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Objective: Subcortical stroke can cause a variety of language deficits.

However, the neural mechanisms underlying subcortical aphasia after stroke

remain incompletely elucidated. We aimed to determine the effects of distant

cortical structures on aphasia outcomes and examine the correlation of

cortical thickness measures with connecting tracts integrity after chronic left

subcortical stroke.

Methods: Thirty-two patients and 30 healthy control subjects underwent

MRI scanning and language assessment with the Western Aphasia Battery-

Revised (WAB-R) subtests. Among patients, the cortical thickness in brain

regions that related to language performance were assessed by the FreeSurfer

software. Fiber tracts connecting the identified cortical regions to stroke

lesions were reconstructed to determine its correlations with the cortical

thickness measures across individual patient.

Results: Cortical thickness in different parts of the left fronto-

temporo-parietal (FTP) regions were positively related to auditory-verbal

comprehension, spontaneous speech and naming/word finding abilities

when controlling for key demographic variables and lesion size. Cortical

thickness decline in the identified cortical regions was positively correlated

with integrity loss of fiber tracts connected to stroke lesions. Additionally,

no significant difference in cortical thickness was found across the left

hemisphere between the subgroup of patients with hypoperfusion (HP) and

those without HP at stroke onset.

Conclusions: These findings suggest that remote cortical atrophy

independently predicts language outcomes in patients with chronic left

subcortical stroke and aphasia and that cortical thinning in these regions

might relate to integrity loss of fiber tracts connected to stroke lesions.
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Introduction

Aphasia is observed in about one third of patients
with ischemic or hemorrhagic stroke. Empirically, aphasia
is attributed to lesions in cortical regions such as Broca’s
and Wernicke’s areas after stroke. In a follow-up computed
tomography investigation, stroke lesion has been demonstrated
to predict the outcomes of post-stroke aphasia at a modest
degree (Worrall et al., 2001). In contrast, language deficits have
been reported in patients with subcortical lesions in the internal
capsule, putamen, thalamus, basal ganglia, and periventricular
white matter (Naeser et al., 1982; Kuljic-Obradovic, 2003;
Dronkers et al., 2017). At present, the underlying mechanisms
of subcortical aphasia remain incompletely known.

Accumulating evidence has suggested subcortical aphasia to
be resultant of cortical hypoperfusion (HP) in brain regions that
support language function. Previous studies have showed that
the degree of cortical HP is associated with language outcomes
in patients with acute subcortical stroke (Olsen et al., 1986;
Perani et al., 1987; Okuda et al., 1994; Hillis et al., 2002). The
severity of subcortical aphasia has been found to relate to the
degree of cortical HP (Choi et al., 2007). In contrast, language
deficits can be recovered when cortical perfusion is regained
(Vallar et al., 1988). Even in the chronic stage of subcortical
stroke, patients might have language deficits that relate to
persistent cortical HP (Peñaloza et al., 2014). However, a recent
study has showed that cortical HP was not observed in most
patients with left thalamic infarction and aphasia (Sebastian
et al., 2014). These findings imply that potential alternative
mechanisms might be involved in subcortical aphasia.

It has been shown that subcortical stroke can lead to
structural changes in remote cortical regions. The role of remote
cortical changes in functional outcomes is controversial. Motor
functional recovery is related to gray matter volumes of cortical
regions (Dang et al., 2013), or cortical thickness measures (Lotan
et al., 2019) following subcortical stroke. Other studies have
showed remote cortical atrophy that determined by connectivity
to the primary lesion was not related to motor deficits after
subcortical stroke (Cheng et al., 2015; Liu et al., 2020). With
respect to aphasia, secondary cortical degeneration may result
from impairment of white matter tracts that are crucial for
reorganization after stroke (Duering et al., 2015). Integrity
of arcuate fasciculus and uncinate fasciculus can predict the
severity and recovery of subcortical aphasia (Noh et al., 2021;
Zhang et al., 2021). While great efforts have been devoted
to understanding the neural basis for subcortical aphasia, the
effects of subcortical stroke on cortical thickness and language
outcomes remain incompletely investigated. As the left fronto-
temporo-parietal (FTP) cortex is commonly implicated in
language processes. It might be expected that cortical regions
beyond the subcortical lesion may undergo atrophy due to
disconnection and have a negative impact on language outcomes
following subcortical stroke in the left hemisphere.

