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Abstract

Background and purpose

An early and accurate diagnosis of Dementia with Lewy bodies (DLB) is critical because

treatments and prognosis of DLB are different from Alzheimer’s disease (AD). This study

was carried out in Japan to validate an Electroencephalography (EEG)-derived machine

learning algorithm for discriminating DLB from AD which developed based on a database of

EEG records from two different European countries.

Methods

In a prospective multicenter study, patients with probable DLB or with probable AD were

enrolled in a 1:1 ratio. A continuous EEG segment of 150 seconds was recorded, and the

EEG data was processed using MC-004, the EEG-based machine learning algorithm, with

all clinical information blinded except for age and gender.

Results

Eighteen patients with probable DLB and 21 patients with probable AD were the included for

the analysis. The performance of MC-004 differentiating probable DLB from probable AD

was 72.2% (95% CI 46.5–90.3%) for sensitivity, 85.7% (63.7–97.0%) for specificity, and

79.5% (63.5–90.7%) for accuracy. When limiting to subjects taking�5 mg donepezil, the
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sensitivity was 83.3% (95% CI 51.6–97.9), the specificity 89.5% (66.9–98.7), and the accu-

racy 87.1% (70.2–96.4).

Conclusions

MC-004, the EEG-based machine learning algorithm, was able to discriminate between

DLB and AD with fairly high accuracy. MC-004 is a promising biomarker for DLB, and has

the potential to improve the detection of DLB in a diagnostic process.

Introduction

Dementia with Lewy bodies (DLB) and Alzheimer’s disease (AD) are the most common causes

of neurodegenerative dementia in the elderly, and can be of a similar presentation, with an

overlap of clinical symptoms. An early and accurate diagnosis of DLB is critical because it can

lead to early initiation of effective treatment for cognitive and psychiatric disorders, such as

acetylcholinesterase inhibitors (AChEIs), and avoidance of potentially life-threatening treat-

ments such as antipsychotic drugs, which are known to increase the risk of serious side effects

in patients with DLB [1, 2]. Additionally, earlier and more accurate diagnosis of DLB is

expected to reduce burdens on patients and caregivers and be of social benefit in reducing the

costs of nursing and medical care.

The diagnosis of DLB relies on a series of consensus criteria based on symptomatic features

and supplementary tests that were first described in 1996 and subsequently revised in 2005

and 2017 [3–5]. The first version of these clinical diagnostic criteria had a limitation in terms

of poor sensitivity, albeit high specificity, when compared with neuropathological findings [6,

7]. To overcome this limitation, the latest version of the consensus criteria includes features

typical of Lewy body-type pathology as “indicative” biomarkers of DLB. These are reduced

uptake of dopamine transporter in the basal ganglia as measured by 123I-ioflupane single-pho-

ton emission tomography (DaTSCAN1), low uptake of iodine-123 metaiodobenzylguanidine

(123I-MIBG) in the myocardium as measured by 123I-MIBG myocardial scintigraphy (MIBG

scintigraphy), and REM sleep without atonia as detected by polysomnography. The inclusion

of indicative biomarkers in the latest version of the DLB consensus criteria may improve the

differential diagnosis between DLB and AD. Nevertheless, it is still problematic to differentiate

between DLB and AD. These biomarkers are underutilized in clinical practice, and DLB tends

to be misdiagnosed as AD. In addition, all three biomarkers require expensive procedures and

the number of facilities where they can be used is limited. In clinical settings, up to 80% of

DLB patients are misdiagnosed as AD [8].

Electroencephalography (EEG) is a low-cost, non-invasive and widely available tool that

gives a functional measure of neuronal and synaptic integrity. Numerous studies have exam-

ined the diagnostic value of EEG as an additional diagnostic investigation for DLB. The role of

EEG in diagnosing DLB and differentiating it from other neurodegenerative diseases has

recently been discussed in a systematic review [9]. According to it, EEG may be efficient as a

diagnostic tool in DLB. Studies of visual analysis of EEG have identified characteristics to DLB

including generalized slowing of the EEG, temporal slow wave transients, frontal intermittent

delta activity, a slowing of the dominant alpha frequency range named as “pre-alpha” rhythm

at occipital regions as hallmarks of DLB, while AD is associated with slowing in the temporal

areas. An attempt has been made to correlate neurological/physiological characteristics with

EEG patterns for DLB and AD [10]. Quantitative EEG (qEEG) analysis has been applied to
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overcome the inherent limitations of visual EEG analysis which includes the inter-rater vari-

ability along with the low sensitivity in recognizing subtle abnormalities, providing a way to

differentiate subjects with dementia due to DLB from those with AD. The aforementioned sys-

tematic review noted that as compared with AD, DLB is associated with a greater fluctuation

in mean EEG frequency, a sparse appearance of alpha rhythm, a greater dominant frequency

variability, a higher degree of overall coherence in the delta and theta bands, a lower degree of

overall coherence in the alpha band, and compromise of functional cortical connectivity [9].

