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Abstract

Although figures in scientific articles have high information content and concisely communicate many key research
findings, they are currently under utilized by literature search and retrieval systems. Many systems ignore figures, and those
that do not typically only consider caption text. This study describes and evaluates a fully automated approach for
associating figures in the body of a biomedical article with sentences in its abstract. We use supervised methods to learn
probabilistic language models, hidden Markov models, and conditional random fields for predicting associations between
abstract sentences and figures. Three kinds of evidence are used: text in abstract sentences and figures, relative positions of
sentences and figures, and the patterns of sentence/figure associations across an article. Each information source is shown
to have predictive value, and models that use all kinds of evidence are more accurate than models that do not. Our most
accurate method has an F1-score of 69% on a cross-validation experiment, is competitive with the accuracy of human
experts, has significantly better predictive accuracy than state-of-the-art methods and enables users to access figures
associated with an abstract sentence with an average of 1.82 fewer mouse clicks. A user evaluation shows that human users
find our system beneficial. The system is available at http://FigureItOut.askHERMES.org.
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Introduction

The rapid growth of electronic full-text biomedical articles has

enabled the development of information systems that allow

researchers to search and navigate large literature databases.

Key content of many articles resides in images, charts, plots, tables

or diagrams, and there is considerable interest in developing new

figure aware systems. Because of the important role of figures, they

often are referred to and discussed explicitly and implicitly

throughout an article. However, nearly all existing systems for

figure search rely solely on the text in captions, and thus fail to

consider other key document elements. We present novel

algorithms for automatically ‘‘linking’’ or ‘‘associating’’ sentences

in the abstract of a scientific article with figures in the article body.

These and related methods will help figures become a key part of

next generation search systems. We use the terms ‘‘associating’’

and ‘‘linking’’ to indicate that a figure and a sentence in the

abstract are related. In particular, the figure gives supporting

information for the sentence in the abstract. This use of these

terms is common in data mining and text analysis. It should not be

confused with genetic, biological or medical uses of the terms

‘‘links’’ and ‘‘association’’.

Our approach uses three types of evidence to predict whether or

not an abstract sentence is associated with a figure. The first type

of evidence is text. While the textual representation of a sentence is

simply the terms in the sentence, the appropriate textual

representation of a figure is not so clear. We investigate textual

figure representations based on terms in the figure’s caption and/

or its referencing paragraphs. We use probabilistic language

models to assess the textual similarity between an abstract sentence

and a figure. The second type of evidence is the relative positions

of a sentence and figure. Previous work by our group [1] has

shown that sentences at the beginning of an abstract are more

likely to be associated with figures near the beginning of an article,

middle sentences are more likely to be associated with middle

figures, and so on. We use probabilistic distance models to reason

about the relative positions for both linked and non-linked

instances. The third type of evidence is patterns of sentence/

figure links across an article. Since the presence or absence of a

link for one instance can affect the likelihood of a link for other

instances [1], we introduce novel approaches for representing

linkage patterns based on hidden Markov models (HMMs) [2] and

conditional random fields (CRFs) [3].

Our experimental evaluation uses a corpus of 114 biomedical

articles annotated by their authors for all links between abstract

sentences and figures. Figure 1 shows the annotated linkages

between figures and the abstract sentences of one such article. We

use supervised learning to learn language, distance, and linkage

flow models, and use probabilistic methods to effectively combine

predictions of the three models. Cross-validation experiments are

used to evaluate our methods. The key findings are (i) each type of

evidence has predictive value, (ii) predictions of models that

combine evidence sources are more accurate than the predictions
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Figure 1. An example of a full-text biomedical article (pmid = 12808147) with author identified links between sentences in the
abstract and figures and tables in the body of the article. Abstract sentences are shown in different colors. Arrows denote the annotated
associations and arrow colors correspond to sentence color. To save space, figure captions are truncated and Fig. 2, which is not linked with any
sentence, is not shown. (Figures republished with permission from [32], Copyright (2003) National Academy of Sciences, U.S.A.).
doi:10.1371/journal.pone.0039618.g001
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of models that use a single evidence source, (iii) across articles the

average maximum F1 score of our combined approach is 69%,

and (iv) our predictions would save users an average of 1.82 mouse

clicks when searching for a figure associated with an abstract

sentence in a conceptualized literature search system.

The work presented here extends previous work of our group on

linking abstract sentences with figures [1] in several significant

ways, and makes important contributions to our understanding of

this problem. The present system uses supervised learning

approaches while previous methods are unsupervised. We

introduce probabilistic language models, position models, and

HMM and CRF linkage flow models for this task. We evaluate two

kinds of figure representations, one based on text in figure captions

and the other on text in referencing paragraphs. A new evaluation

measure based on the average number of saved clicks is

introduced. Finally, the accuracy of predictions is significantly

improved.

Our system is fully implemented and contains over 150,000

open access full-text biomedical articles that can be accessed at

http://figureitout.askhermes.org.

Related Work
In this section we discuss relationships to previous work in four

areas: text-based literature search systems, classification and search

methods for images in documents, textual entailment, and

summarization.

A number of medical and biological text-based literature search

systems have been constructed. These include systems that

respond to users’ queries, such as PubMed and AskHERMES

[4] for medical literature. Textpresso [5] was originally designed to

assist biological database curation but also functions as an

information retrieval system. Arrowsmith [6] helps biologists

formulate hypotheses through text mining of two topics, such as a

drug and an adverse event. Other systems attempt to find specific

kinds of information. For example, GeneWays [7] extracts

molecular interactions related to pathways identified in the

literature and iHOP [8] identifies sentences that relate two genes.

Additionally, there are numerous annotated databases – for

example, the Gene Ontology annotation [9] the mouse Genome

Database [10], SWISSPORT, OMIM [11], and BIND [12] – that

provide different levels of annotated literature information about

genes and molecular interactions. See the review article [13] for

other information systems.

In addition to text, the importance of biomedical figures and

images for document classification and retrieval has been

recognized. The earliest image mining system is the Subcellular

Location Image Finder (SLIF) system [14–18] which extracts and

analyzes fluorescence microscope images from biomedical full-text

articles. Other studies have looked at applying supervised

machine-learning algorithms for image categorization using flat

[19] and hierarchical [20] classification schemes. These methods

showed that image classification benefits document classification.

Besides the image content itself, associated text has been shown to

be important for image mining. Caption words, for example, can

improve image classification [19]. BioText searches biomedical

images on the basis of image captions [21,22], and Yale image

finder [23] searches images on the basis of title, abstract, image

caption, and the text appearing in an image. More recently, an

approach has investigated using figure-associated text for auto-

matically ranking figures by their importance [24]. While these

methods utilize text for different tasks, they do not automatically

associate images or the figures that contain them with specific

document text.

Our approaches of associating figures with text are also related

to the problem of textual entailment [25], a task that has

application to numerous higher-level problems including passage

retrieval, machine translation, paraphrasing, summarization, and

question answering. The PASCAL Network of Excellence

Recognizing Textual Entailment (RTE) challenge task is to

recognize whether two text strings can be semantically inferred

(entailed) from each other. Thus, a body of text is said to ‘‘entail’’ a

hypothesis text if the body of text implies that the hypothesis is

true. Our task is similar in that the aim is to determine whether or

not one string (a sentence in the abstract) is associated with another

string (the text of a figure). The RTE task does not directly apply

to the linkage between figures and text as the relationships

between linked abstract sentences and figures is generally much

weaker than entailment.

Lastly, we find similarities with the computational summariza-

tion work of Jing and McKeown [26]. They learn a summarization

system from a training set consisting of human-written summary

sentences in which words in the summaries are mapped to words

in the original article. Their summarization approach, which

assumes human summaries are created via a cut-and-paste

process, uses two heuristic rules: (1) human summaries are more

likely to use whole phrases than single, isolated words, and (2)

humans are more likely to merge nearby sentences into a single

sentence than combine sentences that are far apart. They model

these tendencies with HMMs. These rules parallel patterns of

associations between figures and abstract sentences that we

represent with HMMs and CRFs. A key difference between these

two tasks, however, is that while for summarization Jing and

McKeown [26] permit only one-to-one associations between

words in summary sentences and words in the original, we allow

more general one to many, many to one, and many to many

associations between figures and sentences. In this way then, our

application represents a more challenging task.