To text this hypothesis, we aimed to determine the potential
correlates of cortical thickness with language outcomes in
patients with chronic left subcortical stroke and aphasia. By
combining tractography with cortical thickness measures, we
further explored the possible relationships between cortical
thickness changes and integrity of fiber tracts connected to
subcortical lesions. We hypothesized that subcortical stroke
induced cortical thickness changes in connecting brain regions
and related to language outcomes at the chronic stage of
subcortical stroke.

Materials and methods

Participants

Thirty-two patients with chronic left subcortical stroke
(ischemic or hemorrhagic) and history of aphasia were recruited
with the following inclusion criteria: (i) Native Chinese speakers;
(ii) over 6 months after stroke; (iii) unilateral subcortical
lesion; (iv) ability to perform tests; and (v) absence of prior
diagnosis of neurological disease. Based on medical records, all
patients had aphasia at the time of stroke and received varied
types of speech–language rehabilitation. Thirty age-matched
healthy subjects with no history of neurological disease were
recruited in the study.

The study was approved by the Institutional Review Board
of the First Affiliated Hospital of Sun Yat-sen University, and
written informed consent was obtained from all participants
before enrollment in the study.

Language assessment

Language performance of all participants was assessed using
the Western Aphasia Battery-Revised (WAB-R) (Shewan and
Kertesz, 1980), which was translated into Chinese version.
The language assessment was administrated and scored by
two neurologists (S.H.F and H.J.T). The WAB-R includes
separate subtests that provide composite scores for spontaneous
speech, repetition, naming/word finding, and auditory-verbal
comprehension. The total of these composite scores is the
aphasia quotient, a measure of overall aphasia severity
ranging from 0 to 100.

Image acquisition

Image data were acquired on a Siemens 3T Trio scanner
with a 12-channel coil, and three-dimensional T1-weighted
structural images were acquired using the magnetization-
prepared rapid gradient-echo imaging sequence: TR (relaxation
time) = 1,900 ms; TE (echo time) = 2.56 ms; flip angle = 9◦;
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FIGURE 1

Lesion overlap map of patients with chronic subcortical stroke. Lesions from 32 patients were normalized to the MNI space. The n-value
denotes the number of patients with a lesion in each voxel (maximum 20 out of 32).

field of view (FOV) = 250 mm × 250 mm; 192 contiguous
1-mm sagittal slices; voxel size = 1 mm × 1 mm × 1 mm).
Diffusion-weighted images were acquired using the single-shot
echo-planar imaging sequence: TR = 8,700 ms; TE = 90 ms; flip
angle = 90◦; FOV = 240 mm × 240 mm; 64 3-mm sagittal slices;
voxel size = 2 mm × 2 mm × 3 mm; and 64 diffusion volumes
weighted with bmax = 1,100 s/mm2 and one volume with no
diffusion gradient (b0 = 0 s/mm2).

Data preprocessing

Structural data preprocessing
Subcortical stroke lesions were segmented on the T1-

weighted images in native space using MRIcron software1

and independently confirmed by two neurologists (S.H.F
and S.H.X). The raw lesion maps were then normalized
to the Montreal Neurological Institute (MNI) space so as
to allow direct comparisons across individuals, using the
enantiomorphic approach (Nachev et al., 2008) with minor
modifications by using the unified segmentation approach in
SPM12 with CAT12.2 The lesion overlap map is shown in
Figure 1.

Support vector regression-based lesion-symptom mapping
(SVR-LSM), a multivariate lesion-symptom mapping approach,
was employed to examine critical subcortical areas in the
left hemisphere in which damage relates to language
deficits as previously described (DeMarco and Turkeltaub,
2018). SVR-LSM analyses were performed for spontaneous
speech, naming/word finding, repetition and auditory-verbal
comprehension, respectively. Only voxels damaged in at least
10% of patients were included in the analysis. Probabilistic maps
created using 10,000 permutations of the behavioral scores were

1 https://www.nitrc.org/projects/mricron

2 http://www.neuro.uni-jena.de/cat/

thresholded at a voxel-level of P < 0.005 and cluster-level of
P < 0.05.

