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Abstract: Rising temperatures threaten the resilience of public transit systems. We determined
whether bus stop shelters and tree canopy surrounding bus stops moderated the effect of warm
season temperatures on ridership in Austin, Texas, and whether shelters and trees were equitably
distributed. For bus stops (n = 2271) of Capital Metropolitan Transportation Authority, boardings
per bus were measured 1 April–30 September 2019. Air temperature data originated from the
Camp Mabry weather station. Tree canopy was calculated by classification of high-resolution aerial
imagery from the National Agriculture Imagery Program. Data on race, ethnicity, poverty level,
median age, and bus commuters within census tracts of bus stops originated from the 2014–2018
American Community Survey. Using multilevel negative binomial regression models, we found
that shelters did not moderate the effect of high temperatures on ridership (p > 0.05). During high
temperatures, each one-percent increase in tree canopy was associated with a lesser decrease (1.6%)
in ridership compared to if there were no trees (1.7%) (p < 0.001). In general, shelters and trees were
equitably distributed. Insignificant or modest effects of shelters and trees on ridership during high
temperatures may be attributed to the transit dependency of riders. For climate change adaptation,
we recommend tree planting at bus stops to protect from ridership losses and unhealthy exposure to
extreme heat.

Keywords: public transit; climate change adaptation; resilience; health equity; urban tree canopy;
green infrastructure; built environment; temperature

1. Introduction

Public transit has been established as superior to the automobile for its environmental
and health benefits [1]. Compared to automobiles, public transit has been found to emit, on
average, less than half the amount of greenhouse gases per passenger mile [2]. Along with
climate change mitigation, shifting travel modes from automobiles to bus transit has been
shown to reduce concentrations of harmful air pollutants, including carbon monoxide,
nitrogen oxides, and particulate matter [3,4]. The per-mile crash rate of public transit
is more than ten times lower than that of automobiles, and transit ridership has been
found to be negatively associated with traffic fatalities [5]. Researchers have found public
transportation and driving alone to exhibit negative and positive associations with mental
health issues (p < 0.01), respectively [6]. Shifting from automobile use to public transit is
also an opportunity for more physical activity: researchers have determined transit users to
be 7.3 (95% CI: 2.6–20.1) times more likely to reach recommended levels of physical activity
than non-transit users [7].

In the United States, more than two-thirds of public transit users have been found to
walk to their stop or station [8]. Reaching the stop, station, or trip destination and waiting
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for the public transit vehicle to arrive is time potentially spent outdoors, exposed to pre-
vailing weather conditions. Researchers have assessed the relations between weather and
transit ridership, with mixed results based on weather condition (i.e., rain, snow, humidity,
wind, and temperature), transit mode (i.e., bus, rail, and ferry), and weekdays versus
weekends [9–20]. Specific to bus transit, the majority of studies have found rain, snow, and
humidity to exhibit significant negative associations with ridership [10,13,14,19,20], with
select studies finding no statistically significant associations on weekdays, suggesting week-
day users are engaging in non-discretionary travel [15,16]. Researchers have found mixed
associations between wind and bus ridership [10,14–16,19], with differences attributed to
wind speed. Temperatures have been found to exhibit significant positive associations
or insignificant associations with bus ridership [10,15,16]; however, temperatures at the
low and high extremes have been found to exhibit significant negative associations with
bus ridership [11,13,14,19,20]. For example, researchers found that bus ridership in Lane
County, Oregon, decreased by 0.3% when daily maximum air temperatures reached or
exceeded 29 ◦C, compared to milder temperatures (p < 0.05) [11]. Similarly, researchers
found that daily boardings at unsheltered bus stops in Salt Lake City, Utah, decreased by
0.4% on days when temperatures averaged 23 ◦C or above (p < 0.01) [20].

High temperatures are a present and future challenge to the resilience of public transit
systems. Globally, the last five years of the 1880–2019 historical climate record have been
the warmest ever recorded [21], and the frequency, intensity, and duration of heat waves
have increased over time [22]. Without additional climate change mitigation efforts, global
temperatures are expected to increase 3.7–4.8 ◦C above pre-industrial levels by 2100 [23].
Furthermore, cities—home to more than half the world’s population [24]—experience
higher temperatures than nearby rural areas due to the urban heat island effect [25]. This
urban heat is inequitably distributed in the United States, with communities characterized
by low levels of education and high levels of poverty and non-white populations dispro-
portionately exposed to high temperatures [26]. These same US populations with high heat
exposure are more likely to take public transportation than other populations [27].

