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Reactivation and shedding of human cytomegalovirus (HCMV) in breast milk during
lactation is highly frequent in HCMV-seropositive mothers. This represents a key
transmission route for postnatal HCMV infection and can lead to severe disease in
preterm neonates. Little is known about HCMV strain composition or longitudinal
intrahost viral population dynamics in breast milk from immunocompetent women. We
performed HCMV-specific target enrichment and high-throughput sequencing of
38 breast milk samples obtained in Germany between days 10 and 60 postpartum
from 15mothers with HCMV DNA lactia, and assembled HCMV consensus sequences de
novo. The genotype distribution and number of HCMV strains present in each sample
were determined by quantifying genotype-specific sequence motifs in 12 hypervariable
viral genes, revealing a wide range of genotypes (82/109) for these genes in the cohort and
a unique, longitudinally stable strain composition in each mother. Reactivation of up to
three distinct HCMV strains was detected in 8/15 of mothers, indicating that a
representative subset of the woman’s HCMV reservoir might be locally reactivated early
during lactation. As described previously, nucleotide diversity of samples with multiple
strains was much higher than that of samples with single strains. Breast milk as a main
source of postnatal mother-to-infant transmission may serve as a repository for viral
diversity and thus play an essential role in the natural epidemiology of HCMV.
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INTRODUCTION

Infections with human cytomegalovirus (HCMV; species Human betaherpesvirus 5), which is a
large, enveloped virus from subfamily Betaherpesvirinae of family Herpesviridae, are highly
prevalent in people worldwide and result in life-long viral persistence (Boppana and Fowler,
2007; Davison, 2010; Manicklal et al., 2013). HCMV infections are acquired during all stages of life
via numerous transmission routes (vertically and by various bodily fluids), and mostly remain
asymptomatic in immunocompetent individuals. However, HCMV infection can lead to severe
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complications in transplant recipients, congenitally infected
children, and upon postnatal transmission (Balfour, 1979;
Manicklal et al., 2013; Kotton et al., 2018; Krishna et al., 2019).

Postnatal HCMV infections of preterm or very low birth
weight (VLBW) infants pose the risk of severe disease with
around 4% fatality (Martins-Celini et al., 2016; Hamprecht and
Goelz, 2017; Osterholm and Schleiss, 2020). A main source of
postnatal HCMV infections is the feeding of raw breast milk
(BM), which is considered to be the principal transmission route
(Stagno et al., 1980; Doctor et al., 2005; Hamprecht et al., 2008).
Local HCMV reactivation during lactation is observed in up to
97% of HCMV-IgG-seropositive mothers, lasting around three
months postpartum, and viral DNA can be detected by PCR-
based methods in milk whey (DNA lactia) (Hamprecht et al.,
2001; Lazar et al., 2020). This unique reactivation mode at
the onset of lactation is limited to a local reactivation in the
mammary glands, whereas HCMV DNA is not detected in the
mother’s blood during this period (Mosca et al., 2001; Numazaki
et al., 2001; Hamprecht et al., 2003).

Given its role in the natural transmission of HCMV and the
resulting health burden on preterm and VLBW infants, BM is an
important material to study. However, detailed studies analyzing
whole HCMV genomes from BM are few, and little is known about
viral strain composition and diversity, or about the longitudinal
population dynamics of HCMV in BM during lactation-induced
reactivation (Hamprecht et al., 2008; Hamprecht and Goelz, 2017;
Suárez et al., 2019a). The diversity of HCMV genomes (236 kbp) is
an evolutionary result of the generation of hypervariable genes
coupled with a general loss of genetic linkage due to recombination
(Bradley et al., 2008; Sijmons et al., 2015; Lassalle et al., 2016). The
advent of target-enrichment as a prelude to sequencing library
preparation has enabled high-throughput sequencing (HTS) of
HCMV genomes directly from clinical specimens with less bias
and higher coverage compared to metagenomic and amplicon-
based approaches (Depledge et al., 2011; Houldcroft et al., 2016;
Houldcroft et al., 2017; Suárez et al., 2019a; Suárez et al., 2019b).
However, most research on HCMV strain composition has focused
on genotyping single hypervariable genes in the context of HCMV
as an important transplant pathogen, which, due to the involvement
of immunosuppression, reinfection, and donor/recipient serostatus,
does not represent natural transmission situations (Görzer et al.,
2010; Renzette et al., 2013; Hage et al., 2017).