The structural MRI data were preprocessed using the
automated surface-based analysis package FreeSurfer (version
7.1.13) with standard procedures and parameters. Cortical
thickness measures by FreeSurfer software have been confirmed
by histological and manual measurements (Fischl et al., 2004).
The semiautomatic processes included motion correction,
intensity normalization, non-linear registration, white and
gray matter segmentation, and surface mesh representation of
the cortex. All images were visually inspected, and cortical
segmentations were manually corrected if necessary. Cortical
thickness maps were registered to the FreeSurfer surface
template (fsaverage) and smoothed with a full-width half
maximum Gaussian kernel of 15 mm.

Diffusion data preprocessing
Diffusion-weighted images were preprocessed following the

standard protocols using the FMRIB software library (FSL4).
The main procedure included the following steps: skull removal
with the brain extraction tool, correction for head motion
and eddy current distortions using FMRIB’s Diffusion Toolbox,
building diffusion tensor models, and calculation of fractional
anisotropy (FA) maps using the diffusion tensor imaging
fractional intensity threshold (DTIFIT) tools.

White matter connectivity reconstruction
For fiber tracking, the cortical regions that exhibited

association with language outcomes were transformed back to
the native DWI space, and the transformed cortical regions
and lesion mask in native space were defined as paired regions
of interest (ROIs). To reconstruct the fiber tracts in the
contralesional hemisphere, we defined homologous ROIs in the
contralateral hemisphere based on the mirrored stroke lesion

3 http://surfer.nmr.mgh.harvard.edu

4 http://www.fmrib.ox.ac.uk/fsl/
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and cortical regions for each patient. The representative ROIs
in subject native space are shown in Supplementary Figure 1.
Connections between the lesion and cortical ROIs or their
mirrored homologs were reconstructed using the probabilistic
tracking of crossing fibers (probtrackx) and Bayesian estimation
of diffusion parameters (bedpostx) algorithms implemented in
FSL as previously described (Smith et al., 2004; Behrens et al.,
2007). Briefly, fiber tracking was conducted using subcortical
lesion as seed and cortical regions as target in native space
of individual patient. From each mask voxel, 5,000 streamline
samples with a step length of 0.5 mm and a curvature threshold
of 0.2 were generated to map the probabilistic connection
pattern. The tract density map was obtained by dividing
by the total number of streamline samples. Fiber tracking
was performed in both directions from seed to target and
backward, and the connection maps were averaged. The final
tract density map was obtained by dividing by the total number
of streamlined samples, and then thresholded at 1% to exclude
spurious connections as suggested in the previous studies
(Duering et al., 2012; Cheng et al., 2015, 2020; Xing et al.,
2018). Thereafter, FA values of reconstructed connections were
extracted for individual patients. For visual inspection, the
resultant tracts were normalized to the MNI space to show the
connections within each voxel of the tract across patients with
the non-linear parameters using the FNIRT tool in FSL.

Statistical analysis

To determine cortical thickness association with language
measures, cortical thickness maps were entered into separate
multiple regression analyses using spontaneous speech,
naming/word finding, repetition, and auditory-verbal

comprehension as explanatory variables controlling for key
demographic factors and lesion size as confounding variables.
Multiple comparisons were corrected at a voxel-wise threshold
of p < 0.005 and a cluster-wise level of p < 0.05, as empirically
determined by Monte Carlo Simulation.

To clarify how the nuisance covariates included in the
cortical thickness analysis contributed to language outcomes
with and without cortical thickness measure in the model,
the variables were further introduced into separate hierarchical
linear regression with language outcomes as the dependent
variables. Separate univariate analyses were performed to
address group differences in mean cortical thickness in each
identified cluster between patients and healthy subjects by
controlling for the above demographic variables. Paired t-tests
were conducted to compare white matter measures between the
left and right hemispheres. Further, partial correlation analyses
were performed to explore the relationships between cortical
thickness in each cluster and mean FA values of the tracts
connecting stroke lesions and cortical clusters by excluding the
indicated demographic variables and lesion size. These analyses
were performed using SPSS (version 22).

Results

Demographic details and language
scores

The present study included 32 patients with subcortical
stroke (24 infarcts and 8 hemorrhages) and 30 healthy control
subjects. The demographic details and language scores of
participants are shown in Table 1 and Supplementary Table 1.
There were no significant differences in age, gender, educational

TABLE 1 Demographic details and language performance in patients and healthy subjects.