Results and Discussion

We conducted experiments on a corpus of 114 manually

annotated biomedical articles to empirically evaluate our approach

to predicting linkages between abstract sentences and figures. Our

experiments involve training models and making predictions from

Figure 2. Recall-precision curves for three LMs and the
baseline. The (Fixed Size, Mixture) model is our CompleteLM. The
filled circles denote locations of the PrecJ points.
doi:10.1371/journal.pone.0039618.g002
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a progressively increasing number of evidence types. First, we

consider only text, and evaluate predictions of our language

models (LMs). Next, we add position evidence, and evaluate

predictions of combined LMs and distance models (LM+DM).

Last, we add (inferred) linkage evidence, and evaluate predictions

of our hidden Markov model (HMM) and conditional random

field (CRF) methods.

We designed our experiments to test several statistical hypoth-

eses. Each experiment was evaluated using up to 3 performance

metrics commonly used in information retrieval, as well as an

application specfic performance value (‘‘clicks’’). For each test the

null hypothesis is that two competing approaches have the same

mean measure (H0 : m1~m2) and the alternative hypothesis is

Ha : m1=m2: We report p{values (the probability of the observed

data under H0) in all cases where pv0:1) The three hypotheses

were:

(1) The quality of predictions of our complete language model

(CompleteLM) exceeds those of the state-of-the-art approach,

which uses only text.

(2) Both linkage and positional features are predictive of abstract

sentence/figure linkage and are complementary to text.

(3) The predictive performance of our HMM and CRF methods,

which integrate text, linkage, and positional features exceeds

the performance of the state-of-the-art approach.

Our empirical results support each of these hypotheses.

We measure performance using standard measures: precision is

the fraction of linked figures that are correctly identified by a

system, recall is the fraction of figures linked by a system that are

truly linked figures, AROC is the area under the curve defining the

false-positive rate as a function of recall, and F1 is the geometric

mean of precision and recall.

We also use a new measure that we call ‘‘clicks’’. This is not

actual clicks by a designated user but a mathematical model meant

to estimate the savings over a user reading an abstract sentence

and then selecting figures sequentially, looking for supporting

information for the sentence. Our model assumes that figures are

selected in order until the set of figures relevant to a given sentence

is found. This may be an overestimate (if the user has visual clues

or has already clicked on some of these figures for a previous

sentence), or an underestimate (if the user clicks on all sentences,

just to be sure, or clicks on the back button) but it does provide

consistent criteria for evaluating methods. More precisely, for any

sentence, we assume that if Figure k is the last figure (truly) linked

to that sentence, a user without our system would click k times to

retrieve the relevant figures, accessing the figures sequentially until

obtaining the desired information. If our system scores all of the

relevant figures for the sentence within its top q choices, then our

user would click q times, and the number of clicks saved would be

k{q. We define ‘‘clicks’’ to be this difference, averaged over all

sentences in the set of abstracts. ‘‘Clicks’’ thus represents the

average reduction in the number of mouse clicks needed by a user

to locate a figure associated with an abstract sentence when the

user clicks on figures in the order determined by linkage scores

rather than sequentially.

Results for Language Models
We performed a leave-one-article-out cross-validation experi-

ment to assess the performance of different LM approaches. We

evaluated four types of figure-specific models (Caption Only,

Referencing Only, Pooled, and Mixture) and two types of

background models (Variable Size and Fixed Size) and compare

to the current state-of-the-art [1] (Baseline). See the methods

section for LM specifics. Since the Mixture figure-specific model

considers more text than the other two methods and differentiates

between caption and referencing text, and since the Fixed Size

background model corrects for a bias that Variable Size has

against long sentences, we sometimes refer to the LM (Fixed Size,

Mixture) as the CompleteLM. We hypothesize CompleteLM will

outperform the other LMs as well as Baseline.

These differing performances are given in Table 1 where the

column headers on the per-article side of the the table have an

over-bar and subscript a to indicate that the reported values are

averages across articles. Broadly, note that the scores for per-

article are uniformly higher for all methods and measures than

their corresponding scores for the whole-corpus. So, indeed, the

methods perform better on articles with fewer links. We will

analyze these differences in detail using a permutation test, but first

we discuss the results of using differing background models, i.e.,

differences between top and bottom rows of the table.

Table 1. Performance measures of text-only models.

Background Figure whole-corpus per-article

Model Vocab. Model Type AROC F1� PrecJ AROCa F1�a PrecJ
a

Variable Size Caption Only 0.66 0.38 0.39 0.69 0.53 0.40

Variable Size Referencing Only 0.67 0.38 0.36 0.73 0.56 0.44

Variable Size Pooled 0.74 0.48 0.49 0.76 0.60 0.50

Variable Size Mixture 0.73 0.47 0.49 0.76 0.61 0.50

Fixed Size Caption Only 0.71 0.43 0.43 0.74 0.56 0.45

Fixed Size Referencing Only 0.68 0.39 0.38 0.75 0.58 0.45

Fixed Size Pooled 0.77 0.49 0.49 0.80 0.63 *0.53

Fixed Size Mixture 0.78 0.50 0.53 0.81 *0.64 **0.54

Baseline 0.75 0.45 0.46 0.80 0.62 0.49

We show performance for our eight language models and the baseline. The first three result columns show overall corpus-wide performance, and the last three result
columns show mean performance across articles. The first seven result rows show performance of incomplete LMs, and the eighth result row shows the performance of
our CompleteLM, (Fixed Size, Mixture). Our CompleteLM performs best on all measures. Asterisks denote p-values from paired t-tests comparing each method with
Baseline, where * indicates pv0:1 and **indicates pv0:01.
doi:10.1371/journal.pone.0039618.t001
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Reported values in the table are the precisions that arise when

the number of predicted linkages is equal to the number of abstract

sentences. That is, the precision value PrecJ (a) for article a (used

in the calculation of PrecJ
a in the per-article method) is the

precision for the top scoring J(a) sentence-figure instances, where

J(a) is the number of abstract sentences in article a. Similarly,

PrecJ for the whole-corpus case is the precision for the top scoringP
a J(a) instances. Figure 2 shows whole-corpus recall-precision

curves for three LM models and the baseline.

We continue our discussion of results by comparing Comple-

teLM with Baseline. We observe that the performance of our

approach exceeds the baseline on all measures. To estimate

significance we conducted paired t-tests for the three per-article

measures. The p-value for F1�a (0.063) nearly indicated signifi-

cance at the standard 0.05 level, while the p-value for the

important PrecJ
a case (0.0071) is significant. Thus, we conclude the

expected value of PrecJ
a for CompleteLM is larger than for

Baseline. Since the PrecJ
a measure, unlike AROCa and F1�a,

depends only on labels of top scoring instances, the improvement

in PrecJ
a is especially relevant to literature browsing systems, which

are likely to provide access to figures for only a few of the highest

scoring instances. In the recall-precision curves (Figure 2) we

observe that, except for very small recall levels less than 0.05, the

CompleteLM curve dominates Baseline up to a recall of 0.8.

We now turn to a comparison of our eight LMs. We look first at

the performance of different figure models. For a given

background model, the LMs for pairings with Mixture and Pooled

figure models have consistently better performance than pairings

with both Caption Only and Referencing Only models. Paired t-
tests on the per-article measures confirm that for all cases these

differences are significant (pƒ0:01). We conclude that our LM

approach successfully combines complementary sources of text.

Next, we compare our two background models. The Fixed Sized

models, which have background vocabulary sizes set to a constant

value because of a potential bias against linking long sentences,

have better performance than Variable Size models when

comparisons are made between pairings with the same figure

model. Differences between Fixed Sized and Variable Size

background models paired with Mixture figure models are

significant (p-values of paired t-tests ƒ0:01) for all three measures.

