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Brief summary: We developed a model to estimate separately the time-varying 

reproductive number (Rt) for local cases and imported cases, accounting for imperfect 

contact tracing of cases, and potential different infectiousness among local and 

imported cases. 
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ABSTRACT 

Estimating the time-varying reproductive number, Rt, is critical for monitoring 

transmissibility of an infectious disease. The impact of imported cases on the 

estimation is rarely explored. We developed a model to estimate separately the 

Rt for local cases and imported cases, with accounting for imperfect contact 

tracing of cases. We applied this framework to data on COVID-19 outbreaks in 

Hong Kong. The estimated Rt for local cases rise above 1 in late March, 2020, 

which was undetected by other commonly used methods. When imported cases 

accounted for a considerable proportion of all cases, their impact on estimating 

Rt is critical.  
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INTRODUCTION 

During an emerging infectious disease outbreak, such as COVID-19, monitoring 

transmissibility is important for guiding the implementation of public health 

measures and providing situational awareness on the effectiveness of 

interventions [1-3]. This can be achieved by estimating the time-varying 

reproductive number, Rt, a measure of transmissibility of the virus over time. A 

wide range of methods have been proposed [3-9], especially during the period of 

COVID-19 outbreak when reliable methods are needed. However, the impact of 

imported cases on estimation of Rt is rarely explored [5].  

 

Imported cases have not been infected locally, but could potentially generate 

local transmissions. The impact of imported cases on estimation of Rt would be 

limited when an epidemic is largely driven by infections occurring locally. 

However, imported cases can play a more important role in the early stages of an 

epidemic with few local infections, or when local transmission is being 

suppressed by public health measures. Some studies attempted to use 

information on imported cases to improve estimates of transmission [5, 10]. In 

particular, a study [5] proposed a modification by assuming the same 

infectiousness among imported and local cases, such modification may not be 

accurate when there are specific interventions targeting imported cases, such as 

quarantine for inbound travelers [11].  

 

In some regions with effective contact tracing of cases such as Hong Kong [12], 

the source of infection could be determined for the majority of local cases, which 

provides sufficient information to estimate the transmissibility of both local 

cases and imported cases. However, contact tracing in reality would be imperfect 

and some local cases would be classified as unlinked local cases with no apparent 

source of infection. Accounting them in estimation of Rt would be critical to have 

unbiased estimates. 

 

To investigate the impact of imported cases on estimation of transmission, we 

extend the framework in Cori et al [4] to estimate the Rt  for local cases and 

imported cases separately. We develop an inference approach to estimate the Rt 

for local cases and imported cases, while accounting for the unlinked local cases. 

We used the first four months of COVID-19 outbreaks in Hong Kong to illustrate 

how the use of inappropriate methods to estimate Rt would lead to a biased 

assessment of transmissibility. We also used a simulation approach to determine 

the impact of unlinked local cases on our estimation approach. 
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METHODS 

Sources of Data 

COVID-19 has been a notifiable disease in Hong Kong since 8 January 2020. Data 

on laboratory-confirmed COVID-19 cases were obtained from the webpage of 

Centre for Health Protection. Cases are classified as “imported cases”, “local cases 

epidemiologically linked with imported cases”, “unlinked local cases” and local 

cases epidemiologically linked with local cases” according to their 

epidemiological characteristics and location of infection [12]. 

 

Statistical analysis 

We examined different methods to handle imported cases in the estimation of Rt.. 

First, when imported cases were falsely assumed as local cases, Rt. could be 

estimated in the model described by Cori et al. [4]. In this approach, Rt was the 

ratio between the number of new cases at time t and the total infectiousness of 

cases at time t, given by ∑       
   
   , where It was the number of new cases at 

time t and wt was the probability distribution of infectiousness since infection. 

Second, assuming equal infectiousness for imported cases and local cases [5], the 

total infectiousness of cases could be represented by ∑ (    
         

   

    
        )  , where     

      and     
         were the numbers of new local and new 

imported cases at time t-s, in the above model, to estimate Rt. 

 

To account for the different infectiousness of local cases and imported cases due 

to travel-related measures [13], we extend above framework [4] to separately 

estimate Rt of local cases and imported cases. In this framework, Rt for imported 

cases was the ratio of the number of new local cases infected by imported cases 

at time t and the total infectiousness of imported case at time t, given by 

∑     
          

   
   . The Rt for local cases could be calculated by using the same 

approach (Appendix). 