Patient group Control group Statistics P-value
(n = 32) (n = 30)

Demographic variable

Age (years) 52.41 (13.23) 51.93 (12.98) t(60) = 0.142 0.89

Gender (M/F) 21/11 19/11 χ2(1) = 0.04 0.85

Education (years) 10.81 (4.14) 11.70 (4.04) t(60) = −0.85 0.40

Handedness (LQ) 84.66 (32.72) 85.33 (25.16) t(62) = −0.09 0.93

Time post stroke (months) 24.72 (22.01) – – –

Lesion size (cm3) 2.599 (2.14) – – –

Language assessment*

Naming/word-finding 8.29 (1.82) 9.66 (0.36) F(1, 56) = 18.31¶ 0.000

Auditory-verbal comprehension 9.47 (0.75) 9.92 (0.11) F(1, 56) = 10.34¶ 0.002

Repetition 9.68 (0.95) 9.98 (0.07) F(1, 56) = 2.17¶ 0.146

Spontaneous speech 18.41 (2.72) 19.91 (0.30) F(1, 56) = 8.87¶ 0.004

Parenthesis shows standard deviations. M, male; F, female; LQ, laterality quotient. n, number of subjects.
*Western Aphasia Battery-Revised subtests.
¶Factoring out age, gender, education level and handedness.
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level, or handedness between patients and healthy subjects (all
p > 0.05). The mean time from stroke onset was 14.94 months
(interquartile range = 7.8–35.7 months), and the mean lesion
volume was 6.74 cm3 (interquartile range = 3.5–13.3 cm3).
Among all patients, 26 suffered from aphasia and 6 patients
were fully recovered. In aphasic patients, 25 (78%) were
anomic aphasia. Significant differences were observed in the
outcomes of naming/word finding [F(1, 56) = 18.31, p < 0.001],
spontaneous speech [F(1, 56) = 8.87, p = 0.004] and auditory-
verbal comprehension [F(1, 56) = 10.34, p = 0.002], but not
repetition [F(1, 56) = 2.17, p = 0.146] in patients compared with
healthy subjects when controlling for age, gender, educational
level, and handedness.

Identification of critical areas related to
language outcomes

We explored the potential associations of subcortical lesion
location with different language scores by SVR-LSM. The results
showed that no subcortical region in the left hemisphere in
which damage relates to language scores was identified across
patients (Data are not shown).

Next, separate regression analyses were performed to
identify cortical thickness changes related to language scores by
factoring out confounding variables. The correlation analysis
showed education and lesion size significantly related to
language outcomes (see Supplementary Table 2). Considering
the possible impacts of age and time from stroke onset on
cerebral volume (Nitkunan et al., 2011; Walhovd et al., 2011;
Brodtmann et al., 2012; Takao et al., 2012), we included age,
education level, time from stroke onset and lesion size as the
key nuisances in the separate regression model. The results
showed that cortical thickness in the left inferior parietal cortex
and the posterior superior temporal gyrus was positively related
to the auditory-verbal comprehension score (Figure 2Aa and
Table 2). In contrast, cortical thickness in the left medial/lateral
orbitofrontal gyrus was positively related to spontaneous speech
outcome (Figure 2Ba and Table 2). As for naming ability,
cortical thickness in the left inferior precentral gyrus, pars
orbitalis, and left posterior cingulum was positively related to
the naming/word finding score (Figures 2Ca,Cd and Table 2).
In addition, cortical thickness in the right lateral orbitofrontal
cortex, pars orbitalis, and pars triangularis was positively related
to naming/word finding performance (Figure 2Da and Table 2).
No negative relationships were found between cortical thickness
and language performance.