With the threat of high temperatures on bus ridership, bus stop shelters—structures
with roofs constructed at bus stops that provide protection from inclement weather con-
ditions, such as rain and strong sun—are a potential climate change adaptation strategy.
Researchers have found that bus stops with shelters have higher ridership during extreme
low and high temperatures and during heavy precipitation than bus stops without shelters
in Salt Lake City, Utah (p < 0.01) [20]. In addition, these researchers found that bus stop
shelters were more likely to be installed in areas with higher household incomes and lower
percentages of white residents (p < 0.01). Along with shelters, another potential climate
change adaptation strategy for public transit systems is planting trees near bus stops. Tree
planting is a proven heat management strategy [25,28], with researchers finding street trees
to reduce direct and thermal radiation by 58% [29]. Yet, this valuable green infrastructure
has been found to be inequitably distributed: in 25 US cities, researchers have measured
less tree canopy in census tracts composed of majority low-income and Latinx populations
than in other tracts [30].

To our knowledge, no previous studies have investigated (a) how bus stop shelters
moderate the relation between temperature and ridership during the warm season in
humid subtropical climates; (b) how trees surrounding bus stops moderate the relation
between temperature and ridership; or (c) the spatial distribution of trees surrounding bus
stops in relation to the sociodemographic characteristics of the surrounding community.
As such, the main aims of this work were to determine whether bus stop shelters and
tree canopy surrounding bus stops (a) ameliorated the effect of temperatures on bus
ridership during the warm season in the city of Austin, Texas, and (b) were equitably
distributed. In testing these aims, we found that temperatures exhibited a significant
negative association with bus ridership, and tree canopy slightly moderated the effect of
high temperatures on ridership. Both shelters and tree canopy were equitably distributed
based on race, ethnicity, and poverty level of the population within tracts of bus stops.
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2. Materials and Methods
2.1. Study Setting

For this study, we focused on the city of Austin, Texas, during the six-month warm
season from 1 April 2019 through 30 September 2019. Located in the southern US, Austin
spans approximately 771.6 km2, and was the eleventh most populous US city in 2019 with
an estimated 978,908 inhabitants [31,32]. The city experiences a humid subtropical climate:
long, hot summers and short, mild winters, with around 86.4 cm of rainfall annually [33,34].
On average, daily temperatures in Austin reach 32.4 ◦C from April through September and
36.1 ◦C in August, the warmest month [35].

Capital Metropolitan Transit Authority (Capital Metro) is the regional public trans-
portation provider for Austin. Established in 1985, Capital Metro serves approximately
1,300,518 people over a 1409.0 km2 service area with bus, rail, and paratransit [36]. In 2019,
Capital Metro bus services constituted 95.3% of the 30.5 million total boardings across
all services [37]. Specifically, Capital Metro has three primary bus services—MetroBus,
MetroRapid, and MetroExpress—that utilize 83 bus routes and approximately 2300 bus
stops, of which about one-third have shelters (Figure 1). Constituting 75.9% of all Capital
Metro boardings in 2019 [37], MetroBus is the centerpiece and most extensive service of the
Capital Metro system. MetroBus routes include a subset of 12 high-frequency routes with
10-min and 15-min headways on weekdays and weekends, respectively. Constituting 16.8%
of all Capital Metro boardings in 2019 [37], MetroRapid is two additional high-frequency
routes that travel north to south through central Austin. Lastly, MetroExpress is a com-
muter bus service connecting north Austin and outlying areas with central Austin, and
constituted 2.6% of all Capital Metro boardings in 2019 [37].
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Figure 1. (a) Capital Metro bus stops with shelter (n = 661); (b) Capital Metro bus stops without shelter (n = 1610).

2.2. Measurement of Bus Ridership

Our variable for bus ridership was the number of boardings per bus between 13:00
and 18:00 each study day (i.e., 1 April 2019 through 30 September 2019) for each bus stop.
Ridership data originated from automatic passenger counters—sensors installed by Capital
Metro above bus doors that record passenger boardings and alightings at each bus stop [38].
Boardings included those from MetroBus, MetroRapid, and MetroExpress, and bus stops
can serve multiple routes. For each bus stop, we added the number of passengers that
boarded through all doors each time a bus arrived between 13:00 and 18:00 each study day,
and then divided this sum by the number of buses that arrived over that same time period.
We selected 13:00–18:00 to best align with our measurement of temperature in the study.
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2.3. Measurement of Temperature