In this study, we explore the strain diversity and longitudinal
intrahost dynamics of HCMV in BM from a cohort of healthy,
immunocompetent mothers. This was accomplished using HTS of
HCMV genomes by target enrichment coupled with a recently
developed genotyping method that discriminates short motifs in
hypervariable genes and allows single-strain infections to be
distinguished from multiple-strain infections (Suárez et al., 2019b).
MATERIAL AND METHODS

Cohort and BM Specimens
BM samples originated from the BlooMil study (Lazar et al.,
2020; Rabe et al., 2020) and were analyzed in collaboration with
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the Department of Neonatology at the University Children’s
Hospital, Tuebingen. Samples (~80 ml) from HCMV-
seropositive mothers of mostly preterm infants were collected
within four defined time periods: 10–15, 25–30, 40–45 and 55–60
days postpartum (T1–T4). No data were available on the site of
sample collection (i.e. left or right breast). Additionally, women
filled out questionnaires providing data on age and number of
children. Women gave informed consent, and the study was
approved by the local Ethics Committee of University Hospital
Tuebingen (567/2017BO2).

BM Preparation and DNA Extraction
BM was prepared and centrifuged as described previously (Lazar
et al., 2020) to separate cellular, whey and fatty fractions. HCMV
DNA loads of cell-free whey fraction specimens were determined
by quantitative real-time PCR (CMV-R-Gene, bioMérieux, lower
limit of detection = 600 copies/ml) on a LightCycler (Roche).
Whey fraction samples were archived at –80°C. Based on viral
load (>1000 copies/ml) and availability of longitudinal samples,
38 specimens from 15 mothers were selected for HTS. DNA was
extracted from 400 µl archived BM whey fractions and eluted in
200 µl buffer using a QIAgen DNeasy Blood & Tissue kit on a
QIAcube (Qiagen) according to the manufacturer’s instructions.

Library Preparation, HCMV-Specific
Target Enrichment, and HTS
Library preparation and sequencing were performed as described
previously, with minor modifications (Hage et al., 2017). DNA
was fragmented by sonication, sequencing libraries were
prepared (KAPA library preparation kit, KAPA Biosystems),
and PCR amplification prior to target enrichment was carried
out with adapter-specific primers (14 cycles). Up to 750 ng
amplified DNA was target-enriched using HCMV-specific
RNA baits (ELID 0659711, SureSelect XT, Agilent). HCMV-
enriched libraries were indexed, amplified (14–16 cycles),
multiplexed and sequenced on a MiSeq (Illumina) using a v3
Reagent Kit to generate 2 × 300 nucleotide paired-end reads.

De Novo Assembly and
Phylogenetic Analysis
De novo assembly was performed using a pipeline incorporating
fastp (adapter trimming and read quality filtering), Kraken2
(human read removal), SPAdes (contig assembly), and Qiagen
CLC Genomics Workbench 10 (contig scaffolding and subsequent
read mappings) (Nurk et al., 2013; Nurk et al., 2017; Chen et al.,
2018; Wood et al., 2019). Duplicate read pairs stemming from
the same DNA fragment were removed using Picard v2.3.0, and
draft genomes were polished using GapFiller and Pilon with the
deduplicated reads (Boetzer and Pirovano, 2012; Walker et al.,
2014; Broad Institute, 2019). The polished draft genomes were
inspected by read mapping of their corresponding read sets,
annotated from HCMV strain Merlin (GenBank accession no.
AY446894.2) using Geneious Prime 2020.0.3 (Biomatters), and
trimmed of the inverted repeats at the genome termini. Complete,
annotated HCMV consensus genomes from mothers with single-
strain HCMV reactivations were deposited in GenBank (accession
April 2021 | Volume 11 | Article 664247
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numbers MW528458 –MW528464), and their respective human-
filtered read data sets were deposited in the European Nucleotide
Archive (http://www.ebi.ac.uk/ena/data/view/PRJEB42695,
sample accession numbers ERS5621307 – ERS5621320).