To clarify the relationships between aphasia outcomes,
cortical thickness measures, and confounding factors included
in the above cortical thickness analyses, we next performed
separate hierarchical regressions using the language scores as
dependent variables. Age, education level, time from stroke
onset and lesion size were entered first, followed by cortical

thickness measures. When cortical thickness measure was
excluded, the hierarchical regression analyses showed that only
lesion size significantly predicted the abilities of auditory-
verbal comprehension [t(27) = −4.11, p < 0.001], spontaneous
speech [t(27) = −2.79, p = 0.010], and naming/word finding
[t(26) = −3.56, p = 0.001]. When cortical thickness measure
was added to the models, cortical thickness in the respective left
hemisphere clusters was the only significant predictor for the
corresponding language scores (auditory-verbal comprehension
cluster: R2 change = 0.214, p < 0.001; spontaneous speech
cluster: R2 change = 0.258, p < 0.001; naming/word finding
cluster 1: R2 change = 0.171, p = 0.001 and cluster 2: R2

change = 0.065, p = 0.024). For naming, when cortical thickness
measures in the clusters were all entered to the model, only the
right hemisphere cluster was a significant predictor [t(24) = 2.20,
p = 0.001]. Residual plots of the relationships between cortical
thickness in the identified clusters and language performance
scores are shown in Figures 2Ab–Cb,Ce,Db.

Cortical thickness differences in
patients compared with healthy
subjects

Mean cortical thickness in the identified clusters was
compared between aphasic patients and healthy subjects by
factoring out age, gender, educational level, and handedness.
Mean cortical thickness was significantly lower in patients than
in healthy subjects in the left hemisphere clusters related to the
outcomes of auditory-verbal comprehension [F(1, 56) = 5.13,
p = 0.027; Figure 2Ac] and spontaneous speech [F(1, 56) = 5.47,
p = 0.023; Figure 2Bc]. For naming/word finding, mean
cortical thickness was significantly lower in patients than in
healthy subjects in the left hemisphere clusters [cluster 1:
F(1, 56) = 18.49, p < 0.001; cluster 2: F(1, 56) = 7.31,
p = 0.009; Figures 2Cc,f]. In contrast, no significant difference
was observed between groups in the mean cortical thickness
in the right hemisphere cluster [F(1, 56) = 0.06, p = 0.804;
Figure 2Dc].

Correlation of connecting tract
integrity with cortical thickness in
patients

White matter tracts connecting stroke lesion to the
identified cortical regions and the mirrored homologous
tracts were successfully reconstructed for all patients. The
representative fiber tracts in a common space across patients
are showed in Figures 3Aa–Da. To determine the potential
correlates between cortical thickness in the identified regions
with integrity of the reconstructed tracts, separate hierarchical
regression analyses were performed with cortical thickness in
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FIGURE 2

Cortical thickness in brain regions related to language outcomes. Surface representation of the significant clusters of cortical thickness related
to the auditory-verbal comprehension score in the left inferior parietal cortex and superior temporal gyrus (Aa), the spontaneous speech score
in the left orbitofrontal gyrus (Ba), and the naming/word finding score in the left inferior precentral gyrus (Ca), left posterior cingulate gyrus
(Cd), and right orbitofrontal gyrus (Da). All analyses were performed by controlling for demographic variables and lesion size, and corrected at a
voxel-wise threshold of P < 0.005 and a cluster-wise level of P < 0.05, determined by Monte Carlo Simulation. (Ab–Cb,Ce,Db) Scatter plot
showing partial regression using language scores as dependent variables and cortical thickness (CT) of clusters as independent factors by
controlling for the above key variables (all P < 0.001). (Ac–Cc,Cf,Dc) Cortical thickness changes in each identified cluster in patients relative to
controls factoring out demographic variables.
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TABLE 2 Clusters of cortical thickness related to language performance in patients.

Tests Cluster size
(mm2)

Pmax Talairach coordinates (mm) Anatomical regions

x y z

Multiple regression, Auditory-Verbal Comprehension as predictor (nuisance variables*)

LH 803.25 0.009 –40.4 –66.1 35.3 Inferior Parietal Gyrus extending to

Posterior Superior Temporal Gyrus

Multiple regression, Spontaneous Speech as predictor (nuisance variables*)

LH 907.41 0.004 –6.2 54.3 –16.5 Medial Orbitofrontal Gyrus extending to

Lateral Orbitofrontal Gyrus

Multiple regression, naming/word-finding as predictor (nuisance variables*)

LH 659.04 0.029 –37.6 2.9 24.4 Inferior Precentral Gyrus extending to

Pars Opercularis Gyrus

641.38 0.032 –11.8 –18.6 37.4 Posterior Cingulate Gyrus

RH 576.24 0.045 41.5 30.5 –12.6 Lateral Orbitofrontal Gyrus extending to
Pars Orbitalis and Triangularis