The 2017 consensus criteria incorporated prominent posterior slow wave EEG activity with

periodic fluctuations in the prealpha/theta range as a supportive diagnostic biomarker. How-

ever, published data are insufficient to categorize implementation of EEG features as an indica-

tive biomarker in the differential diagnosis of DLB and AD. This is because no standards have

been applied for EEG reading and interpretation, thresholds for test positivity have not been

defined objectively for EEG, high level evidence including data from prospective, multicenter,

validation studies is lacking, and data correlating antemortem EEG features with postmortem

pathology is absent. There is an urgent need for applying a standardization for the EEG analy-

sis procedures and replicating the diagnostic properties in large cohorts [9].

In recent years, it has been reported that the analysis of qEEG records using machine learn-

ing enables the differential diagnosis of dementia, including DLB and AD [11–13]. The study

by Snaedal et al. [13] in Iceland reported that the SPR (statistical pattern recognition) method

was useful to differenciate cases of degenerative disorders. In a single center study, Garn et al.

[11] reported a 100% classification accuracy for AD vs. DLB+ Parkinson’s disease dementia

(PDD) in leave-one-out cross-validation using 25 QEEG features as input to a SPR approach.

Both studies reported cross-validation estimates of the properties of the resulting algorithm, in

particular the latter was prone to overfitting as the number of features was similar size as the

training group. Therefore, the level of clinical evidence is not sufficiently high to warrant clini-

cal application. Engedal et al. [12] conducted a multicenter study in Norway using an qEEG

analysis algorithm trained based on the dataset obtained in Iceland [12], in which favorable

classifying performance (sensitivity = 84% and specificity = 81%) in differentiating between

AD and DLB was demonstrated. Although they adopted a separate test dataset, training and

test datasets were from neighboring countries with close ethnicity and culture, which could

lead to overfitting and limit generalizability to a different clinical population.

The objective of the present study was to investigate how accurately a machine learning

algorithm based on qEEG could classify subjects as probable DLB and probable AD in a coun-

try with different ethnicity and culture than the previous study [12]. We used MC-004, a suc-

cessor of the EEG-based machine learning algorithm classifier used in the study of Engedal

et al. [12], which was developed incorporating more optimized technics and training on a

larger population. In this prospective, multicenter study, we validated the algorithm developed

based on European cohorts in a totally independent cohort, a Japanese patient population, to

explore the feasibility of applying it in a pivotal trial.

Materials and methods

Subjects

Between April and December 2019, we performed a multicenter study in 5 Japanese sites.

Patients with probable DLB or with probable AD were enrolled in a 1:1 ratio. The inclusion

criteria were: (1) 50–90 years of age; (2) patients with probable DLB according to the revised

consensus criteria [5], or patients with probable AD according to the NIA-AA criteria [14].

Patients who presented only one core DLB feature or only positive indicative DLB biomarkers

but otherwise fulfilled the criteria for probable AD (namely classified into both possible AD
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and possible DLB), and Parkinson’s disease dementia (PDD; i.e., subjects with a diagnosis of

Parkinson’s disease at least 1 year prior to onset of dementia) were not included; (3) a mini-

mental state examination (MMSE) score of 14–26; (4) patients or responsible caregiver pro-

vides informed consent for the subject to participate in the study. We excluded patients who

met at least one of the following exclusion criteria to avoid the presence of mixed pathology,

ambiguous diagnosis, and influence of drugs on EEG.: (1) patients with vascular lesions likely

contributed to the subject’s dementia on MRI or CT; (2) patients with significant neurologic

disease other than probable DLB or AD; (3) patients with history of alcohol or drug abuse

within the past 2 years; (4) patients with history of schizophrenia; (5) patients with any signifi-

cant systemic illness or unstable medical condition that may affect EEG; (6) patients using spe-

cific medications that possibly influence EEG. AChEIs and levodopa/DOPA decarboxylase

inhibitor (DDI) were permitted, while memantine and anti-Parkinsonism medications other

than levodopa/DDI were not allowed.