To investigate a possible bias favoring links to longer sentences

we plot in Figure 3 empirical cumulative distribution curves of

sentence lengths for four collections of sentence/figure instances:

all 5402 instances (magenta line), all 947 linked instances (black

line), and the top scoring 826 instances under (Variable Size,

Mixture) (blue line) and (Fixed Size, Mixture) (red line) models. We

choose 826 because this is the total number of abstract sentences in

our corpus, and thus these curves show sentence length

distribution at the PrecJ point. The Variable Size method prefers

linking short sentences rather than long sentences (gap between

the red and black curves for a given sentence length). For example,

although only 58% of linked instances have sentences with ten or

fewer terms, 76% of all high-scoring instances under the Variable

Size approach have sentences at least this short. The Fixed Size

approach eliminates this bias, especially for sentences longer than

10 terms. Interestingly, there appears to be an actual preference for

longer sentences to be linked as seen by comparing the magenta

‘‘All Instances’’ curve to the black ‘‘Linked Instances’’ curve. This

may be reflective of a positive correlation between sentence length

and information content.

Lastly, we look in more detail at uniformly higher performance

in the per-article metrics by setting up an experiment to see if the

differences are due to in-homogeneity of the data. That is, do some

articles have language modelling scores that make linking

sentences with figures easier? This may be due to an author’s

style or the topic being discussed. We explore this by employing a

permutation test. We hold model type fixed and compare

performance values calculated using the whole-corpus method

with their per-article counterparts (that is, we compare values

within rows of Table 1). We observe that for all three measures

and all models the per-article performance value is larger than the

whole-corpus value. While due to the way F1
�
a is calculated, we

expect the larger per-article values for this measure, there is no

calculation bias for area under the ROC curve and precision.

The permutation test shuffled the associations between articles

and sentence/figure instances, keeping the number of linked

instances associated with each article fixed. Although whole-

corpus performance values do not depend on article assignments,

per-article performance values do. For each of 1000 permutations

we computed AROCa and PrecJ
a from linkage scores of

CompleteLM using the shuffled article associations. Figure 4

shows normalized histograms of observed performance values

from the permutation test along with actual whole-corpus and per-

article values. Although there is an article effect for both measures,

it is clearest for AROC. On this measure, while the whole-corpus

AROC value of 0.777 was near the median (exceeding the per-

article value in 485 of the 1000 permutations) the actual per-article

AROCa of 0.805 was substantially larger than any of the

permuted values. On precision the whole-corpus PrecJ value

was larger than 904 of the permuted values, and the actual per-

article PrecJ
a was larger than 999 of the 1000 permuted values.

One consequence of the observed article effect is that since in a

literature browsing system linkage scores are only considered one

article at a time, whole-corpus performance measures will

underestimate system performance in practice. A second and

more important consequence is that a single, fixed threshold on

linkage score separating positive and negative predictions is not

appropriate. It will be too permissive for articles with score-

increasing effects, and conversely too restrictive for articles with

score-reducing effects.

Figure 3. Empirical cumulative distribution functions of
sentence length for four collections of instances: all 5406
instances, all 947 linked instances, and the top 826 scoring
instances from (Fixed Size, Mixture) and (Variable Size,
Mixture) language models.
doi:10.1371/journal.pone.0039618.g003
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Results for Combined Text and Non-text Models
In this section we evaluate approaches to linkage prediction that

utilize both text and non-text features. We consider two kinds of

non-text features. Values of positional features are based on the

relative positions of the sentence within the abstract and the figure

within the article, and values of linkage features are derived from

linkage patterns of other instances in the same article. While the

values of positional features are always observable, the values of

linkage features are generally not observable when predictions are

needed. Although the linkage values are hidden, since the hidden

Markov model (HMM) and conditional random field (CRF)

approaches collectively classify all of an article’s instances

simultaneously, inferred values of linkage features can inform

their predictions. We first evaluate non-text features individually,

and then in combination.
Information gain of non-text features. Table 2 shows the

percent information gain (% gain) of non-text features. For

comparison, we also show the % gain of the text-based

CompleteLM model’s linkage scores (SLM (j, k), see methods). A

feature’s % gain indicates how predictive of linkage that feature is

in isolation. It ranges from 0% (not predictive) to 100%

(completely predictive). It is not surprising that the % gain of

CompleteLM scores (16.30%) is, by a wide margin, the largest, as

these scores come from models of numerous text features while the

other % gain values in the table are for individual features. After

CompleteLM, the next three features form a well separated group

with similar % gains. This group comprises two linkage features,

EdgesCrossed (7.82%) and FigureDegree (7.37%), along with

Distance (7.48%), a positional feature. The relatively high gain of

Distance agrees with previous work [1] where we found that

predictions based on text and Distance are more accurate than

predictions of text-only models. The Distance feature is, however,

the only non-text feature previously used for abstract sentence/

figure linkage prediction. Therefore, the present work represents

the first time the other features in Table 2 have been considered

for this task.

Other than Distance, Initial Sentence, with a modest gain of

1.78%, is the only positional feature with % gain significantly

different from 0.0. All linkage features, on the other hand, have

statistically significant % gain values. Indeed, four linkage features

have gains exceeding 4%. If appropriately modeled, these linkage

features may lead to more accurate predictions of abstract

sentence/figure associations. Incorporating them into a model,

however, is challenging since linkage feature values are unob-

served at prediction, and therefore approaches that predict

linkages of each instance independently are unable to use linkage

features. In fact, a key motivation behind our HMM and CRF

approaches was to utilize their collective classification properties to

model linkage features.

Evaluation of linkage predictions. To evaluate models of

text and non-text features, we performed leave-one-article-out

cross-validation experiments similar to those we used to evaluate

language models. We look at three approaches to modeling text

and non-text. Our CompleteLM+DM approach combines Com-

Figure 4. Results of permutation tests showing article-effects on two performance measures: area under the ROC curve (left) and
precision (right). Blue and magenta points show actual performance values for the CompleteLM model calculated with the whole-corpus and per-
article methods, respectively. The red-line shows a normalized histogram of per-article performance for 1000 random permutations of the
associations between articles and abstract sentence/figure instances.
doi:10.1371/journal.pone.0039618.g004

Table 2. Percent information gain of non-text features.

Feature Name Feature Kind % Gain

CompleteLM scores – *16.30

EdgesCrossed linkage *7.82

Distance position *7.48

FigureDegree linkage *7.37

PreviousFigure linkage *4.55

PreviousSentAndFig linkage *4.01

PreviousSentence linkage *1.78

InitialSentence position *1.57

SentenceDegree linkage *1.51

LastSentence position 0.08

InitialFigure position 0.00

LastFigure position 0.00

For comparison with text features we also show the gain of CompleteLM scores.
Asterisks indicate features whose % gain significantly differs from 0.0 (p-value of
permutation test v0:01).
doi:10.1371/journal.pone.0039618.t002
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pleteLM and distance model (DM) scores (Equation 13). Like the

LM approaches, it predicts linkages independently for each

sentence/figure pair. In contrast, our other two approaches,

HMMs and CRFs, make collective predictions, and moreover

utilize both positional and linkage non-text features. We evaluate

both the sentences-in-states (SIS) and figures-in-states (FIS) HMM

and CRF variants. We compare predictions of our models that

merge text and non-text features to predictions of models that

consider only distance (DM), only text (CompleteLM), and two

baselines: the text-only Baseline described above and a combined

text and distance method used in a previous study [1]. This text

and distance baseline – called SIM() by its authors, but which for

consistency we refer to as Baseline+DM – represents the current

state-of-the-art, and is currently the most accurate method for

predicting abstract sentence/figure linkage. As above, we use the

AROC, F1� and PrecJ performance measures calculated corpus-

wide and per-article. Additionally, we report per-article values of

clicks, labeled ClicksJ
a .

Table 3 shows the performance of various models, and Figure 5

shows whole-corpus recall-precision curves for a subset of models.

CRF (SIS), our top performing model, has the highest perfor-

mance on all measures. Paired t-tests indicate that differences

between CRF (SIS) and Baseline+DM for all per-article measures

are statistically significant (all p-values v0:001). From the recall-

precision curves in Figure 5 we see that, except for recall levels

v0:05, the CRF (SIS) curve dominates the Baseline+DM curve.

Therefore, we conclude that CRF (SIS) represents a significant

improvement over the state-of-the-art for predicting linkages

between abstract sentences and figures.