Significant clusters in each hemisphere are presented (corrected at vertex-wise P < 0.005 and cluster-wise P < 0.05). LH, left hemisphere; RH, right hemisphere.
*Nuisance variables include age, education level, time post stroke and lesion size.

each cluster as a dependent variable. The demographic variables,
lesion size and FA values of connecting tracts were added to the
models as independent factors. The results showed that mean
FA values of the left hemisphere tracts were positively related
to cortical thickness in the left hemisphere clusters related
to the scores of auditory-verbal comprehension [t(24) = 2.59,
p = 0.016], spontaneous speech [t(24) = 2.58, p = 0.017],
and naming/word finding [cluster 1: t(24) = 2.80, p = 0.010;
cluster 2: t(24) = 2.74, p = 0.011]. Residual plots of the
relationships between cortical thickness in the identified clusters
and language performance scores are shown in Figures 3Ab–
Db. No significant relationships were found between cortical
thickness in the right hemisphere cluster for naming/word
finding and lesion size or the interhemispheric tracts connecting
to lesions (both p > 0.20). In addition, mean FA value of each
tract was significantly lower in the left hemisphere than in the
right hemisphere homolog [t(31) = −5.49 ∼ –7.17, all p< 0.001]
(Figures 3Ac–Dc).

Comparisons of cortical thickness in
subgroups with different perfusion
status

To explore the impacts of perfusion status on cortical
thickness, we further compared the differences in cortical
thickness between patients without hypoperfusion (NHP) and
with HP according to perfusion computer tomography or
perfusion weighted images at stroke onset. Female patients were
more [χ2(1) = 4.50, p = 0.03] and the lesion size was larger in the
HP group than in the NHP group [t(30) = −2.12, p = 0.04]. No
significant difference was detected for language performance (all
p > 0.80) (see Supplementary Table 3). When controlling for

demographic variables and lesion size, a reduction of cortical
thickness was identified in the right cuneus regions (cluster
size = 1177.58 mm2; coordinates: x = 5.6, y = −67.7, z = 14.0;
p = 0.0002) in the HP group relative to the NHP group. There
was no significant difference in the left hemisphere between the
two subgroups (Figure 4). A post hoc analysis was performed to
compare cortical thickness in each cluster identified as above to
relate to language performance by controlling for key variables.
The results showed that the mean cortical thickness of the
individual clusters was not different between the two subgroups
(all p > 0.11).

Discussion

We found that cortical thickness changes in the left
FTP regions were associated with language comprehension
and production outcomes independent of inter-individual
variability. Cortical thickness in the left FTP regions was
lower in stroke patients with aphasia than in healthy subjects.
Additionally, the cortical thinning was related to loss of
microstructural integrity in fiber tracts connecting stroke
lesions to cortical regions. Together, these findings suggest
that remote secondary effects of subcortical stroke on the
connecting cortical regions relate to language outcomes in
chronic subcortical stroke.

Associations of cortical thickness with
subcortical aphasia outcomes

We found relationships between declined cortical thickness
and subcortical aphasia outcomes by covarying key confounding
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FIGURE 3

Integrity of white matter tracts related to cortical thickness in connecting brain regions. (Aa–Da) Reconstruction of fiber tracts connecting
stroke lesions to cortical regions of interest (red) and the corresponding fiber tracts with mirrored stroke lesions and cortical regions related to
language performance. Violet–red indicates the left hemisphere tracts and red–yellow indicates the mirrored tracts. All fiber tracking was
thresholded at 1% of overall connectivity. (Ab–Db) Partial correlations between mean fractional anisotropy (FA) values of left fiber tracts and the
corresponding cortical thickness measures when controlling for demographic variables and lesion size. (Ac–Dc) Paired comparisons of mean
FA values of the left fiber tracts relative to their mirrored tracts (all P < 0.001).

variables. Specifically, auditory-verbal comprehension was
predicted by cortical thickness in the left temporoparietal
regions including the posterior temporal gyrus and inferior
parietal cortex. It has been clarified that verbal comprehension
relies on cortex considerably beyond the traditional location

of Wernicke’s area in the posterior temporal gyrus (Turken
and Dronkers, 2011; DeWitt and Rauschecker, 2012). Previous
studies have suggested that the left inferior parietal cortex,
especially the angular gyrus, is an essential area for speech
comprehension as well as production (Mesulam, 1998; Vigneau
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FIGURE 4