Air temperature data originated from a weather station (30.3208◦, −97.7604◦; sta-
tion ID: USW00013958) of the Global Historical Climatology Network installed at Camp
Mabry, a military installation in central Austin. For the six-month study period, we down-
loaded the daily summaries dataset for this weather station from the National Oceanic
and Atmospheric Administration’s National Centers for Environmental Information [35].
With no historical hourly data available, we used daily maximum temperature—rather
than average or minimum temperature—because maximum temperatures occur during
daytime when most travel occurs, and the high resolution of ridership data permitted us
to focus on the time period with the highest temperatures, 13:00–18:00. Hourly normals
for temperature (i.e., average air temperature for each hour of the year from 1981–2010)
for April through September from the Camp Mabry weather station showed that diurnal
temperatures peaked at 15:00 (i.e., mean = 31.1 ◦C; standard deviation = 3.3 ◦C), and were
relatively stable between 13:00 (i.e., mean = 30.2 ◦C; standard deviation = 3.4 ◦C) and
18:00 (i.e., mean = 29.7 ◦C; standard deviation = 3.2 ◦C) [35]. We developed two variables
for temperature: Tmax as a continuous variable of daily maximum air temperature (◦C)
and Hi-T Day as a binary variable for high-temperature days (i.e., 1 = high-temperature
day; 0 = not high-temperature day). We defined high-temperature days as those where
daily maximum air temperature met or exceeded the 90th percentile of daily maximum
air temperatures (i.e., 36.3 ◦C) from normals of daily maximum air temperature for April
through September from the Camp Mabry weather station [35], with the 90th percentile
selected as the threshold for its use in previous studies [20,39].

2.4. Measurement of Bus Stop Shelters

The typical Capital Metro bus stop shelter consists of a metal roof, with dimensions of
3.0 m by 3.0 m; 2.1 m by 4.3 m; or 1.5 m by 3.7 m, over a metal bench, and is accompanied
by a litter container [40]. Capital Metro shelters can have a variety of accessories, including
electronic messaging signs with route and arrival information, security cameras, and lights.
Capital Metro service guidelines and standards state that bus stops generating at least
50 daily boardings qualify for a shelter, and bus stops with at least 25 daily boardings
may receive a shelter if also meeting at least three criteria: (a) adjacent to apartments with
250+ units; (b) adjacent to hospitals or social service agencies; (c) adjacent to major activity
or employment centers; (d) adjacent to schools located at route intersections; and (e) service
frequency greater than 30 min [41]. Capital Metro provided data on the number of shelters
at each bus stop [40], which we transformed to a binary variable (i.e., 1 = presence of shelter;
0 = absence of shelter).

2.5. Measurement of Tree Canopy Surrounding Bus Stops

Another exposure variable of interest was the percentage of tree canopy surrounding
bus stops. We developed this variable from four elements: shapefiles of bus stops, streets,
and building footprints downloaded online from open data portals of the state of Texas
and city of Austin [42–44], and aerial imagery acquired in November 2018 by the National
Agriculture Imagery Program (NAIP) of the US Department of Agriculture [45]. Previous
studies have used NAIP imagery to classify vegetation and other land cover because of
its capture during the agricultural growing season (i.e., “leaf-on” season), high spatial
resolution (i.e., typical ground sample distance of one meter), and four spectral bands
(i.e., red, green, blue, and near infrared) for image classification [30,46–48]. To develop
the variable for tree canopy, we first imported all elements into a geographic information
system (ArcGIS 10.8, ESRI, Redlands, CA, USA). From a mosaicked NAIP aerial image
covering the spatial extent of the Capital Metro bus system, we performed iso-cluster
unsupervised classification to categorize four spectral bands into 100 unique information
classes [30] based on reflectance values of image pixels. Next, we manually reclassified
pixels into two unique classes: Tree Canopy and Not Tree Canopy.
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We conducted an accuracy assessment of image classification by comparing sample
points, generated using simple random selection, on both classified data and reference
data (i.e., NAIP aerial imagery). Aiming for an accuracy of greater than 85% allocation, the
standard accuracy threshold [49], we calculated the need for 196 sample points from an
equation based on binomial probability theory [50]. The accuracy assessment revealed that
classification was above the 85% accuracy threshold, on average and for each of the two
classes. Overall accuracy (i.e., the number of sample points classified correctly divided by
the total number of sample points) was 93.4%. Producer’s accuracy (i.e., omission errors
where pixels were excluded from a class when in reality belonging to that class) was 95.0%
for Tree Canopy and 92.6% for Not Tree Canopy. User’s accuracy (i.e., commission errors
where pixels were included in a class when in reality not belonging to that class) was 85.1%
for Tree Canopy and 97.7% for Not Tree Canopy.

To measure only tree canopy surrounding bus stops, we used a Euclidean buffer of
25 m—roughly equal to a 20-s walk [51]—around each stop. We believed 25 m was a
reasonable distance from a bus stop to seek tree shade without missing the next bus. We
then clipped each buffer to remove portions on the opposite side of the street from bus
stops to focus on tree canopy that individuals could readily access. We also clipped each
buffer to remove building footprints and to improve focus on publicly accessible outdoor
space (Figure 2). Lastly, we performed zonal statistics to calculate the percentage of pixels
within each buffer classified as Tree Canopy.
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2.6. Measurement of Sociodemographic Characteristics