Comparing the CRF and HMM methods, we observe that

CRFs usually, but not always, outperform HMMs for the same

variant (either SIS or FIS). The HMM (SIS) has higher precision

than CRF (SIS) for recall levels below about 0.4 while CRF (SIS)

has the higher precision at higher recall levels. However, when we

compare the SIS and FIS constructions we see that HMM (SIS),

the least performing SIS construction, outperforms both FIS

approaches. Hence, it appears model variant (SIS or FIS) has

more effect on performance than model type (HMM or CRF).

Even so, the differences between CRF (SIS) and HMM (SIS) are

significant (p-value v 0.05) for AROCa and LM�
a (but not PrecJ

a ).

Since aspects of the FigureDegree feature are captured by the SIS

CRF but not the FIS variant, the superiority of the performance of

SIS over FIS agrees with the relative information gain values

(Table 2) of FigureDegree (7.37%) and SentenceDegree (1.51%).

To better understand the performance differences between CRF

(SIS) and CRF (FIS), we compared articles for which CRF (SIS)

had larger PrecJ
a score to those where CRF (FIS) had the higher

score. Articles won by CRF (FIS) had on average of 1.11 fewer

abstract sentences than articles won by CRF (SIS). A permutation

test reveals that this 1.11 sentence difference is statistically

significant. This suggests a suite of models approach, where the

model applied to linkage prediction on a given article depends on

the number of abstract sentences or other observable article

properties, may be effective.

The overall trend evident in the performance measures of

Table 3 and the recall-precision curves in Figure 5 is that

performance increases as more types of features are utilized. Of

the models that use a single class of features, those that use text

only are clearly superior to the DM approach. Combining DM

with text models gives a substantial performance boost, most

markedly for Baseline+DM versus Baseline. We see another

performance bump for models that incorporate linkage features.

Thus, we conclude that text, positional and linkage features are

complementary for linkage prediction, and that our approaches

successfully integrate these diverse types of evidence.

Results for Human Annotators
We invited authors of a disjoint set of 49 additional PNAS

articles to provide annotations of abstract sentence/figure

associations for their articles, and to evaluate a prototype of our

online article browsing system on their articles. We subsequently

asked authors to complete a short four question usability survey. A

total of 21 authors participated for a response rate of 43%.

Further, we asked three bio-medical researchers who are not

authors of any of these articles to provide additional annotations

from which we obtained linkage annotations for 14 of these

articles.

The 14 articles annotated by both authors and non-authors

contain a total of 420 abstract sentence/figure instances. Table 4(a)

shows the contingency table for the linkage annotations of these

instances. Authors and non-authors have a related concept of

sentence/figure association (pv0:001 for x2 test on independence

of counts in Table 4). Authors and non-authors agree on linkage

status on 81% of instances, and inter-annotator agreement as

measured by Cohen’s k is 0.47. The concept of association,

however, is not precise as non-authors and authors disagree 19%

of the time. It is interesting that non-authors, with a 27% linked

rate, appear to have a significantly more liberal notion of

association than authors, who identify only 17% of instances as

being linked.

Besides estimating inter-annotator agreement we can use non-

author annotations to compare the computational predictions of

our models with human predictions. Using author annotations as

ground truth, we compare the performance of linkage predictions

made by humans (i.e., non-authors) with computational predic-

tions. Using the CRF (SIS) model trained from author annotations

for the 114 articles used above, we predicted linkages for the 14

articles that have both author and non-author annotations. For an

article with J abstract sentences we predict that the top scoring J
instances are linked and that the other instances are not linked.

Thus, the CRF (SIS) row of Table 4 are RecallJ
a , PrecJ

a and F1J
a

values. We point out that there is a difference between the F1
J

a

Figure 5. Whole-corpus recall-precision curves. The solid dots
indicate the recall-precision point at PrecJ , when the number of
predicted linked instances is equal to the total number of abstract
sentences in the corpus.
doi:10.1371/journal.pone.0039618.g005
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measure in Table 4 (average of F1 calculated at one pre-

determined point in each article) and the F1
�
a measure in Tables 1

and 3 (average of maximum F1 value in each article). While

human annotators have higher performance values on all

measures (none of these differences are statistically significant),

the performance of CRF (SIS) is competitive with that of the non-

author humans. On 9 of the 14 articles the human had the higher

F1 score, while on the other five articles CRF (SIS) had higher F1.

Table 5 shows the pilot survey questions and average response

values. We observe that users tend to have a positive view of the

accuracy and usability of the prototype system. Interestingly, there

is a significant positive correlation between an author’s score for

Q2 (‘‘How useful are current figure-sentence associations?’’) and

the F1 score of the system predictions for their article

(r~0:44, p~0:04). Similar correlations were observed for other

questions. From these results we conclude that methods for

making more accurate predictions of sentence/figure associations,

including the computational approaches we describe in this article,

will lead to more usable online literature browsing systems.

Conclusion. We have described methods for computationally

identifying associations between sentences in the abstract of a

scientific article and figures (and tables) in the article body. We use

supervised methods for learning. Our models use three types of

evidence to predict whether or not an abstract sentence is linked

with a figure: text (in the abstract sentence, figure caption, and

passages that refer to the figure), the relative positions of the

abstract sentence and figure, and patterns of inferred associations

for other sentence/figure pairs in the article.

Each type of evidence has predictive value. Our experimental

evaluation showed that models that use all evidence types are more

accurate than models that use only one or two types of evidence.

Our best performing models, based on conditional random fields

(CRFs) [3], achieve a macro-average F1 score of 0.69. The area

under its ROC curve is 0.86. These performance measures

represent a statistically significant improvement on the state-of-

the-art for this task, an unsupervised approach developed earlier

[1]. Moreover, disagreement of human annotators on linkage

status is nearly as common as prediction errors of our system.

We observed that the use of a language model significantly

improved the results of previous work, where a TFIDF cosine

similarity was used. Once a larger data set is collected and more

detailed user feedback is assembled, a natural area of future

exploration is more sophisticated language models. For example,

the use of word bigram models, smoothing based on related

clusters of articles, and divergence metrics such as Jensen-Shannon

are all possible extensions of this work [27].

Automatic methods for predicting linkages between abstract

sentences and figures are important for the development of the

next generation of literature search and browsing systems. A user

Table 3. Performance values for models that use combinations of text, positional and linkage features.

whole-corpus per-article

Method T P L AROC F1� PrecJ AROCa F1�a PrecJ
a ClicksJ

a

DM 3 0.67 0.39 0.26 0.70 0.46 0.31 0.97

CompleteLM 3 0.78 0.50 0.53 0.81 0.64 0.54 1.52

CompleteLM+DM 3 3 0.80 0.53 0.55 0.82 0.67 0.58 1.65

HMM (FIS) 3 3 3 0.80 0.54 0.57 0.81 0.66 0.57 1.74

CRF (FIS) 3 3 3 0.81 0.54 0.56 0.83 0.67 0.58 1.75

HMM (SIS) 3 3 3 0.82 0.56 0.59 0.84 *0.68 *0.60 1.57

CRF (SIS) 3 3 3 0.84 0.57 0.61 **0.86 **0.69 **0.62 **1.82

Baseline 3 0.75 0.45 0.46 0.80 0.62 0.49 1.49

Baseline+DM 3 3 0.79 0.49 0.51 0.83 0.65 0.57 1.65

Values calculated across the whole-corpus as well as per-article averages are shown. Each row gives the performance measures for one model. The T, P and L columns
indicate with a H those models that use text, positional, and linkage features, respectively. The sentences-in-states CRF approach, CRF (SIS), has the top performance on
all measures. Asterisks denote p-values (*denotes pv0:1 and **denotes pv0:01) from paired t-tests comparing the per-article performance of our methods to those of
Baseline+DM, the current state-of-the-art.
doi:10.1371/journal.pone.0039618.t003

Table 4. Results for 14 articles with human annotations
provided by both authors and non-authors, and
computational predictions provided by the CRF (SIS) model.

(a) Authors

Non-linked linked Total

Non-Authors Non-linked 283 22 305

Linked 58 57 115

Total 341 79 420

(b) Recalla Preca F1a

Human 0.65 0.48 0.53

CRF (SIS) 0.58 0.43 0.47

(a) Contingency table of human annotations.
(b) Per-article average recall, precision and F1 score of non-author human
annotations and computational predictions using author annotations as
ground truth.
doi:10.1371/journal.pone.0039618.t004

Table 5. Survey questions and average response values.