 

However, some cases are classified as unlinked local cases due to imperfect 

contact tracing, which can be infected from either local and imported cases.  

Therefore, our inference was based on a Bayesian framework and we developed 

a data-augmented Markov chain Monte Carlo algorithm to jointly estimate the 

model parameters, the probability of a local case with missing epidemiological 

link (pmiss), and the number of new unlinked cases that were actually linked with 

local and imported cases for each day (Appendix).  

 

We applied this framework to the first four months of COVID-19 outbreak in 

Hong Kong. We could only observe epidemic curve by confirmation date but not 
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by infection date. However, given the potential for pre-symptomatic 

infectiousness of COVID-19 [14], it was critical to conduct analysis on epidemic 

curve by infection date (unobserved). Therefore, we used a deconvolution 

approach to reconstruct the epidemic curve by infection date from the epidemic 

curve by confirmation date, with the distribution of delay from infection to 

confirmation (Appendix).  We also conducted sensitivity analyses using another 

deconvolution approach, and using different prior in estimation (Appendix). The 

probability distribution of infectiousness since infection    was a convolution of 

incubation period and the infectiousness relative to onset (allowed to be pre-

symptomatic) based on viral shedding data [15]. Imported cases would not cause 

transmission prior to arrival, hence their infectiousness profile were adjusted 

(Appendix). To account for the uncertainty of input parameters such as 

incubation period distribution, we used an bootstrap approach (Appendix). We 

compared the estimates of Rt from the alternative methods. All analyses were 

conducted in R version 4.0.5 (R Foundation for Statistical Computing, Vienna, 

Austria). 

 

Simulation study 

We validated our approach and explored the impact of pmiss on our approach. We 

tested our approach for different scenarios, representing the impact on Rt from 

different interventions. For each scenario, we conducted simulations with 

different value of pmiss, to determine their impact on the robustness of our 

approach (Appendix). 

 

RESULTS 

From 23 January to 8 May 2020, there were 719 imported cases and 326 local 

cases detected in Hong Kong. Among the 326 local cases, there were 62 (19%),  

191 (59%) and 73 (22%) cases epidemiologically linked with imported cases, 

with local cases, and not epidemiologically linked respectively (Figure 1A).  

  

Based on our approach, we estimated that the surge in local case numbers 

corresponded to an estimated Rt for local cases greater than one during March 

12 to 26, which was the period before public health measures were tightened 

(Figure 1B). During the period with public health measures implemented in the 

community, the estimated Rt for local cases was decreasing. The estimated Rt for 

imported cases were well below one even with there were more than 10 

imported cases identified every day during early March (Figure 1C), when a 14-

day quarantine was required for inbound travelers. We estimated that pmiss was 

0.30 (95% credible interval (CrI): 0.24, 0.37). The estimated Rt  was similar when 
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using another deconvolution approach to estimate infection time series (Figure 

S1), or when using a different prior (Figure S2). 

 

We explored two alternative approaches to account for imported cases when 

estimating Rt, in which simulation studies suggested that they could be biased. In 

both estimations assuming the same infectiousness for local cases and imported 

cases (Figure 2A) [5], and assuming all cases were local cases (Figure 2B) [4], the 

observed local outbreaks in mid-March were missed.  

 

Results with 200 simulated epidemics in each scenario suggested that our 

approach could provide unbiased estimate of Rt for local cases and imported 

cases in different scenarios when Rt  is a constant (Scenario 1, 3) or moving from 

a constant to another constant (Scenario 2,4 and 5), to representing the impact of 

interventions, when pmiss  0.5 (Figure S3-S5). However, when pmiss  0.6, the 

estimated Rt was biased (Figure S6-7), due to insufficient information to estimate 

the source of unlinked local cases. There was a lag period for the estimated Rt to 

converge to its true value when Rt was moving from a constant to another 

constant. In the scenarios that Rt  has stepwise changes frequently, when pmiss  

0.5, the estimated Rt  would converge to its true value after the lag period (Figure 

S8). In the scenarios that Rt  changed gradually, our approach could still provide 

the correct directions with a lag, but the exact value could be biased (Figure S9). 

Simulation suggested that assuming equal infectiousness would underestimate 

the Rt, (Figure S10) while assuming all cases were local would overestimate the 

Rt, during the early phase of outbreaks (Figure S11). 