To understand the distribution of shelters and tree canopy surrounding bus stops in
relation to the potential users nearby, we measured the percentage of different population
groups within the census tract of each bus stop: (a) non-Hispanic white, (b) Hispanic
all races, (c) non-Hispanic black, (d) non-Hispanic Asian, (e) individuals below federal
poverty level, and (f) workers who take the bus to work. We focused on these population
groups because heat exposure has been found to differ based on race, ethnicity, and class
of the community [26], and most public transit users are subjected to weather conditions
when reaching their stop or station [8]. We also measured median age, in years, within the
census tract of each bus stop, because older adults are at a higher risk of heat-related illness
than younger adults [52], and therefore, can particularly benefit from adaptation strategies
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for extreme heat. All sociodemographic data were five-year estimates from the 2014–2018
American Community Survey [53–56]. Among Austin residents in 2019, 48.3% identified
as non-Hispanic white, 34.3% identified as Hispanic, 7.8% identified as non-Hispanic black,
7.3% identified as non-Hispanic Asian, 14.5% were considered in poverty, 2.2% take the
bus to work, and 8.9% were ages 65 years and over [31,57].

2.7. Statistical Analyses

We first calculated summary statistics (i.e., mean, standard deviation, median, in-
terquartile range, minimum, and maximum) for each study variable. We derived summary
statistics for day-level variables (i.e., boardings, service frequency, Tmax, Hi-T Day, and
precipitation) by averaging within each bus stop and then averaging across bus stops. We
then used multilevel negative binomial regression models to test whether shelters and tree
canopy surrounding bus stops (a) impacted the effect of temperatures on bus ridership and
(b) were equitably distributed. Multilevel negative binomial modeling properly accounted
for clustering of days of observation within each bus stop (via a random intercept for each
stop), and the dependent variable consisted solely of non-negative integers. We treated
total ridership per day as the dependent variable, and included an exposure term for the
number of bus arrivals per day at each stop to effectively model ridership per bus arrival.

To assess whether shelters and tree canopy surrounding bus stops impacted the
effect of temperatures on boardings per bus, we employed two sets of models—one
for weekdays and another for weekends—because of differences in bus transit use on
Monday through Friday versus Saturday and Sunday [37]. Specifically, each set included
a series of five models with different exposure variables of interest: (a) daily maximum
air temperature, (b) interaction between daily maximum air temperature and presence
of shelter, (c) interaction between daily maximum air temperature and percentage of
tree canopy surrounding bus stop, (d) interaction between high-temperature day and
presence of shelter, and (e) interaction between high-temperature day and percentage of
tree canopy surrounding the bus stop. To aid interpretability, we reported model results as
incidence-rate ratios (i.e., exponentiated raw regression coefficients).

We adjusted final models for aforementioned sociodemographic characteristics (i.e.,
non-Hispanic white, Hispanic all races, non-Hispanic black, non-Hispanic Asian, individu-
als below poverty level, workers who take the bus to work, and median age) and five other
potential confounders. We adjusted for daily precipitation (cm), which has been found
to be negatively associated with ridership [10,13–16,19,20]. Precipitation data originated
from Camp Mabry weather station in the same daily summaries dataset as air temperature
data [35]. We also included the service frequency, density of bus stops, and access to bus
transit as three potential confounders, because each has been shown to exhibit significant
associations with ridership [20,58]. For service frequency, Capital Metro provided data on
the total number of times a bus arrived at a bus stop between 13:00 and 18:00 each study
day. For bus stop density and access to bus transit, we imported shapefiles of bus stops
and bus routes into GIS to calculate the number of bus stops and bus routes, respectively,
within an 800 m service area of each bus stop [42]. In addition, we used five-year estimates
from the 2014–2018 American Community Survey to measure the total population within
the census tract of each bus stop, which may influence bus ridership [53].

Finally, we estimated two models for the presence of shelter and percentage of tree
canopy surrounding bus stops as functions of percentages of non-Hispanic white, Hispanic
all races, non-Hispanic black, non-Hispanic Asian, individuals below poverty level per
census tract, and workers who take the bus to work, along with median age. We adjusted
models for the service frequency, density of bus stops, access to bus transit, and total
population. For the bus shelter model, we used logistic regression and presented results
as odds ratios (i.e., exponentiated regression coefficients). We used linear regression for
the tree canopy model. All statistical analyses were completed in Stata 15.1 (StataCorp,
College Station, TX, USA). Data presented in this study and associated metadata are openly
available in FigShare at https://doi.org/10.6084/m9.figshare.13322597.v2 [59].

https://doi.org/10.6084/m9.figshare.13322597.v2
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3. Results
3.1. Summary Statistics