Q1: How accurate are the figure-sentence associations? (3.76)

Q2: How useful are the current figure-sentence associations? (3.62)

Q3: If the system is implemented, how eager will you be to use it? (3.57)

Q4: Do you like the interface design? (4.10)

Values range from 1 (not at all) to 5 (very).
doi:10.1371/journal.pone.0039618.t005
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study showed that users find the figure browsing features

supported by our linkage predictions to be helpful. We have

incorporated linkage predictions into our system (http://

FigureItOut.askHERMES.org).

Methods

Data and Features
We re-use our collection of 114 full-text biomedical articles (39

from Cell, 29 from EMBO, 30 from the Journal of Biological

Chemistry, and 16 PNAS) from our previous study [1]. The

authors manually annotated their articles by identifying associa-

tions between abstract sentences and figures. The collection has

826 abstract sentences, 741 figures, and 5402 total sentence/figure

instances of which 947 (17.5%) are linked. Of the abstract

sentences 271 (32.8%) are not linked with any figure, 317 (38.4%)

are linked with a single figure, and 238 (28.8%) are linked with

multiple figures. And for figures, 91 (12.3%) are not linked with

any abstract sentence, 423 (57.1%) are linked with a single

sentence, and 227 (30.6%) are linked with multiple sentences. The

range of the number of abstract sentences and figures in an article

is [3,13] and [3,11], respectively.
Term vectors. We represent the text content of captions and

referencing paragraphs with the ‘‘bag-of-words’’ representation,

and for abstract sentences we use the ‘‘set of words’’ representa-

tion. The term vector ~TT for a sentence or figure has V elements,

one element for each term in the vocabulary. For figures, T(t) is

the number of occurrences of term t, while for sentences it is a

binary indicator of the presence (1) or absence (0) of t.
Positional features. In addition to text we also use non-text

features. The features naturally divide into two groups, positional

features and linkage features. The value of the positional features

for sentence j and figure k in article a depends on the positions j, k
and the total number of abstract sentences (J) and figures (K ) in a.

We number sentences and figures sequentially as they appear in

the article. So, for example, instance (j,k) is for the jth abstract

sentence and kth figure in the article.

N Distance(j,k)~D
j

J
{

k

K
D. This feature measures the difference

of the relative sentence and figure positions. It is the only non-

text feature previously used for predicting sentence/figure

linkages.

N InitialSentence(j)~1 if j~1 and 0 otherwise.

N LastSentence(j)~1 if j~J and 0 otherwise.

N InitialFigure(k)~1 if k = 1 and 0 otherwise.

N LastFigure(k)~1 if k~K and 0 otherwise.

Linkage features. We compute the value of linkage features

from article-wide linkage patterns. We represent the linkage of an

article with the J-by-K linkage matrix L, where L(j,k)~1 if

sentence j is linked with figure k, and 0 otherwise. Figure 6 shows

an example, which we use in the following six definitions of linkage

features.

N PreviousSentence(j,k)~L(j{1,k) (undefined when j~1).

This feature indicates if k links with the abstract sentence

previous to j. The value of PreviousSentence(2,3) is 0 because

sentence 1 and figure 3 are not linked.

N PreviousFigure(j,k)~L(j,k{1) (undefined when k~1). This

feature indicates if j links with the figure previous to k. The

value of PreviousFigure(2,3) is 0 because sentence 2 and

figure 2 are not linked.

N PreviousSentAndFig~L(j{1,k{1) (undefined if j~1 or

k~1). This feature indicates if the previous sentence and

figure are linked. The value of PreviousSentAndFig(2,3) is 1

because sentence 1 and figure 2 are linked.

N FigureDegree(j,k)~
P

j
0
=j L(j

0
,k): This feature is the num-

ber of sentences (other than j) linked with figure k. The value

of FigureDegree(2,3) is 1 because sentence 4 and figure 3 are

linked.

N SentenceDegree(j,k)~
P

k
0
=k L(j,k

0
): This feature is the

number of figures (other than k) linked with sentence j. The

value of SentenceDegree(2,3) is 0 because sentence 2 does not

link with any other figure.

N Edges Crossed(j, k) =

Xj{1

j
0
~1

XK

k
0
~kz1

L(j
0
, k
0
)z

XJ

j
0
~jz1

Xk{1

k
0
~1

L(j
0
, k
0
):

This feature is the number of links inconsistent with the

preservation of relative ordering across links. The name Edge-

sCrossed comes from number of edges that would be crossed by

the edge j{{{k in the graph representation of L. In the

example in Figure 6, the value of EdgesCrossed(2,3) is 1 because

the edge 2{{{3 crosses the single edge 4{{{1, and

EdgesCrossed(3,1) is 2 because the edge 3{{{1 would cross

2 edges.

Since L is not observed while predicting, linkage feature values

are also hidden. Therefore, these features are not helpful in

methods that predict instance linkages independently. The

inferred values of linkage features may, however, benefit

prediction by techniques like our HMM and CRF approaches.

Language Models
We model text properties of linked and non-linked instances

using probabilistic language models (LM). Our LM approach is

motivated by the successful application of similar methods to

document retrieval [27–29]. For document retrieval the LM

approach induces for each document a probability model over all

terms in the vocabulary. Then, a document’s relevance to a query

is defined as the probability of the query under its model.

Hiemstra’s LM approach [28] uses two kinds of term

distributions: a single background distribution ~bb shared by all

documents, and a set of document-specific distributions

Figure 6. Example graph and linkage matrix representations
for an article with four abstract sentences, three figures and
four sentence/figure links. Combinations of linkages that induce
edges that cross in the graph representation, f(4–1),(1–2)g and f(4–
1),(2–3)g in this example, are less common as they are out of keeping
with the observed tendency for consistent relative ordering among
linked instances.
doi:10.1371/journal.pone.0039618.g006
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~dd1,~dd2, � � � ~ddD for a D-document corpus. The LM represents the

probability of query terms for document z as a mixture of ~bb and ~ddz.

This mixture distribution corresponds to a generative process for

constructing query terms for z that first randomly selects either ~bb

or ~ddz according to the mixing distribution (parameterized by l)

and then samples a term from the chosen distribution. To generate

a query with L terms, these two steps are repeated L times.

In a similar way we use language models to predict links

between abstract sentences and figures by treating abstract

sentences as queries and figures as documents. Let ~bb(t) and ~ddk(t)
be the probability of term t under the background distribution and

figure k’s distribution respectively. Then, the probability of

abstract sentence j given that it is linked to figure k is.

Pr (~TTj Dj<k)~ P
V

t~1
l~bb(t)z(1{l)~ddk(t)
h iTj (t)

, ð1Þ

where ~TTj is sentence j’s length V term vector, 0ƒlƒ1 is the

mixing proportion for the background distribution, and j<k

denotes that j and k are linked, or equivalently that L(j,k)~1. If j

and k are not linked, the background distribution generates all

terms in the sentence:

Pr (~TTj j j k)~ P
V

t~1

~bb(t)
h iTj (t)

: ð2Þ

The LM score matrix SLM for an article holds the log-odds of

the sentence terms given linkage for all instances (j,k). For an

article with J sentences and K figures, SLM is J-by-K and.

SLM (j, k){ ln
Pr (T
!

j jj<k)

Pr (T
!

j jjk)

 !
: ð3Þ

Figure-specific models. A natural and often-used represen-

tation of the document-specific term distribution ~dd is a multino-

mial distribution where each probability ~dd(t) has its own

parameter. Parameter estimation for the multinomial model

typically treats all occurrences of t in the document equally, and

sets ~dd(t) to its frequency in the document. We consider

multinomial representations, but we also use a representation that

distinguishes caption terms from terms in referencing paragraphs.

Since in our approach to the linkage prediction task, figures play

a role analogous to documents, to apply the multinomial approach

we need to determine which terms represent a figure. Candidate

term sources include terms in the figure’s caption as well as terms

in the article body close to figure references. We consider three

sources: caption terms (Caption Only), terms in referencing

paragraphs (Referencing Only) and the combination of terms in

either the caption or a referencing paragraph (Pooled).