Genotype Analysis and Strain Enumeration
The quality of the libraries (fraction of human reads and number
of unique HCMV reads) was assessed before genotype analysis
(Table S1). Genotyping of 12 hypervariable HCMV genes
(RL5A, RL6, RL12, RL13, UL1, UL9, UL11, UL73, UL74,
UL120, UL146 and UL139) was achieved using the VATK
pipeline to determine the number of reads containing
conserved, genotype-specific sequence motifs of 20–31 bp in
the trimmed, unfiltered read datasets, as described previously
(Centre for Virus Research, 2019; Suárez et al., 2019b). The
number of HCMV strains present in a sample was set as the
maximum number of genotypes detected for ≥2 genes, requiring
≥25 reads containing the relevant motifs and representing ≥5%
of the total number of reads identified for that gene. Genotype
profiles were visualized in R using dplyr and ggplot2 3.3.0
(Wickham, 2016; R Core Team, 2019). The output was used to
distinguish single-strain from multiple-strain reactivations.

Variant Analysis and Calculation of
Intrahost Nucleotide Diversity
Single nucleotide polymorphisms (SNPs) were called after
mapping reads to the relevant consensus genome or, in cases
of longitudinal samples, after mapping the reads from each time-
point to the sequence derived from the first time-point. SNPs
fulfilling the following criteria were considered: read depth ≥25
(deduplicated data), average base quality ≥20, forward/reverse
read balance 0.3–0.5, and variant frequency (the relative
frequency of a SNP at this position) ≥2%. The SNP profiles
were visualized in R as described above. This depiction facilitates
the identification of the approximate abundance of minor viral
populations (i.e. variant frequency <50%). The genome-wide
intrahost nucleotide diversity value (p) was calculated as
described previously (Nelson and Hughes, 2015). Briefly,
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diversity Di at each variable position i in the genome was
calculated based on the frequency of the four nucleotides and
the coverage of deduplicated reads mapping against the de novo
assembly of each dataset (intra-sample diversity). The sum of the
diversityDi of all variable positions in a genome was then divided
by the length of that genome to obtain p.

RESULTS

HTS of HCMV From BM
Thirty-eight HCMV DNA positive BM samples from 15 mothers
(median age 33 [26–49] years; n=8 already had given birth to at
least one other child) were analyzed (Table 1). Samples from at
least two time-points were sequenced for each mother, and the
full set of four samples was available for four women. As a result,
it was possible to evaluate the longitudinal population dynamics
for all participants (Table 1).

The sequencing libraries prepared from milk whey samples had
a median viral input load of 4.4 × 103 copies (9.8 × 102 to 2.6 × 105)
per library (Table S1). HCMV-specific target enrichment and
sequencing with an average MiSeq flow cell utilization of 12%
yielded an excellent human-to-viral reads ratio and sufficient reads
for the assembly of consensus HCMV genomes in all 38 cases. Even
after removal of duplicate reads, the median average sequencing
coverage depth of the assemblies was quite high, with 339 (15–3420)
deduplicated reads per position. This coverage depth correlated very
well (R2 = 0.71) with the viral input load during library preparation
(Figure S1). Thus, human milk whey is an excellent specimen type
for HCMV genome sequencing.

Genotype Diversity and Strain Enumeration
To determine HCMV strain diversity during natural reactivation
in immunocompetent mothers, 12 hypervariable viral genes were
genotyped in each sample dataset using a genotype-specific
sequence motif search. A very wide genotype variety (82 out of
the 109 possible genotypes) was observed within the cohort, and
the intrahost genotype composition (viral haplotype) within each
mother was unique. Thus, no two mothers had the same HCMV
TABLE 1 | Clinical information on the 15 mothers included in the study, sequenced time-points and number of detected HCMV strains.

Mother Time-points with
sequence data available

Multiple strains? Max. number of
HCMV strains detected

Age (years) Gestational age
at birth (weeks + days)

First child?

BM1 T1, —, —, T4 No 1 37 25+4 Yes
BM2 T1, —, —, T4 No 1 33 39+2 No
BM3 T1, T2, T3, T4 Yes 2 30 23+6 No
BM4 T1, T2, —, — Yes 2 33 24+2 Yes
BM5 —, T2, T3, — No 1 30 30+2 No
BM8 —, T2, T3, — No 1 33 29+1 Yes
BM11 —, T2, —, T4 No 1 26 28+4 Yes
BM12 T1, T2, T3, T4 Yes 2 32 27+2 No
BM13 T1, T2, T3, T4 Yes 2 49 27+6 Yes
BM14 —, T2, T3, — Yes 2 37 34+2 No
BM15 T1, —, —, T4 Yes 2 31 31+4 No
BM16 T1, T2, T3, T4 Yes 3 37 30+6 Yes
BM18 —, T2, —, T4 No 1 38 32+4 Yes
BM33 T1, T2, —, — Yes 3 33 27+3 No
BM34 T1, T2, —, — No 1 36 25+3 Yes
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strain(s). Multiple-strain reactivations involving up to three
different HCMV strains were detected in more than half of the
mothers (8/15, 53%; Table 2), and each of the other seven
women had reactivations involving a single strain only.