Clinical information was collected using an electronic case report form developed and

administered by Osaka University Hospital Data Coordinating Center. The following informa-

tion were collected: age, gender, years of education, and doses of AChEI and levodopa/DDI.

Results of the following tests and assessments were recorded: MMSE [15]; Neuropsychiatric

Inventory [16]; Cognitive Fluctuation Inventory [17]; REM sleep Behavior Disorder Screening

Questionnaire [18]; Movement Disorder Society-Unified Parkinson’s Disease Rating Scale

Part III [19]; Noise Pareidolia Test [20]; Clinical Dementia Rating; head MRI; cerebral blood

flow on SPECT; MIBG scintigraphy; and DaTSCAN1 imaging. Eligibility was judged by an

agreement of two experts in the field of dementia, reviewing full details of all clinical informa-

tion, neuropsychiatric/neuropsychological assessments, and imaging data.

The study was performed in accordance with the current revision of the Declaration of Hel-

sinki and applicable national and local laws and regulations. All patients gave written informed

consent. This study was approved by the Ethical Review Boards of Osaka University and by

institutional review boards of all participating centers. This study was registered in the Univer-

sity Hospital Medical Information Network Clinical Trials Registry (UMIN000035926).

Recruitment and enrollment began on April 24, 2019 and was completed on December 6,

2019.

EEG data acquisition

The EEG recording was performed using Nihon Kohden Neurofax EEG systems at each site

according to a common harmonized protocol and manual by an experienced technician who

had been trained to recognize and eliminate artefacts. The IS 10–20 system was used for elec-

trode placement. The following 19 electrodes were used for the analysis: Fp1, Fp2, F3, F4, F7,

F8, Fz, T3, T4, T5, T6, C3, C4, Cz, P3, P4, Pz, O1, and O2. The average potential was used as a

reference. Two bipolar electro-oculography channels and one electrocardiogram lead were

applied to monitor artefacts. To reduce muscle artefacts in the EEG recording, the patient was

comfortable during the recording, sitting in an upright position to encourage to stay fully

awake. If the patient needed to be lying down, the technician carefully monitored the patient’s

state of alertness. An impedance of 10 kOhms or less in each electrode channel was required,

as high impedance influences the extracted qEEG features and may result in an erroneous

result. The EEG was recorded for�150 seconds during which the subjects were at rest with

their eyes closed. The subjects were alerted if they became visibly drowsy. To ensure an accept-

able 150-second segment, the EEG technicians were instructed to repeat two or more 5-minute

EEG recordings at 1~2-minute intervals and select the 150-second recording that was free of

artifacts. The analysis by the MC-004 requires a data segment (epoch) of at least 150 seconds
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duration comprising clean, eyes closed resting state EEG data. After all personal health infor-

mation was removed and the data was uploaded to a server set up in Japan via internet.

EEG analysis by MC-004

The uploaded EEG was processed at Mentis Cura, Oslo, Norway, using MC-004, with the iden-

tity of the EEG technician and all clinical information except for age and gender blinded. MC-

004 returns a single number as output, which was determined by applying a linear support vec-

tor machine learning technique trained on the Mentis Cura DLB/PDD and AD dataset. The

index is scaled based on the training dataset, such that the optimal cut-off value for the index is

0, and the magnitude scale is given in terms of the standard deviation of the AD training

cohort index values. If the index is below the pre-defined threshold of 0, the individual is likely

to have AD. Conversely, if the index is equal to or greater than the pre-defined threshold of 0

the individual is likely to have DLB.

The background and technical features of the MC-004 are briefly described below. The

technical aspects of the algorithm building have been published more in detail elsewhere, albeit

addressing another research question [21]. MC-004 algorithm was established by improving

the algorithm described previously [13] and preliminarily tested in the study by Engedal et al.

[12]. The improvement entails a different way of extracting the features from the recordings.

In the previous algorithm, only 37 far coherences were considered, but in the improved algo-

rithm all possible pairs of electrodes are considered resulting 171 pairs. That results in higher

cortical resolution of the electrophysiology considered, yielding an increased potential of dif-

ferentiation between DLB and AD. Because MC-004 is much more sophisticated than the pre-

vious algorithm by using more DLB data in algorithm designing, MC-004 has a potential to

perform even better than the previous algorithm.