Let nc
k(t) be the number of occurrences of term t in figure k’s

caption and Nc
k be the total number of terms in the caption. We

similarly define nr
k(t) and Nr

k for figure k’s referencing paragraphs.

The probabilities dc
k(t),dr

k(t) and d
p
k (t) of term t in the Caption

Only, Referencing Only, and Pooled representations are simply its

frequency in each collection:

dk(t)~dc
k(t)/

nc
k(t)

Nc
k

CaptionOnly ð4Þ

dk(t)~dr
k(t)/

nr
k(t)

Nr
k

ReferencingOnly ð5Þ

dk(t)~d
p
k (t)/

nc
k(t)znr

k(t)

Nc
kzNr

k

: Pooled ð6Þ

Note that we do not use pseudo-counts here, as smoothing is

unnecessary because the background distribution ~bb is used for

terms that have zero probability in the figure-specific model.

Although the Pooled method has the advantage of including

text from multiple sources, it is limited in that it ignores term

origin even though there may be meaningful differences between

terms in captions and referencing paragraphs. For example, while

text in referencing paragraphs can discuss topics unrelated to the

figure, caption content nearly always relates to the figure. Our

final figure-specific term distribution, which we call Mixture,

distinguishes between caption terms and referencing paragraph

terms. In the Mixture approach we represent dk(t) itself as a

mixture of the Caption Only and Referencing Only distributions,

dk(t)~dm
k (t)~adc

k(t)z(1{a)dr
k(t), Mixture ð7Þ

where 0ƒaƒ1 is the mixing proportion for the caption

distribution.

Background models. We consider two approaches to setting

the background distribution of article a. One approach pools all

terms present in abstract sentences, figure captions and referencing

paragraphs in a, and sets background probabilities to the

smoothed term frequencies,

~bb(t)~~bbv(t)/
n(t)z1PVa

t
0
~1

n(t
0
)

h i
zVa

, VariableSize ð8Þ

where n(t) is the count of term t in the pooled collection and Va is

the number of distinct terms in article a’s sentence/caption/

referencing paragraph pool. Since the vocabulary size Va - which

depends on the number of distinct terms in abstract sentences,

captions and referencing paragraphs - varies from article to article,

we call this approach to setting the background distribution

VariableSize. Because of finite sampling, however, Equation 8

may lead to biases that favor linking short sentences and against

linking long sentences. This bias arises because the probabilities
~bb(t) of terms present in the pooled collection set according to

Equation 8 are too large. The ~bb(t) tend to be overestimates

because, since the pooled collection is unlikely to contain all terms

in the vocabulary, any term not in the pool has (an implicit)

background probability of zero. Therefore, the probabilities of the

absent terms are underestimated, and their true probability mass is

distributed among the probabilities of the present terms. From

Equations 1-3 it can be seen that overestimates of ~bb(t) cause a

corresponding overestimate of Pr (~TTj jj k) (and thus underesti-

mation of SLM ) that increases with sentence length.

To correct for the bias in VariableSize, we consider an

alternative approach to estimating ~bb that uses a fixed vocabulary

size of Z terms in all articles. We call this approach FixedSize. We

use a pseudo-count of 1 for all terms, and set the background

probability for term t to.
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~bb(t)~~bbf (t)/
n(t)z1PV

t
0
~1

n(t
0
)

h i
zZ

: FixedSize ð9Þ

We describe below how we set Z from training sets.

Learning language models. We evaluate our LMs with

leave-one-article-out cross-validation experiments. Our experi-

ments evaluate each of the eight kinds of LMs: one LM for each

pairing of a figure-specific-model (four kinds) with a background

model (two kinds). For the cross-validation fold in which article a is

in the test set, since the background and figure-specific distribu-

tions for a are set from only the terms in a and not any linkages,

the parameters in ~bb and the ~ddk do not depend on the training set of

annotated articles. We do, however, use training sets to estimate

our other LM parameters: the mixing proportions l and a, and the

fixed-vocabulary size Z.

We estimate separate parameter values for each LM. We first

set l’s for the (VariableSize, Caption Only), (VariableSize,

Referencing Only) and (VariableSize, Pooled) approaches. We

search over 99 values of l equally spaced from 0.01 to 0.99, and

set l to the value that maximizes the mean PrecJ
a on the training

set. Next, we set Z for the (FixedSize, Caption Only), (FixedSize,

Referencing Only) and (FixedSize, Pooled) models. For each

figure-specific-model we temporarily set l equal to the value just

set for its pairing with VariableSize, and then estimate Z by the

value that minimizes the absolute value of the Pearson correlation

between sentence length and Pr (j<kD~TTj) for all training instances

(j,k). With Z set, we then estimate l for these three LMs as we do

above, by the value that minimizes the mean PrecJ
a . Lastly, we set

parameters of LMs with Pooled figure-specific-models. We set l
and a for (VariableSize, Pooled) with a method similar to the

method we use to set l for the other VariableSize models, though

now we compute PrecJ
a for joint l, a settings. So as to maximize

the diversity of our parameter search, we define l1~l, l2~l1a,

l1zl2zl3~1, and conduct our search on 120 evenly spaced

points on the standard 2-simplex:

fl1, l2, l3Dl1§0, l2§0, l1zl2ƒ1g. Finally, we set Z, l and a
for (FixedSize, Pooled) analogous to the method we use above to

set Z and l for VariableSize models. We first set Z by minimizing

correlation between sentence length and score, and next set l and

a by search on the 2-simplex.

Distance Model
We begin our description of non-text models with models of the

Distance feature. We consider distance models (DMs) because it

has been shown previously [1] that the relative positions of an

abstract sentence and figure correlate with linkage status. For

example, a sentence near the beginning of an abstract is more

likely to be linked with a figure near the beginning of an article

than with a figure at the end of the article.

We learn models of discretized values of the Distance(j, k)
feature for linked and non-linked instances. Let Distance.(j, k)
denote the bin of Distance(j, k) where we have ten bins, and we

place bin boundaries so that an approximately equal number of

points falls in each bin. We set the bin probability of bin i in the

DM of linked instances to the Laplace smoothed fraction of linked

instances with Distance.(j, k)~i,

Pr (Distance.(j, k)~iDj<k)~
nL(i)z1P10

i
0
~1

nL(i
0
)z1

� � , ð10Þ

where nL(i) is the number of linked training set instances in bin i.

We set bin probabilities for the DM of non-linked instances in a

similar way,

Pr (Distance.(j,k)~ijj k)~
nN (i)z1P10

i
0
~1

nN (i
0
)z1

� � , ð11Þ

where n(i)N is the number of non-linked training set instances in

bin i.

The distance model score matrix SD for an article holds the DM

log-odds of the article’s sentence/figure instances,

SD(j,k)~ ln
Pr Distance.(j,k)jj<kð Þ

Pr Distance.(j,k)jj k
� � !

: ð12Þ

We construct scores of a combined language and distance

model by adding scores,

SLMzD(j,k)~ ln
Pr ~TTj ,Distance.(j,k)jj<k
� �

Pr ~TTj ,Distance.(j,k)jj k
� �

0@ 1A, ð13Þ

~SLM (j, k)zSD(j, k) ð14Þ

where SLMzD(j, k) is the combined LM and DM score for

sentence j and figure k, and Equation 14 follows from Equations 3

and 12 under the assumption that terms and distances are

conditionally independent given linkage status.

Hidden Markov Models
In addition to patterns of the Distance feature for individual

instances, linkage patterns across instances also have tendencies.

For example, given two linked instances, j<k and j
0<k

0
, from the

same article, if jwj
0
, then it is also likely that kwk

0
. We model

these kinds of linkage-flow patterns flow using hidden Markov

models (HMMs) [2] and Conditional random fields (CRFs) [3],

two kinds of probabilistic models widely used for representing

structure in sequential problems. Since flow tendencies indicate

preferences for linkage patterns that are, to a certain extent,

independent of text, we do not want to ignore text. Both HMMs

and CRFs are convenient in this regard as they provide a natural

way to model both kinds of evidence. We model flow with state

transition probabilities learned from a training corpus, and we

model text with emission probabilities derived from the scores of

learned language models. We first describe our HMM approach,

and then we describe our related CRF approach.