On study days (n = 183) between 13:00 and 18:00, average boardings decreased 37.9%
from weekdays to weekends, while service frequency was relatively consistent (Table 1).
Daily maximum air temperature averaged 33.73 ◦C (standard deviation = 0.62 ◦C) per
stop, with 44% of days considered high-temperature days. In terms of absolute day-level
values (data not shown in Table 1), the lowest and highest values of daily maximum
air temperature were 17.78 ◦C and 40.56 ◦C, respectively, and only three study days
(1.6%) experienced rain. Among bus stops (n = 2271), 29% had shelters. Tree canopy
surrounding bus stops averaged 14.29% (standard deviation = 14.46%), and ranged 0–
74%. Bus stops were located in census tracts with the majority of population identifying
as white (mean = 47.99%; standard deviation = 21.43%) or Hispanic (mean = 35.585%;
standard deviation = 20.51%), and about one in five below poverty level (mean = 18.07%;
standard deviation = 12.28%). In tracts with bus stops, the percentage of bus commuters
was relatively low, on average (mean = 4.84%; standard deviation = 5.11%).

Table 1. Summary statistics of study variables.

Mean Std. Dev. Median IQR Min. Max.

Day-Level Variables 1

Boardings Weekday (#) 14.5 40.92 3 10 0 967
Boardings Weekend (#) 9 23.97 2 8 0 651

Service Freq. Weekday (#) 18.57 14.65 19 10 1 138
Service Freq. Weekend (#) 18.08 11.84 20 10 1 135

Tmax (◦C) 33.73 0.62 33.78 0.03 27.87 37.85
Hi-T Day (1 = Hi-T Day) 0.44

Precipitation (cm) 0.3 0.04 0.3 0 0.03 0.61
Stop-Level Variables
Shelter (1 = shelter) 0.29

Tree (% canopy) 14.29 14.46 10 21 0 74
Stop Density (#) 13.38 7.59 12 10 1 38

Transit Access (#) 6.3 6.51 5 6 1 42
White (%) 47.99 21.43 50.69 34.4 5.38 91.79

Hispanic (%) 35.58 20.51 31.4 34.61 4.69 86.35
Black (%) 8.81 8.68 6.22 7.76 0 39.86
Asian (%) 5.03 5.66 2.82 4.68 0 37.5

Impoverished (%) 18.07 12.28 15.62 15.58 0.69 87.1
Bus Commuters (%) 4.84 5.11 3.76 4.1 0 80
Median Age (years) 33.09 4.37 33.2 5.4 19.8 50.8
Total Population (#) 5366.97 2207.78 4949 2818 0 13,422

1 Statistics were derived by averaging within each bus stop and then averaging across bus stops.

3.2. Relations between Bus Stop Shelters, Tree Canopy, and Ridership in Warm Season
Temperatures

In assessing whether shelters and tree canopy surrounding bus stops impacted the
effect of temperatures on boardings per bus, we described herein the five-model set for
weekdays (Table 2), since we found near identical results as the model set for weekends
(Table A1 in Appendix A). Each one-degree Celsius increase in daily maximum air tem-
perature was associated with a 0.2% decrease in boardings per bus when there was no
shelter at a bus stop, and a greater decrease (0.4%) in boardings per bus when there was a
shelter (p < 0.001). When no tree canopy surrounded a bus stop, each one-degree increase
in daily maximum air temperature was associated with a 0.4% decrease in boardings per
bus (p < 0.001), with each one-percent increase in tree canopy associated with a lesser
decrease (< 0.4%) in boardings per bus (p < 0.001). On high-temperature days, both bus
stops with shelters and without shelters exhibited statistically insignificant associations
with boardings per bus compared to all other days (p > 0.05). On high-temperature days,
zero tree canopy surrounding a bus stop was associated with a 1.7% decrease in boardings
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per bus compared to all other days (p < 0.001), with each one-percent increase in tree canopy
associated with a lesser decrease (1.6%) in boardings per bus (p < 0.001).

Table 2. Model output for relations between temperature, bus stop shelters, tree canopy, ridership, and weekday.

(1)
Tmax

(2)
Tmax X Shelter

(3)
Tmax X Tree

(4)
Hi-T Day X Shelter

(5)
Hi-T Day X Tree

Day-Level Variables

Tmax (◦C) 0.997 ***
(−14.80)

0.998 ***
(−7.67)

0.996 ***
(−15.28)

Hi-T Day (1 = Hi-T Day) 0.997
(−1.19)

0.983 ***
(−6.07)

Precipitation (cm) 0.983 ***
(−15.33)

0.983 ***
(−15.34)

0.983 ***
(−15.33)

0.987 ***
(−12.33)

0.987 ***
(−12.33)

Stop-Level Variables

Shelter (1 = shelter) 4.391 ***
(25.36)

4.138 ***
(25.05)

Tree (% canopy) 0.978 ***
(−11.20)

0.980 ***
(−10.10)

Stop Density (#) 1.008
(1.56)

1.000
(0.08)

1.006
(1.14)

1.000
(0.09)

1.006
(1.14)

Transit Access (#) 1.053 ***
(8.48)

1.045 ***
(8.07)

1.049 ***
(8.05)