The Mentis Cura DLB/ PDD and AD dataset, which the algorithm designing was based on,

consisted of two cohorts; Cohort 1, 270 patients with probable AD and 51 patients with proba-

ble DLB/PDD recruited in the Memory Clinic of the Geriatric Department, National Univer-

sity Hospital, Reykjavik, Iceland between 2005 and 2011; and Cohort 2, 36 patients with

probable AD and 64 patients with probable DLB recruited in the Memory Clinic and Move-

ment Disorder Center, Neurology Clinic of the University G. d’Annunzio of Chieti-Pescara,

Chieti-Pescara, Italy from 2009 to 2018. Each patient’s diagnosis was made according to

NINCDS-ADRDA criteria [22] and the consensus criteria of McKeith et al. [4] on the basis of

all available clinical information including cranial CT/MRI, neuropsychology, and CBF

SPECT. In most of the cases of suspected DLB/PDD, DaTSCAN1 was performed. There were

115 patients with DLB/PDD (age = 76.3±6.6, men = 58.2%, MMSE = 21.2±5.3) and 306

patients with AD (age = 77.5±7.9, men = 61.5%, MMSE = 22.7±5.3).

The EEG recording was analyzed in 2 sec segments overlapping by 1 sec. The analysis of

each segment constituted evaluating all the features the classification relies on, resulting 149

segments analyzed from 150 sec recording. Then, the value of each of the features was esti-

mated applying robust estimates. As this procedure ensured that the estimate was not signifi-

cantly biased by artefacts due to blinking muscle movement, EKG etc, it can be regarded as

automatic artefact removal of the signal. The EEG recordings were pre-processed prior to fea-

ture extraction by applying an 8th order Butterworth band-pass filter with the band 0.1–70 Hz.

The spectral properties were considered using a ½ Hz resolution. The range used was from 1/

2Hz-45Hz leading to 90 complex spectral values for the Fourier transform of each of the 19

(electrodes) +18�19/2 (inter-channel) = 190 timeseries considered, leading to

90�2�190 = 34,200 features in total, as initial input for the development of the algorithm,

including 3,420 spectral features and an (18�19/2) �90�2 = 30,780 inter-channel covariance-
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related features. By comparing the features of all related to the spectral properties from the 2

diagnostic groups, a classifier was trained. Discrete fast Fourier transform was applied to esti-

mate the spectral properties of the signal. If the FFT components for each of the electrodes,

segments, and discrete frequencies considered are denoted by σcij, where c2{1,2,. . .,19} indi-

cates the channel, i2{1,. . .,N} the segment of the N segments considered, and j2{1,. . .,90} the

discrete frequencies 1

2
Hz; 1Hz; . . . ; 45Hz

� �
, the full spectral resolution covariance between

channels c and k is then expressed by w
ij
ck¼ scij � s

�
kij. These covariances constitute the base fea-

tures used for analysis and evaluation of the classification index values. To determine the core

features relied on, principal component analysis was applied to each electrode and each covari-

ance. All principal components were then ranked according to their individual discriminatory

properties in separating the groups of AD and DLB subjects. The discriminatory properties

were determined by evaluating the area under the curve of the receiver operator characteristic

based on the training set described above. The two most relevant components from each chan-

nel and channel pair were selected for further analysis, leading to 380 distinct features used. If

Pckaj denotes the 2 chosen PCs, α2{1,2}, for electrode pair (c,k) at frequencies j2{1,. . .,90}, the

core features considered for analysis then become Ccka ¼ Eif
P90

j¼1
w
ij
ckPckajg. The index value for

an individual recording is evaluated from these features by

I ¼
P

ckaCckabcka þ b
A
1
Aþ bA

2
A2 þ r, where A is the age of the subject in years. The classifica-

tion coefficients bcka; b
A
i and ρ were determined by using a combination of genetic algorithms

to optimize the number of features used, and support vector machine (SVM), a statistical pat-

tern recognition (SPR) technique, was applied to discriminate the AD and DLB groups. This

was done separately for men and women, resulting in separate gender dependent indices.