We consider two HMM constructions: ‘‘sentences in states’’

(SIS) and ‘‘figures in states’’ (FIS). Our description is in terms of

the SIS construction, but FIS can be understood by swapping

‘sentence’ with ‘figure’ in the description. Under the SIS

construction, an article with J sentences and K figures has an

HMM with Jz1 states, f0g,f1g,f2g, � � � ,fJg, and the length K

observation sequence (1,2, � � � ,K ). State fjg is associated with

abstract sentence j, and the non-linked state f0g is not associated

with any sentence. We have a transition between every pair of

states. Figure 7(a) shows an example HMM.
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We associate linkage-predictions with state-sequence paths. For

example, for an article with K~5 figures and J~3 sentences, the

path f2g,f0g,f2g,f3g,f0g½ � asserts that Figure 1 links with

Sentence 2, Figure 2 does not link to any sentence, Figure 3 also

links with Sentence 2, Figure 4 links with Sentence 3, and Figure 5

does not link with any sentence. With the SIS construction, a

single path can link a sentence to any number of figures (0 to K),
while a figure can only link with 0 or 1 sentences. Our CRF

approach relaxes this constraint and permits figures to link with

multiple sentences.

As articles have different numbers of abstract sentences, their

HMMs have different numbers of states. Our approach to this

variation is to learn transition probabilities for a single base HMM

structure with J�z1 states, where J� is the maximum number of

abstract sentences in any article of the training corpus. Then, for

an article with J abstract sentences, we construct a Jz1-state

HMM to predict linkages. The transition probabilities of the

derived HMM come from the base structure, while the emission

probabilities are based on language model scores.

Training the base HMM structure involves estimating the

entries of its J�z1ð Þ-by- J�z1ð Þ transition matrix U . The value

U(j, j
0
) is the probability for the transition from fjg to fj0 g. In

other words, U(j, j
0
) is the probability of j

0<k given j<(k{1), for

all k. Here, we include unlinked figures in our notation by defining

0<k to mean that k is unlinked. We estimate U from the training

corpus’s transition counts matrix C, where C(j, j
0
) is the number of

times that j<k and j
0<(kz1) in the training set:

C(j, j
0
)~
XD

d

XKd

k~2

Ld (j, k{1)Ld (j
0
, k): ð15Þ

Here d indexes training set documents, and Ld is the linkage

matrix for training document d. We set the U(j, k) to their MAP

estimate using Dirichlet priors with hyperparameters set to 1.0:

U(r, s)~
C(r, s)z1

J�z
P

t C(r, t)
: ð16Þ

We create the derived HMM with states (f0g,f1g, � � � ,fJg) by

extracting the corresponding states and transitions between them

from the base structure, and re-normalizing transition probabilities

so that the sum of the outgoing probabilities from any state is 1.0.

If a test-set article happens to have more abstract sentences than

any article in the training corpus, we create its derived HMM by

adding states to the base structure. Then, we also add transitions

so that the derived HMM is fully connected, assign small

probabilities to the new transitions, and re-normalize.

We now describe how we set the emission probabilities of the

derived HMMs to model text. Since the observation for an article

with K figures is the ordered sequence (1, 2, � � � , K ), state fjg
emits symbol k only if j<k. We thus set B(j, k), the emission

probability for symbol k in state fjg, based on the textual

coherence between abstract sentence j and figure k. While our

language models, of course, are designed to do just this, setting the

B(j, k) directly from LM probabilities gives poor performance.

The primary problem with this approach is that the LM

probabilities are not well calibrated. As with other naive Bayes-

like models, the posteriors of our LMs tend to be extreme, that is,

very close to zero or one. Although models with uncalibrated

probabilities often perform well in classification tasks [30], when

such models are used as components within a larger model like an

HMM predictions can be poor as inference in this case involves

reasoning with many uncalibrated probabilities. Therefore, we

represent the emission probabilities using Gaussian models of LM

scores.

We learn one Gaussian model of LM scores for linked instances

and another for non-linked instances. As this approach applies to

the scores SLM of any language model or the scores SLMzDM of

the combined language and distance model, for generality in our

description we denote scores by S as the computations are the

same in all cases. From the training corpus we calculate the sample

Figure 7. Example HMM (a) and CRF (b) state transition diagrams using the sentences-in-states construction. (a) States and transitions
for the base HMM for a corpus where the maximum number of abstract sentences in an article (J�) is 4. The states and transitions in sold blue are part
of the derived HMM for an article with J~3 sentences. (b) CRF states and transitions for an article with J~3 sentences and where the maximum
number of sentences per figure (M) is 2.
doi:10.1371/journal.pone.0039618.g007
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mean and variance of S(j, k) over all linked (mL, s2
L) and non-

linked (mN , s2
N ) instances, and use these parameters to define

Gaussian distributions for Pr (S(j,k)Dj<k) and Pr (S(j, k)jj k) .

Let ~BB(j, k) be the joint probability under these models of all

scores for figure k: S(1, k), � � � , S(J, k), given that it links only

with sentence j, j§1:

~BB(j, k) ~
def

Pr S(1, k), � � � , S(J, k) j j<k, j0 k for j=j0
� �

ð17Þ

~N(S(j, k), mL, s2
L) P

j
0
=j

N(S(j
0

k), mN , s2
N ) ð18Þ

where N(x, m, s2) denotes the value of the probability density

function for the Gaussian with parameters m and s2 at x. Equation

18 assumes the elements of S are independent given L. Similarly

we define ~BB(0,k) for non-linked k:

~BB(0, k) ~
def

Pr S(1, k), � � � S(J, k) j j0 k for all j0
� �

ð19Þ

~P
j
0

N(S(j
0
, k), mN , s2

N ) ð20Þ

Lastly, we set the emission probabilities by normalizing the ~BB’s.

B(j, k)~
~BB(j, k)

Zfjg
, ð21Þ

Zfjg~
X

k

~BB(j, k): ð22Þ

We define the HMM score for abstract sentence j and figure k,

SHMM (j, k), as the posterior probability that the state occupied on

step k, pk, is state fjg.

SHMM (j, k) ~
def

Pr (j<k)~ Pr (pk~jDS):

where the probability is with respect to the article’s derived HMM

for the standard observation sequence (1, � � � , K ). We use the

posterior decoding procedure [31] to compute the HMM scores.

Conditional Random Fields
Our HMM approach captures some properties of linkage

features well, but fails to capture some others. Consider, for

instance, the EdgesCrossed linkage feature and the transition

f2g?f1g. Whenever this transition is taken at step k, HMM

semantics assert both 2<k and 1<(kz1), which induces a crossed

edge in the linkage graph. Now, the HMM may learn a relatively

small transition probability for f2g?f1g, but only if other

transitions from f2g are more frequent in the training set. Standard

HMM representations, however, provide no mechanism for

generalization to transitions from other states using, for example,

a common penalty for transitions that induce crossed edges. Such a

general penalty is especially beneficial when learning transition

probabilities, such as for f9g?f8g, from less frequently visited

states. Indeed, in our data set there are 98 total transitions from state

f2g but only 19 from state f9g. Conditional random fields [3]

(CRFs), on the other hand, provide a mechanism for generalization

through weights associated with a set of shared transition features.

Our CRF approach is similar in many respects to our HMM

approach. Our CRFs also have SIS and FIS variants (we describe

here the SIS variant), also associate linkage predictions with state

sequence paths, and also generate a length K observation sequence

1, 2, � � � , K for an article with K figures. Furthermore, like HMMs,

the likelihood of a path through the model is proportional to the

product of K{1 transition terms and K emission terms. There are,

however, two key differences between our CRF and HMM

methods. First, while each HMM state is associated with one or

zero sentences, in CRFs we also have states associated with multiple

sentences. These multi-sentence states enable us to link a figure with

multiple sentences on a single path. Second, CRFs use a different

representation transition affinity. While for HMMs the affinity of a

transition is its transition probability, CRF transition affinity is given

by a weighted sum of feature values. Sharing of features and weights

enables information transfer across transitions.