1.045 ***
(8.22)

1.049 ***
(8.08)

White (%) 1.034
(1.89)

1.022
(1.34)

1.030
(1.70)

1.022
(1.33)

1.030
(1.69)

Hispanic (%) 1.050 **
(2.85)

1.035 *
(2.21)

1.045 *
(2.56)

1.035 *
(2.19)

1.045 *
(2.56)

Black (%) 1.029
(1.57)

1.015
(0.93)

1.024
(1.30)

1.015
(0.92)

1.024
(1.30)

Asian (%) 1.067 ***
(3.46)

1.052 **
(3.02)

1.062 **
(3.24)

1.052 **
(3.00)

1.062 **
(3.24)

Impoverished (%) 1.003
(0.79)

1.000
(0.10)

1.004
(1.12)

1.000
(0.10)

1.004
(1.12)

Median Age (years) 0.982
(−1.77)

0.996
(−0.50)

0.985
(−1.51)

0.996
(−0.50)

0.985
(−1.51)

Total Population (#) 1.000
(−0.56)

1.000
(0.42)

1.000
(−0.81)

1.000
(0.42)

1.000
(−0.81)

Interaction Terms

Tmax X Shelter 0.998 ***
(−4.47)

Tmax X Tree 1.000 ***
(6.26)

Hi-T Day X Shelter 0.993
(−1.67)

Hi-T Day X Tree 1.001 ***
(5.51)

Lnalpha 0.102 ***
(−335.62)

0.102 ***
(−335.60)

0.102 ***
(−335.67)

0.102 ***
(−335.45)

0.102 ***
(−335.50)

Constant 6.228 ***
(32.70)

4.142 ***
(32.55)

5.776 ***
(32.7 1)

4.142 ***
(32.55)

5.775 ***
(32.71)

N 290,692 290,692 290,692 290,692 290,692

Exponentiated coefficients; t statistics in parentheses, * p < 0.05, ** p < 0.01, *** p < 0.001. Dependent variable: boardings per bus between
13:00 and 18:00 (#).

3.3. Relations between Sociodemographic Characteristics, Bus Stop Shelters, and Tree Canopy

In assessing whether bus stop shelters were equitably distributed among different
populations (Table 3), each one-year increase in the median age of individuals within the
census tract of a bus stop was associated with a 4.2% decrease in likelihood of a shelter at
a bus stop (p < 0.05). Race, ethnicity, poverty level, and bus commuting did not exhibit
significant associations with the presence of a shelter (p > 0.05). In assessing whether tree
canopy surrounding bus stops was equitably distributed among different populations
(Table 4), each one percentage point increase in bus commuters within the census tract of a
bus stop was associated with a 0.17 percentage point decrease in tree canopy surrounding a
bus stop (p < 0.05). Race, ethnicity, poverty level, and median age did not exhibit significant
associations with the percentage of tree canopy surrounding a bus stop (p > 0.05).
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Table 3. Model output for relations between sociodemographic characteristics and bus stop shelters.

(1)
Shelter

Variables of Interest

White (%) 1.054
(1.59)

Hispanic (%) 1.063
(1.91)

Black (%) 1.058
(1.70)

Asian (%) 1.060
(1.69)

Impoverished (%) 1.005
(0.94)

Bus Commuters (%) 1.017
(1.67)

Median Age (years) 0.958 *
(−2.42)

Potential Confounders

Service Frequency (%) 1.030 ***
(7.18)

Stop Density (#) 1.031 ***
(3.49)

Transit Access (#) 0.996
(−0.37)

Total Population (#) 1.000
(−1.47)

N 2271
Exponentiated coefficients; * p < 0.05, ** p < 0.01, *** p < 0.001. Dependent variable: presence of shelter (1 = presence;
0 = absence).

Table 4. Model output for relations between sociodemographic characteristics and tree canopy
surrounding bus stops.

(1) Tree

Variables of Interest

White (%) −0.185
(−0.93)

Hispanic (%) −0.259
(−1.35)

Black (%) −0.257
(−1.28)

Asian (%) −0.222
(−1.06)

Impoverished (%) 0.0719
(1.96)

Bus Commuters (%) −0.166 *
(−2.50)

Median Age (years) 0.0822
(0.77)

Potential Confounders

Service Frequency (%) −0.113 ***
(−4.46)

Stop Density (#) −0.110 *
(−1.99)

Transit Access (#) −0.0848
(−1.21)

Total Population (#) −0.000290
(−1.79)

Constant 38.16 *
(2.06)

N 2271
Coefficients; * p < 0.05, ** p < 0.01, *** p < 0.001. Dependent variable: tree canopy surrounding bus stops (%).
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4. Discussion

In exploring the temperature–ridership relationship, our finding that warm season
temperatures exhibited a significant, yet modest, negative association with bus ridership
corroborated results from previous studies [11,13,19,20]. This finding suggests the need
to adapt bus transit systems to protect against ridership losses induced by temperature
increases during the warm season. Yet, the two climate change adaptation strategies
investigated in this study—bus stop shelters and trees—exhibited insignificant or modest
associations with ridership on high-temperature days, which may be attributed to the
transit dependency of transit users. In Austin, those who take public transportation to
work have the lowest median earnings of all workers (e.g., 41.6% lower than those who
drove automobiles alone to work) [60], and more than a quarter of these individuals have
no vehicle available [61]. Transit-dependent individuals have no choice but to use bus
stops, regardless of whether shelters or nearby trees are present to provide respite from
adverse heat conditions.