Analysis of the intrahost genotype profile of the 12 analyzed
viral genes among samples taken at longitudinal time-points for
each mother revealed largely stable genotype compositions over
time. Shifts in the relative proportions of individual genotypes
occurred over time, but there were no drastic qualitative changes
among the two or more samples obtained from each individual.
This indicates that no additional genotypes possibly indicating
superinfections or sequentially reactivated strains emerged at later
time-points, but rather that a representative part of the latency
reservoir of each host was reactivated early during lactation. In a
few cases (e.g. BM15), additional genotypes seemed to have
appeared at later time-points, but closer analysis revealed that
these were already present at earlier time-points, but at levels
below the defined reporting thresholds (Table S1). These
genotyping results are summarized in Table 2, and the genotype
profiles of all samples are shown in Figures 1 and 2. The genotype
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
composition of a single sample containing two HCMV strains is
illustrated in further detail in Figure S3.

Intrahost Diversity
Intrahost nucleotide diversity (p) was calculated separately for
datasets representing single strains or multiple strains. Samples
containing a single strain (n=20) had p values of 6.4 × 10–5 (± 2.1 ×
10–4 SD), whereas the samples representing two (n=12) or three
strains (n=6) exhibited higher p values of 1.2 × 10–3 (± 2.4 × 10–3

SD) or 5.2 × 10–3 (± 2.5 × 10–3 SD), respectively (Figure S2). These
results can be ascribed to an average of 2074 ± 1470 (range: 271–
5045) or5976±332 (range: 5596–6525) variants contributing to the
diversity in datasets representing two or three strains, respectively.
Single-strain datasets displayed only 361 ± 420 (range: 7–1336)
variants (Figure S4).

Correlation of Age and Number of Children
With Multiple-Strain Reactivation
No trends were observed between the presence of multiple-strain
reactivation and whether a woman was below or above the median
TABLE 2 | Genotypes of hypervariable genes in BM specimens determined via genotype-specific sequence motifs.