Comparisons of cortical thickness in patients with different
perfusion status at stroke onset. Surface representation of mean
cortical thickness for hemispheres in subgroups without
hypoperfusion (A) and with hypoperfusion (B). Color bar
indicates cortical thickness changes in millimeter.
(C) Representation of the statistically significant clusters
showing a decline in cortical thickness in the right cuneus
(cluster size = 1177.58 mm2; coordinates: x = 5.6, y = −67.7,
z = 14.0; P = 0.0002, corrected for multiple comparisons), when
controlling for demographic variables and lesion size.

et al., 2006). In contrast, Hickok and Poeppel (2007) proposed
a model of the anatomy of language that excludes the angular
gyrus from speech comprehension and production. However,
it has been included by more recent studies (Lau et al., 2008;
Hartwigsen et al., 2015). With respect to speech production,
we found that declined thickness in the left orbitofrontal
lobe negatively predicted speech outcome following chronic
subcortical stroke. To support this, the PET study in healthy
subjects has showed that activity in response to speech
production to be localized in the left lateral and medial
orbitofrontal cortex (Awad et al., 2007). Additionally, our results
showed that reductions of thickness in the left inferior precentral
gyrus/pars opercularis gyrus and posterior cingulate were
strongly predictive of naming outcome. To support this, the left
precentral cortex and inferior frontal gyrus are demonstrated
to associate with action naming and the phonology component
during object naming (Schwartz et al., 2012). Our results
also accord with the observations in the previous study that
increased activation could be observed within the left posterior
cingulate area in healthy subjects during a picture identification
task (Szaflarski et al., 2011).

Homotopic regions are traditionally thought to hinder
language recovery by transcallosal disinhibition of the lesioned
hemisphere (Belin et al., 1996; Blank et al., 2003; Naeser
et al., 2005; Winhuisen et al., 2005). However, recent studies
reveal beneficial effects of language homologs in the right
hemisphere to post-stroke language recovery (Xing et al., 2016;
Hope et al., 2017). Similarly, we found cortical thickness
of the right lateral orbitofrontal cortex to be also related
to naming outcome. This finding is further supported by
a previous study in which damage to the right prefrontal
cortex impaired the language ability of choosing appropriate
words (Taubner et al., 1999). However, cortical thickness
in the right hemisphere regions showed no considerable
difference relative to controls and was neither related to
lesion size nor integrity of connecting fiber tracts in the
present study. This likely reflects premorbid inter-individual
differences in the right hemisphere regions that protect from
language deficits after left subcortical stroke. Patients with
greater premorbid cortical thickness in the right hemisphere
might have better recovery of language deficits after left
subcortical stroke.

Correlates of connecting tract integrity
with cortical thickness in subcortical
stroke

The current study demonstrated that there was a significant
reduction of cortical thickness in the left hemisphere regions
that related to language outcomes among patients as compared
to the control subjects. These results might be indicative of
secondary cortical atrophy in regions remote from stroke
lesions as indicated in previous studies (Zhang et al., 2014).
However, the exact mechanisms for structural impairment of
the remote cortex remain unclear. It is assumed that fiber
disconnection may account for this finding. By combining
structural measurements with tractography, we found positive
relationships between cortical thickness in the identified cortex
and microstructural integrity of the connecting fiber tracts to
subcortical lesions, but no significant correlation was seen the
contralateral homologous tracts. Moreover, there was marked
reductions of FA values in the tracts of lesional hemisphere
relative to their contralateral homologs. These results might
be reflective of secondary cortical effects of connecting fibers
disruption after chronic subcortical stroke, as proposed by
the diaschisis theory (Duering et al., 2012). Supporting this,
previous studies have shown that focal cerebral infarction
can induce progressive neuronal damage in the ipsilateral
thalamus and substantia nigra remote from the lesion site
(Nakane et al., 1992; Herve et al., 2005). Our results are also
consistent with the findings of several longitudinal studies
showing reduced thickness in the connecting cortical regions
as a resultant of acute subcortical stroke (Cheng et al., 2015;
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Duering et al., 2015) or cortical remodeling in the bilateral
hemisphere after basal ganglia infarction over several months
(Liu et al., 2020). Additionally, retrograde neural degeneration
of the retinal nerve fiber has been demonstrated among
patients with occipital lobe stroke (Jindahra et al., 2012). Given
the reconstructed tracts represent the anatomical connections
between cortex and stroke lesions, these data implicate a
possible link between subcortical aphasic stroke and ability
to engage remote cortex in language processing secondary to
fiber degeneration. Nevertheless, the casual effects of white
matter disconnection on remote cortical atrophy cannot be
determined from our results. The pathological mechanisms
underlying the damage of connecting tracts are unclear. It
might include retrograde or anterograde degeneration, dendrite
shrinkage, and neuronal apoptosis because of loss of synaptic
input (Siffrin et al., 2010).