Our finding of a greater negative association between warm season temperatures
and boardings for bus stops with shelters compared to stops without shelters may be
related to microclimatic differences of locations with shelters versus those without shelters.
Since Capital Metro determines whether a bus stop qualifies for a shelter based on the
generated number of daily boardings and nearness to high-activity areas (e.g., apartments
and employment centers) [41], bus stops with shelters may be located in denser, more
urban areas than stops without shelters. As such, locations with shelters may experience
higher temperatures than locations without shelters because of heat islands driven by
high amounts of impervious materials and waste heat emissions, lack of trees, and urban
geometry [25]. These potentially higher temperatures at locations with shelters would not
have been captured by the daily air temperature measurement from Camp Mabry weather
station, and may have led to reduced ridership because of thermal discomfort experienced
at these locations. Conversely, our finding that tree canopy surrounding bus stops moder-
ated the effect of warm season temperatures on ridership may be attributed to bus stops
with trees being in areas characterized by lower temperatures, in part because of trees’
ability to decrease ambient temperatures through shading and evapotranspiration [25].

Lastly, our findings that race, ethnicity, and poverty level of populations within census
tracts of bus stops did not exhibit significant associations with locations of shelters and tree
canopy surrounding bus stops may provide evidence for even spatial coverage of these bus
stop amenities among these populations in Austin. The significant negative association
between the median age of individuals within the tract of a bus stop and presence of
a shelter may be related to Capital Metro service guidelines and standards for shelter
placement based on ridership levels [41]; Capital Metro may not be installing shelters in
tracts with higher median age, since older adults have been shown to ride public transit
less than other populations [8]. The modest negative association between the percentages
of bus commuters and tree canopy may provide evidence of an inequity, with tracts with
more bus commuters having less access to trees.

Based on study findings, cities located in humid subtropical climates should consider
extreme heat as a threat to public transportation use and tree planting around bus stops
as a climate change adaptation strategy to reduce ridership losses. Although we did
not find bus stop shelters to mitigate ridership losses during warm season temperatures,
we believe shelters remain a viable adaptation strategy because these roofed structures
provide protection from direct solar radiation and precipitation [20]. Pairing trees and
shelters at bus stops can improve thermal comfort of bus transit users, lower their risk of
heat-related illness on high-temperature days, and potentially mitigate ridership losses.
Along with cooling, trees at bus stops can provide a host of other environmental and
health benefits. Street trees, for instance, have been found to diminish noise pollution,
capture airborne pollutants, sequester carbon dioxide, and reduce stormwater runoff [62].
Moreover, researchers have found transit users to underestimate the wait time for the bus
when stops were surrounded by dense, mature tree cover [63].
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This study has limitations that can be addressed in future work. First, we utilized
air temperature data from a single weather station for all bus stops in our study, when
in reality, air temperatures may differ substantially across a city [64]. Weather stations
installed at bus stops or wearable sensors worn by bus transit users, such as Thermochron
iButtons [65], can better capture experienced microclimatic conditions. To determine
how heat stress—consisting of weather parameters of air temperature, relative humid-
ity, wind speed, and solar radiation and human-related parameters of activity level and
clothing [66]—relates to adaptation strategies and bus ridership, researchers can utilize
one of 162 human thermal climate indices, such as Physiological Equivalent Temperature
and Universal Thermal Climate Index [67]. Second, we did not have data on bus transit
users that could have confounded relations between temperature and ridership. This study
would have benefitted from knowing whether individuals engaged in active transportation
(e.g., walking or biking) to reach the bus stop and the length of time an individual had
been outdoors subjected to ambient conditions, since both metabolic and environmental
heat sources impact an individual’s level of heat stress [68]. Engaging in heat-adaptive
behaviors, such as staying hydrated and wearing a hat [69], may have also confounded the
temperature–ridership relationship. Furthermore, if individuals perceived temperatures
to be uncomfortable, they may have decided in advance to not use bus transit, regardless
of whether a shelter or tree is at the bus stop. Future studies can administer surveys to
Austin residents to collect these individual-level data. As a third limitation, the variable
for the percentage of tree canopy surrounding bus stops may lack validity because it
(a) was developed from aerial imagery and building footprint data that were temporally
mismatched with other study data; (b) assumed each percent change in tree canopy would
be associated with ridership when, in reality, an individual may only require enough shade
for themselves; and (c) assumed tree canopy was accessible to transit users and not on
private property or behind a wall or fence. Lastly, results may be biased because of omitted
variables that have been found to be associated with bus ridership, such as parks and
commercial properties [58]. Subsequent studies can use the analytic audit tool or other
environmental audit instruments to measure built environment features of street segments
surrounding transit stops or stations [70].