Sample Strains RL5A RL6 RL12 RL13 UL1 UL9 UL11 UL73 UL74 UL120 UL146 UL139

BM1_T1 1 1 2 6 6 6 6 6 4A 3 2A 7 4
BM1_T4 1 1 2 6 6 6 6 6 4A 3 2A 7 4
BM2_T1 1 2 4 1A 1 1 1 4 1 1A 1A 11 2
BM2_T4 1 2 4 1A 1 1 1 4 1 1A 1A 11 2
BM3_T1 2 1 2 8 4A, 8 1, 8 5 5 3B 2A 4B 13 2
BM3_T2 1 1 2 8 8 8 5 5 3B 2A 4B 13 2
BM3_T3 1 1 2 8 1, 8 8 5 5 3B 2A 4B 13 2
BM3_T4 1 1 2 8 8 8 5 5 3B 2A 4B 13 2
BM4_T1 2 3 5 1A, 8 1, 8 1, 8 2, 4 1 1 1A, 5 1A, 2A 13 2, 4
BM4_T2 2 3 5 1A, 8 1, 8 1, 8 2, 4 1 1, 4D 1A, 5 1A, 2A 8, 13 2, 4
BM5_T2 1 2 4 1A 1 1 4 1 3A 1B 3B 9 7
BM5_T3 1 2 4 1A 1 1 4 1 3A 1B 3B 9 7
BM8_T2 1 3 5 3 3 3 2 1 4A 3 1A 14 5
BM8_T3 1 3 5 3 3 3 2 1 4A 3 1A 14 5
BM11_T2 1 1 2 6 6 6 6 1 3A 1B 3B 1 3
BM11_T4 1 1 2 6 6 6 6 1 3A 1B 2B, 3B 1 3
BM12_T1 2 2 4 1B 1 1 4 1 2, 3A 2A, 2B 1A 14 5
BM12_T2 2 2 4 1B, 4A 1 1 4 1 2 2B, 5 1A 14 5
BM12_T3 2 2 4 1B 1 1 4 1 2, 3A 2B, 5 1A 14 5
BM12_T4 1 2 4 1B 1 1 4 1 2 2B 1A 14 5
BM13_T1 2 1 1 4B, 6 1, 4A, 6 6 4, 6 7 3A 1B 1B 9, 13 5
BM13_T2 1 1 1 6 6 6 6 7 3A 1B 1B 9 5
BM13_T3 2 1 1 6 1, 6 4, 6 6 7 3A 1B, 2A 1B 9, 13 5
BM13_T4 2 1 1, 4 6 6 1, 6 1, 6 7 3A, 3B 1B 1B, 2A 9, 13 5
BM14_T2 1 3 5 3 3 3 2 1 4A 3 1A 8 1A
BM14_T3 2 2, 3 5 1A, 3, 8 3 3 2 1 4A, 4B 3, 4 1A 8 1A, 5
BM15_T1 2 1 1 4B 4B 4 3, 9 1, 6 2 2B 4B 10 2, 5
BM15_T4 2 1, 2 1, 4 1A, 4B 1, 4B 1, 4 4, 9 1, 6 2, 3B 2A, 2B 4A, 4B 10, 13 2, 5
BM16_T1 3 1, 3, 1-D2-1 1, 3, 5 4B, 6 4B, 6 4, 6 6 1, 6 3B, 4A, 4C 1A, 1C, 2A, 3 1A, 1B, 4A 12, 13 1A, 2, 5
BM16_T2 3 1, 3, 1-D2-1 3, 5 4B, 6 4B, 6 4, 6 6 1, 6 3B, 4A, 4C 1C, 2A, 3 1B, 4A 12, 13 1A, 2, 5
BM16_T3 3 1, 3, 1-D2-1 3, 5 4B, 6 4B, 6 4, 6 6 1, 6 3B, 4A, 4C 1C, 2A, 3 1B, 4A 12, 13 1A, 2, 5
BM16_T4 3 1, 3, 1-D2-1 3, 5 4B, 6 4B, 6 4, 6 6 1, 6 3B, 4A, 4C 1C, 3 1A, 1B, 4A 2, 12, 13 1A, 2, 5
BM18_T2 1 1 2 6 6 6 6 1 3A 1B 1A 12 4
BM18_T4 1 1 2 6 6 6 6 1 3A 1B 1A 12 4
BM33_T1 3 1, 2 1, 2, 4 1A, 4A 1, 4A 1, 4 4, 9 1, 6 2, 3A 1B, 2A, 2B 1A, 1B, 2B 13 2, 5
BM33_T2 3 1, 2, 5 1, 2, 4 1A, 4A, 7 1, 4A, 7 1, 4, 7 1, 4, 9 1, 6 2, 3A, 3B 1B, 2A, 2B 1A, 1B, 2B 1, 13 2, 5
BM34_T1 1 6 3 1A 1 1 1 1 4A 3 2A 12 7
BM34_T2 1 6 3 1A 1 1 1 1 4A 3 2A 12 7
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FIGURE 1 | Genotype profile and relative abundance of HCMV genes RL5A – UL9 genotypes in the 38 BM specimens. Each color represents a different genotype
of a hypervariable gene. Each bar represents a different sample, grouped by subject. The Y-axis indicates the fraction of genotypes in the total sequence reads for
that gene in the sample.
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FIGURE 2 | Genotype profile and relative abundance of HCMV genes UL11 – UL139 genotypes in the 38 BM specimens. Each color represents a different
genotype of a hypervariable gene. Each bar represents a different sample, grouped by subject. The Y-axis indicates the fraction of genotypes in the total sequence
reads for that gene in the sample.
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age of 33 (Fisher’s exact test, p = 1), or whether the child was the
woman’s first (Fisher’s exact test, p = 0.62) (Figure S5).
DISCUSSION

BM is an important focus because of its role in postnatal HCMV
transmission and the health burden imposed by postnatal HCMV
infection on preterm and VLBW infants. However, studies on
HCMV population dynamics at the whole genome level in BM are
rare (Hamprecht et al., 2008; Suárez et al., 2019a), especially with
regard to the longitudinal intrahost diversity. Analysing BM from
healthy mothers with HCMV reactivation opens an opportunity to
study the natural epidemiology of HCMV strains and the diversity
of the genome over time in immunocompetent adults, in contrast
to investigations in transplanted or HIV-infected patients who
display an entirely different risk pattern for multiple HCMV
infections and reinfections. This is especially pertinent, given
that immunocompetent persons generally do not reactivate
HCMV with DNAemia levels sufficient to allow HTS of
viral genomes.

