic model, and (Pow) power model.
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Table A3. Comparison of selected mathematical models describing the shape of learning curves.

MSE(i) R2(i) MSE(i)
predict R2(i)

predict

Algorithm Quartile Exp Log Pow Exp Log Pow Exp Log Pow Exp Log Pow

Dataset: ada_prior

A 1 0.0056 0.0053 0.0053 0.0685 0.0165 0.0346 0.4736 0.5155 0.5065 −0.241 0.7041 0.3738
A 2 0.0078 0.0088 0.0682 0.0133 0.7629 0.7342 −0.235 0.7605
A 3 0.0094 0.0099 0.0110 0.0129 0.8045 0.7952 0.8005 0.7680
A 4 0.0102 0.0117 0.0116 0.0102 0.0117 0.0116 0.8159 0.7889 0.7894 0.8159 0.7889 0.7894
D 1 0.0012 0.0014 0.0008 0.0065 0.0766 0.0073 0.9085 0.9005 0.9432 0.7412 −2.025 0.7103
D 2 0.0019 0.0033 0.0012 0.0029 0.0241 0.0048 0.9102 0.8461 0.9425 0.8830 0.0473 0.8092
D 3 0.0024 0.0070 0.0022 0.0030 0.0094 0.0026 0.8957 0.6977 0.9024 0.8813 0.6272 0.8954
D 4 0.0029 0.0084 0.0026 0.0029 0.0084 0.0026 0.8837 0.6665 0.8957 0.8837 0.6665 0.8957

Dataset: analcatdata_halloffame

A 1 0.0007 0.0051 −0.098 −0.310
A 2 0.0015 0.0029 0.2211 0.2578
A 3 0.0020 0.0020 0.0020 0.0029 0.0029 0.0029 0.2693 0.2977 0.2718 0.2345 0.2592 0.2407
A 4 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.2414 0.2686 0.2497 0.2414 0.2686 0.2497

Dataset: car

B 1 0.0020 0.0028 0.0028 0.0183 0.1117 0.1047 0.9333 0.9180 0.9099 0.8465 0.0806 0.1209
B 2 0.0028 0.0070 0.0047 0.0209 0.0185 0.0061 0.9556 0.8948 0.9268 0.8249 0.8474 0.9491
B 3 0.0055 0.0087 0.0055 0.0085 0.0124 0.0058 0.9417 0.9112 0.9426 0.9283 0.8980 0.9515
B 4 0.0072 0.0108 0.0058 0.0072 0.0108 0.0058 0.9398 0.9114 0.9516 0.9398 0.9114 0.9516
D 1 0.0005 0.0022 0.0007 0.0191 0.1913 0.0158 0.9734 0.8998 0.9663 0.6635 −2.304 0.7225
D 2 0.0017 0.0111 0.0026 0.0302 0.0141 0.0256 0.9361 0.5910 0.9004 0.4674 0.7559 0.5487
D 3 0.0090 0.0138 0.0081 0.0198 0.0142 0.0143 0.7796 0.6724 0.8013 0.6508 0.7551 0.7479
D 4 0.0163 0.0141 0.0111 0.0163 0.0141 0.0111 0.7121 0.7563 0.8038 0.7121 0.7563 0.8038
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Table A3. Cont.

MSE(i) R2(i) MSE(i)
predict R2(i)

predict

Algorithm Quartile Exp Log Pow Exp Log Pow Exp Log Pow Exp Log Pow

Dataset: csb_ch12

D 1 0.0007 0.0007 0.0006 0.0030 0.0209 0.0012 0.7996 0.8040 0.8158 0.6773 −1.162 0.8777
D 2 0.0009 0.0010 0.0007 0.0010 0.0071 0.0018 0.8693 0.8627 0.8945 0.8901 0.2601 0.8051
D 3 0.0010 0.0017 0.0009 0.0010 0.0031 0.0011 0.8877 0.8073 0.9002 0.8903 0.6770 0.8862
D 4 0.0010 0.0025 0.0010 0.0010 0.0025 0.0010 0.8903 0.7413 0.8936 0.8903 0.7413 0.8936

Dataset: eye_movements

C 1 0.0077 0.1000 0.7201 −0.532
C 2 0.0068 0.0099 0.0258 0.0599 0.8394 0.7677 0.6027 0.0818
C 3 0.0151 0.0201 0.0199 0.0287 0.0514 0.0486 0.7616 0.6847 0.6852 0.5589 0.2117 0.2535
C 4 0.0236 0.0378 0.0338 0.0236 0.0378 0.0338 0.6368 0.4212 0.4806 0.6368 0.4212 0.4806
D 1 0.0049 0.0051 0.0037 0.1766 0.0123 0.0695 0.8208 0.8187 0.8644 −0.364 0.9054 0.4635
D 2 0.0122 0.0080 0.0077 0.0455 0.0134 0.0180 0.7874 0.8608 0.8654 0.6490 0.8971 0.8612
D 3 0.0148 0.0104 0.0177 0.0134 0.8623 0.9038 0.8634 0.8969
D 4 0.0157 0.0122 0.0121 0.0157 0.0122 0.0121 0.8786 0.9058 0.9064 0.8786 0.9058 0.9064