5. Conclusions

We provided evidence for warm season temperatures in a humid subtropical climate
as a barrier to bus transit use, and for tree planting around bus stops as a potentially
more effective strategy than bus stop shelters in mitigating ridership losses during high
temperatures. Our overall findings that shelters and tree canopy exhibited insignificant
or modest associations, respectively, with ridership during high temperatures may be
related to individuals’ dependence on bus transit. Criteria for shelter placement by the
local transit authority may have led to the placement of shelters in areas characterized by
urban heat islands. We also found shelters and tree canopy surrounding bus stops were, in
general, equitably distributed among different populations. With warming from climate
change and urban development projected to continue, local governments should consider
how to protect from bus ridership losses and unhealthy exposure to extreme heat. Tree
planting is a reasonable climate change adaptation strategy at bus stops for its multiple
ecosystem services, and can be coupled with shelters for protection from multiple weather
conditions. Ultimately, trees mitigate climate change and, when planted around bus stops,
may make for climate-resilient public transportation that promotes mode shift away from
the automobile.
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Appendix A

Table A1. Model output for relations between temperature, bus stop shelters, tree canopy, ridership, and weekend.

(1)
Tmax

(2)
Tmax X Shelter

(3)
Tmax X Tree

(4)
Hi-T Day X Shelter

(5)
Hi-T Day X Tree

Day-Level Variables

Tmax (◦C) 0.996 ***
(−8.75)

0.997 ***
(−4.72)

0.995 ***
(−8.87)

Hi-T Day (1 = Hi-T Day) 0.998
(−0.35)

0.989 *
(−1.98)

Precipitation (cm) 0.969 ***
(−18.62)

0.969 ***
(−18.62)

0.969 ***
(−18.62)

0.974 ***
(−16.60)

0.974 ***
(−16.60)

Stop-Level Variables

Shelter (1 = shelter) 3.989 ***
(21.17)

3.724 ***
(22.07)

Tree (% canopy) 0.978 ***
(−9.66)

0.981 ***
(−9.23)

Stop Density (#) 1.009
(1.64)

1.003
(0.62)

1.006
(1.17)

1.003
(0.63)

1.006
(1.17)

Transit Access (#) 1.034 ***
(5.30)

1.027 ***
(4.66)

1.032 ***
(5.05)

1.027 ***
(4.66)

1.032 ***
(5.05)

White (%) 1.038
(1.84)

1.025
(1.35)

1.033
(1.66)

1.025
(1.34)

1.033
(1.66)

Hispanic (%) 1.051 *
(2.53)

1.035
(1.95)

1.045 *
(2.30)

1.035
(1.95)

1.045 *
(2.30)

Black (%) 1.027
(1.31)

1.013
(0.73)

1.022
(1.09)

1.013
(0.73)

1.022
(1.08)

Asian (%) 1.058 **
(2.66)

1.044 *
(2.28)

1.054 *
(2.51)

1.044 *
(2.27)

1.054 *
(2.50)

Impoverished (%) 1.001
(0.25)

0.999
(−0.31)

1.002
(0.47)

0.999
(−0.31)

1.002
(0.47)

Median Age (years) 0.988
(−1.09)

1.000
(−0.02)

0.990
(−0.95)

1.000
(−0.02)

0.990
(−0.95)

Total Population (#) 1.000
(0.02)

1.000
(0.72)

1.000
(−0.29)

1.000
(0.72)

1.000
(−0.29)

Interaction Terms

Tmax X Shelter 0.998 **
(−2.64)

Tmax X Tree 1.000 ***
(3.35)

Hi-T Day X Shelter 0.993
(−0.77)

Hi-T Day X Tree 1.001
(1.61)

Lnalpha 0.162 ***
(−159.71)

0.162 ***
(−159.70)

0.162 ***
(−159.73)

0.162 ***
(−159.62)

0.162 ***
(−159.64)

Constant 6.437 ***
(30.81)

4.450 ***
(30.57)

5.978 ***
(30.78)

4.449 ***
(30.57)

5.976 ***
(30.78)

N 102,915 102,915 102,915 102,915 102,915

Exponentiated coefficients; t statistics in parentheses, * p < 0.05, ** p < 0.01, *** p < 0.001. Dependent variable: boardings per bus between
13:00 and 18:00 (#).
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