In our hands, HCMV-specific target enrichment and HTS of
HCMV genomes in BM specimens resulted in excellent human-
to-viral read ratios and enabled the de novo assembly of HCMV
consensus genomes despite relatively low viral input loads. This
contrasts with our experience sequencing HCMV from human
plasma samples (Dhingra et al., unpublished data), where the
median unique coverage depth was five times lower. This
difference was possibly due to the proportion of intact genomes
from virions in mammary glands, which constitute the primary
locus of HCMV reactivation (Maschmann et al., 2015).

To our knowledge, this is the first description of HCMV
diversity in the BM of a cohort of predominantly European,
immunocompetent women. Sequencing of viral populations from
longitudinally collected specimens revealed a high level of genotypic
complexity with stable intrahost population compositions.
Multiple-strain reactivations with up to three strains were present
in 8/15 mothers (53%). No correlation was detected between the
presence of multiple-strain reactivation, a woman’s age or whether
the child was the woman’s first. However, as the cohort was
relatively small, epidemiological conclusions should be
drawn cautiously.

A previous study on HCMV strain diversity in BM specimens
from HIV-positive mothers in Zambia found a similar number of
different genotypes (89/109 genotypes) and reactivation of up to
five strains in single individuals over a period of 4–16 weeks
postpartum (Suárez et al., 2019a). The fraction of multiple-strain
reactivations in our cohort was slightly lower, with 8/15 compared
to 11/13 mothers in this category, and was more comparable to the
9/16 fraction observed in a cohort of transplant patients at
Hanover Medical School, Germany (Hage et al., 2017). It is
possible that HIV-related immunodeficiency in the Zambian
cohort, as well as the generally higher seroprevalence of HCMV
in developing countries, contributed to this difference (Ludwig and
Hengel, 2009; Manicklal et al., 2013; Voigt et al., 2015).

HCMV strains in all 15 mothers from our cohort displayed a
stable genotype composition with shifting abundance of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
subpopulations in multiple-strain samples but no novel emerging
haplotypes that would indicate superinfection or reactivation of
previously undetected strains. This is consistent with observations of
two of the mothers in Zambia for whom longitudinal data were
available, who also exhibited intrahost stability of HCMV
populations in the initial months postpartum. Our estimates of
the much lower level of intrahost diversity in single-strain
reactivations in comparison with multiple-strain reactivations also
corroborates the findings of previous studies in the blood
compartment of immunocompromised patients (Cudini et al.,
2019). This underlines the importance of controlling for the
presence of multiple strains in studies of HCMV diversity in
clinical specimens (Houldcroft et al., 2020; Suárez et al., 2020).
Low levels of intrahost diversity in single-strain infections and
reactivations stem from a small number of variants usually
present at low frequency (Figure S4), a situation that makes
diversity estimates very susceptible to outliers (Figure S2) (Suárez
et al., 2019b).

Overall, the abundance of multiple strains reactivating in the
mammary glands during lactation confirms the likelihood that
BM serves not only as a major source of HCMV transmission
but also as a key repository for viral diversity. We could not
evaluate the transmission of HCMV to preterm infants, as
sampling from neonates was not part of the study and infants
under 32 weeks of gestational age were fed exclusively with
short-term pasteurized BM, which would prevent transmission
(Goelz et al., 2009; Klotz et al., 2018; Bapistella et al., 2019;
Maschmann et al., 2019).

As HCMV reactivates strictly locally in the mammary glands
during lactation and none of the women showed signs of systemic
HCMV reactivation with DNAemia, strain composition and
diversity among different compartments (blood and mammary
glands) could not be analyzed (Lazar et al., 2020). Local
reactivation during lactation is thought to be triggered by
invasion of CD14+ monocytes (one site of HCMV latency) into
the mammary glands (Maschmann et al., 2015). Thus, the viral
populations and mixed strain reactivations that were detected likely
have been present in the women prior to lactation. In the context of
this reactivation mechanism the stable strain composition over time
may indicate that a representative subset of the woman’s HCMV
reservoir reactivates early and simultaneously during lactation.

In summary, our study provides insights into interhost and
longitudinal intrahost variation of HCMV populations in BM after
birth. It also demonstrates the feasibility of studying the natural
diversity and transmission of HCMV in immunocompetent
adults. Future work is necessary to elucidate HCMV strain
dynamics during and after transmission to the infant.
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