 

DISCUSSIONS 

In this study, we extended the current framework for estimation of Rt to account 

for differential transmission from imported cases, which can separately estimate 

the Rt for local cases and imported cases. When control measures were targeting 

imported cases, our framework could estimate a lower Rt for imported cases. 

Also, since there would be a fraction of cases with no apparent source of 

infection due to imperfect contact tracing in reality, the developed estimation 

approach would account for this by jointly estimating the model parameters and 

the number of unlinked local cases that were linked with local cases or imported 

cases for each day during the outbreak. 

 

We compared the extended framework with the current two approaches, namely 

assuming all cases were local cases, or assuming equal infectiousness for 

imported cases and local cases [5]. These two approaches would have little 

impact on measuring transmissibility in the community when the epidemic was 

largely driven by local transmissions, but would bias the estimated Rt in 
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measuring transmissibility in the community, when the number of local cases 

and imported cases were comparable. In particular, assuming all cases were local 

cases would overestimate the number of local transmissions as imported cases 

could not be infected locally. This would likely happen in the importation phase 

of a novel infectious disease outbreak, since local outbreaks would follow the 

importations, as illustrated by the outbreaks in Hong Kong. 

 

This was improved by assuming equal infectiousness of local and imported cases 

[5], but might not be applicable if there were targeted control measures for 

inbound travelers. Once a novel infectious disease was identified, control 

measures targeting inbound travelers would likely to be implemented to prevent 

spillover to the local population, such as early March, 2020 in Hong Kong [12]. 

The local outbreak in late March for Hong Kong would be undetected (Rt < 1) if 

equal infectiousness for local and imported cases was falsely assumed. 

 

Given that pre-symptomatic transmission was substantial for COVID-19, using 

serial intervals as a proxy of infectiousness profile would be inappropriate [4]. 

Hence, we used a deconvolution approach to infer the epidemic curve by 

infection date from the observed epidemic curve by confirmation date, using 

estimated infectiousness profile since infection [15]. Misspecification of the 

infectiousness profile since infection, or using a wrong approach to obtain the 

epidemic curve by infection dates such as back-shifting based on the delay 

distribution would bias the estimated Rt [16].  

 

Our study has some limitations. First, we did not account for under-reporting 

such as mild or asymptomatic cases. Also, testing availability and criteria would 

also be likely changing over time. If the proportion of undetected cases were 

constant over the epidemic, the Rt would still be unbiased [16]. Further 

investigation would be necessary to develop methods to account for the 

changing proportion of undetected cases. Secondly, we assumed perfect 

classification of cases, but misspecification of the source of infection could affect 

the estimates (Appendix). Finally, rapid changes in the parameters could affect 

the estimated Rt, such as the sudden change for the delay distribution from 

infection to confirmation caused by overwhelmed healthcare systems. 

 

In conclusion, we developed a methodology to estimate separately the Rt for 

transmissions associated with local and imported infections, accounting for the 

potential different infectiousness due to control measures, and imperfect contact 

tracing in reality. Accurate estimation of Rt allows situational awareness of 

transmission and better infection control in the community. 
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FIGURE LEGENDS 

Figure 1. Epidemic curve of the COVID-19 transmission in Hong Kong from 

January through May 2020 (Panel A) and the estimated time-varying 

reproductive number for local cases (Panel B) and imported cases (Panel C). The 

blue-, green- and red-shaded area indicate the periods for civil servant special 

work arrangement, additional social distancing measures, and the 14-day 

mandatory quarantine for arriving persons, respectively. In panel B and C, the 

black lines represented the point estimate, and the black-shaded areas indicate 

the 95% credible intervals. 

 

Figure 2. Comparison of estimation of time-varying reproductive numbers using 

our proposed framework, with alternative approaches that assuming equal 

infectiousness for local cases and imported cases (Panel A), or assuming all cases 

were local cases in the analysis (Panel B). The blue-, green-shaded area indicated 

the period for civil servant special work arrangement and additional social 

distancing measure respectively. In panel A and B, the black lines represent the 

point estimates, and the black-shaded areas indicate the 95% credible intervals, 

from our proposed method. In panel A, the blue solid and dashed line represent 

the point estimates, and the black-shaded areas indicate the 95% credible 

intervals from the method assuming the same infectiousness of local and 

imported cases. In panel B, the red solid and dashed line represent the point 

estimates, and the black-shaded areas indicate the 95% credible intervals from 

the method assuming all cases were local cases. 
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Figure 1 
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Figure 2 

 