Dataset: genresTrain

A 1 0.0200 0.0142 0.0135 0.7900 0.0568 0.0321 0.9144 0.9398 0.9421 0.1544 0.9393 0.9656
A 2 0.0371 0.0194 0.0193 0.0969 0.0639 0.0548 0.9302 0.9638 0.9637 0.8963 0.9318 0.9414
A 3 0.0429 0.0288 0.0254 0.0669 0.0366 0.0280 0.9415 0.9608 0.9654 0.9284 0.9609 0.9700
A 4 0.0549 0.0340 0.0277 0.0549 0.0340 0.0277 0.9412 0.9637 0.9704 0.9412 0.9637 0.9704
C 1 0.0057 0.0060 0.0033 0.0174 0.1846 0.0248 0.6927 0.6792 0.8226 0.1473 −7.504 −0.144
C 2 0.0060 0.0128 0.0048 0.0066 0.0381 0.0107 0.6507 0.3569 0.7556 0.5267 −0.754 0.5068
C 3 0.0060 0.0177 0.0071 0.0060 0.0212 0.0082 0.5954 0.1677 0.6656 0.5692 0.0220 0.6212
C 4 0.0057 0.0198 0.0080 0.0057 0.0198 0.0080 0.5747 0.0896 0.6324 0.5747 0.0896 0.6324
D 1 0.0064 0.0066 0.0017 0.1963 0.1446 0.0124 0.9349 0.9336 0.9828 0.2269 0.4320 0.9512
D 2 0.0141 0.0102 0.0030 0.0393 0.0542 0.0043 0.9178 0.9407 0.9827 0.8451 0.7870 0.9830
D 3 0.0173 0.0161 0.0032 0.0231 0.0263 0.0037 0.9205 0.9265 0.9852 0.9091 0.8967 0.9856
D 4 0.0207 0.0219 0.0036 0.0207 0.0219 0.0036 0.9187 0.9140 0.9859 0.9187 0.9140 0.9859
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Table A3. Cont.

MSE(i) R2(i) MSE(i)
predict R2(i)

predict

Algorithm Quartile Exp Log Pow Exp Log Pow Exp Log Pow Exp Log Pow

Dataset: gina_prior

C 1 0.0014 0.0015 0.0015 0.0096 0.0959 0.0879 0.8734 0.8708 0.8655 0.4589 −4.369 −3.971
C 2 0.0024 0.0042 0.0030 0.0036 0.0235 0.0085 0.8480 0.7384 0.8069 0.7954 −0.316 0.5199
C 3 0.0029 0.0071 0.0041 0.0034 0.0110 0.0051 0.8295 0.5947 0.7622 0.8101 0.3850 0.7092
C 4 0.0033 0.0092 0.0048 0.0033 0.0092 0.0048 0.8145 0.4838 0.7307 0.8145 0.4838 0.7307

Dataset: kr-vs-kp

A 1 0.0037 0.0135 0.0027 0.0261 0.1384 0.0435 0.9012 0.6553 0.9286 0.1075 −0.843 0.4148
A 2 0.0118 0.0165 0.0064 0.0204 0.0511 0.0079 0.8002 0.7261 0.8911 0.7115 0.3189 0.8936
A 3 0.0145 0.0201 0.0069 0.0157 0.0289 0.0072 0.7903 0.7126 0.8997 0.7881 0.6152 0.9034
A 4 0.0153 0.0250 0.0072 0.0153 0.0250 0.0072 0.7940 0.6672 0.9034 0.7940 0.6672 0.9034
B 1 0.0022 0.0031 0.0029 0.0050 0.4181 0.2507 0.9620 0.9502 0.9510 0.9533 −2.847 −1.331
B 2 0.0024 0.0119 0.0054 0.0029 0.1028 0.0232 0.9730 0.8712 0.9403 0.9731 0.0537 0.7841
B 3 0.0027 0.0239 0.0079 0.0028 0.0399 0.0098 0.9731 0.7678 0.9224 0.9742 0.6331 0.9091
B 4 0.0028 0.0324 0.0089 0.0028 0.0324 0.0089 0.9743 0.7020 0.9172 0.9743 0.7020 0.9172
C 1 0.0049 0.0168 0.7999 0.8384
C 2 0.0067 0.0083 0.0083 0.0211 0.8900 0.8672 0.9190 0.7966
C 3 0.0071 0.0096 0.0093 0.0081 0.0141 0.0120 0.9171 0.8890 0.8913 0.9208 0.8638 0.8833
C 4 0.0081 0.0122 0.0107 0.0081 0.0122 0.0107 0.9213 0.8823 0.8959 0.9213 0.8823 0.8959
D 1 0.0006 0.0054 0.0007 0.0131 0.1433 0.0020 0.9763 0.7898 0.9699 0.6952 −2.293 0.9543
D 2 0.0016 0.0088 0.0009 0.0042 0.0319 0.0011 0.9537 0.7520 0.9745 0.9019 0.2661 0.9756
D 3 0.0023 0.0117 0.0009 0.0029 0.0163 0.0010 0.9428 0.7124 0.9763 0.9323 0.6250 0.9762
D 4 0.0028 0.0142 0.0010 0.0028 0.0142 0.0010 0.9361 0.6747 0.9762 0.9361 0.6747 0.9762
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