Alternatively, acute subcortical aphasia might be resultant
of concurrent cortical HP (Olsen et al., 1986; Wallesch et al.,
1997). SPECT and perfusion weighted imaging measures
revealed that focal lesion could cause remote cortical HP and
hypometabolism (Carrera and Tononi, 2014). No significant
differences in language scores were found between the two
subgroups when controlling for key variables in the present
study. In addition, the cortical thickness analysis showed no
deference in cortical thickness of the left hemisphere in patients
with HP relative to those with normal perfusion. This suggests
that atrophy in the connected cortex was not driven by HP.
However, cortical hypometabolism is also suggested in cases
with subcortical aphasia (Halkar et al., 1997; de Boissezon
et al., 2005; Sebastian et al., 2014). Additionally, specific
cortical-subcortical circuits have been suggested to associate
with language processing (Teichmann et al., 2015; Akinina
et al., 2019; Jacquemot and Bachoud-Lévi, 2021). Thus, multiple
neural mechanisms might contribute to aphasia outcomes after
chronic subcortical stroke.

Limitations

There are several limitations in the present study. First,
this is a cross-sectional investigation that might preclude
the empirical evidence of remote cortical atrophy mediated
by neurodegeneration of the connecting fiber tracts. Further
longitudinal study is expected to confirm the present findings
by providing the dynamics of secondary neurodegeneration in
remote cortical regions. Secondly, the DTI findings should be
interpreted with caution. The extracellular volume effects of
free water have been proposed to contaminate and invalidate
DTI metrics (Pierpaoli et al., 1996; Pasternak et al., 2009).
Additionally, it has been suggested that free-water correction
would improve DTI-based tract reconstruction and tissue
specificity (Metzler-Baddeley et al., 2012; Hoy et al., 2014;
Guder et al., 2021). Considering the fact that atrophy and
neuroinflammation can still be observed even several months

after stroke, free-water correction will strengthen the reliability
of DTI analysis especially in stroke patients. Thirdly, the
number of patients with different perfusion status was relatively
small in the subgroup analyses, which also restricted the
generalization of the conclusions. Further study is need to
confirm the present findings with a larger sample of populations.
Fourthly, speech therapy experience across patients might
drive recruitment of cerebral cortex capable of supporting
language function, thereby affects the language outcome.
However, the type and dose of speech therapy are not easily
quantifiable as a confounding factor in the current regression
analyses. Nevertheless, our results are not likely driven by
a specific language therapy because the nature and quantity
of speech therapy varies between individuals. Lastly, the lack
of targeted therapeutic intervention, such as the restoration
of cerebral perfusion, was a limitation of the study. Direct
intervention of cerebral flow should permit inferences on the
HP effects on cortical thickness changes or language outcomes
as previously reported (Hillis et al., 2002). Notably, our
results were obtained by using FreeSurfer software that could
detect changes in cortical thickness at the submillimeter scale.
Additionally, the present study demonstrates the feasibility
of investigating the neural base for subcortical aphasia
with a combination of surface-based thickness analysis with
connecting fiber tracking.

Conclusion

Our data provide direct evidence that cortical thickness
in the left FTP regions is correlated with language outcomes
in patients with chronic subcortical stroke and aphasia. The
loss of microstructural integrity in connecting fiber tracts to
stroke lesions might serve as the underlying mechanism for
remote cortical atrophy in subcortical aphasia. These findings
will improve the understanding of cerebral reorganization and
language recovery after chronic subcortical stroke.
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