A CRF for an article with J sentences has a state u for every subset

of the sentences f1, 2, � � � , Jg with size ƒM. In our experiments we

set M~3. (Figure 7(b) shows an example CRF with M~2.) We use

S(u) to refer to the set of sentences associated with state u so,

S(u)5f1, 2, � � � , Jg and # S(u)ð ÞƒM where # :ð Þ denotes set

cardinality. The state sequence path for an article with K figures,

~pp~p1, � � � , pK , asserts that figure k is linked with all abstract

sentences in S(pk). Thus, the number of abstract sentences linked

with figure k (the degree of k), is # S(pk)ð ÞƒM, and the number of

figures linked with abstract sentence j is # fkDj[S(pk)gð Þ is ƒK .

Since in the SIS construction, the degree of figure k is entirely

determined from pk we are able to readily encode figure degree

properties in CRF transition features. On the other hand, as the

degree of sentence j depends on the whole path, sentence degree

properties are not as amenable to representation as transition features.

One of the likely reasons that SIS representations outperform FIS

representations is that the linkage feature FigureDegree is substantially

more predictive of linkage than SentenceDegree (Table 2).

Our CRFs are parameterized by the transition feature weight

vector ~ww~w1, � � � ,wF , where F is the number of transition

features, and weight wi is associated with transition feature fi. The

weight vectors are set during training. Given ~ww, the CRF

probability of the path ~pp~p1, p2, :::, pK is proportional to the

product of the start-state affinity (Qs), K emission affinities (Qe),

and K{1 transition affinities (Qt):

Pr (~ppD~ww)! P
K

k~1
Qe(pk, k)

� �
Qs(p1D~ww) P

K

k~2
Qt(pk{1, pk D~ww)

� �
:ð23Þ

Here, Qs(p1D~ww) is the affinity for starting in state p1,

Qt(pk{1,pk D~ww) is the affinity for the transition pk{1?pk, and

the emission affinity Qe(pk,k) gives the affinity for linking figure k
with sentences S(pk). The emission affinities represent the textual

coherence of the implied linkages, and are defined similarly to the

emission probabilities of our HMMs. Also, the emission affinities

do not depend on ~ww, and so, as with HMM emission probabilities,

they are not adjusted during CRF training.

Transition affinities. We now describe the transition

features ~ff (u,v) we use to represent the start-state and transition

affinities. We represent the transition affinity for the transition

from state u to v using the standard log-linear model:
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Qt(u,vD~ww)~ exp
X

i

wi fi(u,v)

 !
, ð24Þ

where fi(u,v) is the value of feature i for u?v. We have a similar

representation for the start-state affinity:

Qs(vD~ww)~ exp
X

i

wi fi(0,v)

 !
, ð25Þ

where fi(0,v) denotes the value of feature i associated with starting

in v. To simplify description of our features below, we define

S(0) ~
def

1.

We now describe our eight transition features. These features

are closely related to the linkage features described above.

However, as each transition only provides information on linkage

of two neighboring figures, each feature fi(u,v) can only depend on

two adjacent columns of the linkage matrix L (see Figure 6). We

have a group of four binary features related to the number of

sentences in the destination state v. The names of these features all

begin with ‘‘ FigureDegree’’ because the degree of figure k’s vertex

in the graph representation is equal to # S(pk)ð Þ. Each of these

features is a binary test on # vð Þ, and for every state exactly one of

these features is 1 and all other features are 0.

FigureDegreeIs 0(u?v)~
1 if # S(v)ð Þ~0

0 otherwise

�
:

FigureDegreeIs 1(u?v)~
1 if # S(v)ð Þ~1

0 otherwise

�
:

FigureDegreeIs 2(u?v)~
1 if # S(v)ð Þ~2

0 otherwise

�
:

FigureDegreeIs 3 Plus(u?v)~
1 if # S(v)ð Þ§3

0 otherwise

�
:

Our next feature, NumEdgesCrossed(u?v), counts the

number of crossed edges in the graph representation induced by

the linkages implied by the transition. While this feature estimates

the linkage feature EdgesCrossed it will not count crossed edges

that require more information about L than what is implicit in the

transition.

NumEdgesCrossed(u?v)~# f (j, j
0
) D j [S(u), j

0
[S(v), jwj

0 g
� �

:

The last group of transition features (PreviousFigure, Previous-

Sentence and PrevSentAndFig) count the number of occurrences

of neighborhood linkage patterns. Recall that S(u) denotes the set

of sentences associated with state u. Thus, a path that includes

transition u?v asserts that some figure k is linked with all the

sentences S(v) associated with the destination state v, and that the

previous figure k{1 is linked with all the sentences S(u) associated

with the source state u. PreviousFigure(u?v) is the count of the

number of times a sentence links with both figure k and the

previous figure k{1:

PreviousFigure(u?v)~# S(u)\S(v)ð Þ:

Similarly, PreviousSentence(u?v) is the count of the number

of times figure k links with both sentence j and the previous

sentence j{1:

PreviousSentence(u?v)~# f j D fj{1, jg(S(v)ð Þ:

Note that PreviousSentence(u?v) depends only on the

sentences S(v) in the destination state. Although additional

‘‘previous sentence’’ counts can be inferred from linkages between

figure k{1 and source state sentences S(u), to prevent double

counting we do not count them on u?v because they get counted

on the transition into u. We define the last neighborhood feature,

PrevSentAndFig(u?v), to be the count of the number of times

figure k links with sentence j while the previous figure k{1 links

with the previous sentence j{1:

PrevSentAndFig(u?v)~# f j D j [S(u), j{1 [S(v)gð Þ:

Unlike NumEdgesCrossed(u?v), the values of the three

neighborhood features are exact.

As an example, consider the transition f2g?f1,3g with u~f2g
and v~f1,3g. We have.

FigureDegreeIs 2(f2g?f1,3g)~1

NumEdgesCrossed (f2g?f1,3g)~1 (from k<1 and

½k{1�<2),

PreviousFigure (f2g?f1,3g)~0

PreviousSentence (f2g?f1,3g)~0

and PrevSentAndFig (f2g?f1,3g)~1 (from k<3 and

½k{1�<2).

Emission affinities. The emission affinity for symbol k (for

Figure k) in state u, Qe(u,k), is based on the text coherence for all

implied linkages and non-linkages. Emission of the symbol k from

state u implies that sentences associated with u, S(u), are linked

with figure k and all other sentences are not linked with k. The

matrix of CRF emission affinities Qe is closely related to the B
matrix of HMM emission probabilities:

~QQe(u,k) ~
def

Pr (S(1,k), � � � ,S(J,k) j j<k for

all j[S(u), j
0

k for all j0 6[S(u))

ð26Þ

~ P
j[S(u)

N(S(j, k), mL, s2
L) P

j06 [S(u)
N(S(j0, k), mN , s2

N ):ð27Þ

where mL, s2
L, mN , s2

N , are as defined in the HMM section. We set

Qe from eQQe by normalizing:

Beyond Captions: Linking Figures with Text

PLoS ONE | www.plosone.org 14 July 2012 | Volume 7 | Issue 7 | e39618



Qe(u, k)~
~QQe(u, k)

Zfug
ð28Þ

Zfug~
X

k

~QQe(u, k) ð29Þ

Prediction and learning. We use standard algorithms for

learning weights and predicting linkages [3]. For learning we use

gradient ascent to maximize the probability of training set state

sequences. For prediction, we compute posterior distributions over

Pr (pk) using the forward and backward dynamic programming

passes.

Performance Measures
Recall-precision, F1, and ROC curves. We compute

precision (P), recall (R) and false-positive rate (FPR) for the

linkage predictions of a set of sentence/figure instances:

P~
TP

TPzFP
R~

TP

TPzFN
FPR~

FP

FPzTN
: ð30Þ

TP, TN, FP, FN are the number of true positive, true negative,

false positive, and false negative predictions, respectively, where a

‘‘positive’’ instance is linked and a ‘‘negative’’ instance is not

linked. A recall-precision curve plots R vs P, while a receiver

operating characteristic (ROC) curve plots FPR vs R. Points on

these curves are calculated by varying the threshold on linked

score that separates positive predictions from negative predictions.

The area under an ROC curve (AROC) ranges from 0.0 to 1.0

where the AROC of a random guess classifier is equal to 0.5. The

F1 score of a classifier is the geometric mean of R and P:

F1 = 2RP/(R+P).
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