Statistical analysis

All statistical analyses were performed with SPSS statistics, v.26 (IBM corp.). For binomially

distributed data, we assessed differences among the different diagnostic cohorts (probable

DLB, probable AD) with respect to patients’ characteristics by means of χ2 tests. We used t-

tests for normally distributed data; if normality could not be established, we used Mann-Whit-

ney U tests. The primary endpoint of this study was the accuracy of the MC-004 in identifying

subjects with probable DLB and subjects with probable AD. The following performance indi-

cators were calculated: sensitivity-the percentage of times that the MC-004 classification was

DLB given that the clinical diagnosis was probable DLB; specificity- the percentage of times

that the MC-004 classification was AD given that the clinical diagnosis was probable AD; accu-

racy- the percentage of times the MC-004 diagnosis matched the clinical diagnosis. This was

an exploratory, feasibility study in a total of 40 patients. With this sample size, a diagnostic

accuracy of more than 65% (based on an earlier study [12]) could be detected with 85% power

applying a one-sided α = 5%.

Results

Of the 40 individuals who were enrolled and completed the EEG recording, one subject whose

EEG included too much electromyogram-related artefact for analysis was excluded (Fig 1).

Patients’ characteristics are shown in Table 1. The clinical diagnosis of 18 patients was proba-

ble DLB (age = 76.6±5.8, men = 50.0%, MMSE = 21.9±3.1) and that of 21 was probable AD

(age = 76.8±6.7, men = 38.8%, MMSE = 21.2±2.9). All patients in the probable DLB group

received MIBG scintigraphy (n = 5), DaTSCAN1 (n = 7), or both (n = 6), results of which

were supportive of DLB except for 1 patient whose DaTSCAN1 was not supportive of DLB.

Only 1 patient in the AD cohort received DaTSCAN1, which was not supportive of DLB.
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Table 2 shows sensitivity and specificity of MC-004 differentiating probable DLB from

probable AD. The performance was 72.2% (95% CI 46.5–90.3%) for sensitivity, 85.7% (63.7–

97.0%) for specificity, and 79.5% (63.5–90.7%) for accuracy. In ROC (receiver operating char-

acteristic) analysis, AUC (area under the curve) was 0.88. There were 5 subjects in the DLB

cohort and 3 subjects in the AD cohort whose MC-004 classification disagreed with the clinical

diagnosis. Three of 5 misclassified subjects in the DLB cohort were taking>5 mg of donepezil

daily, whereas 3 of 13 correctly classified subjects were taking >5 mg (p = 0.268, Fisher exact

probability test). The diagnostic performance of MC-004 was examined when excluding those

taking>5 mg donepezil (n = 12 for DLB, n = 19 for AD). The sensitivity was 83.3% (95% CI

51.6–97.9), the specificity 89.5% (66.9–98.7), and the accuracy 87.1% (70.2–96.4). Moreover,

when limiting those taking any cholinesterase inhibitors at less than half of the maximum

approved doses in Japan (n = 12 for DLB, n = 15 for AD), the sensitivity was 83.3% (95% CI

51.6–97.9), the specificity 86.7% (59.5–98.3), and the accuracy 85.2% (66.3–95.8). On the other

hand, 2 of 3 misclassified subjects in the AD cohort did not take any cholinesterase inhibitors.

Discussion

This prospective, multicenter study carried out in Japan validated an EEG-derived machine

learning algorithm for discriminating DLB from AD which developed based on a database of

EEG records from two different European countries (Iceland, Italy). Analyzable EEG records

were obtained in 97.5% of the patients with mild to moderate dementia attributable to DLB or

Fig 1. Participant flow chart.

https://doi.org/10.1371/journal.pone.0265484.g001
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AD. The overall diagnostic accuracy for differentiating probable DLB from probable AD was

79.5%, with 72.2% for sensitivity and 85.7% for specificity. When excluding those taking

>5mg donepezil, the classification performance became somewhat better (sensitivity = 83.3%

and specificity = 89.5%). These results suggest that MC-004 is a potentially good tool to dis-

criminate DLB from AD. Further, as the algorithm was validated interracially and cross-cul-

turally, the findings should be broadly applicable.

This diagnostic performance of the algorithm is comparable to that of MIBG scintigraphy

or DaTSCAN1. In a multicenter, prospective, cross-sectional study, the sensitivity of MIBG

scintigraphy was 68.9% and the specificity was 89.1% to differentiate probable DLB from prob-

able AD in both early and delayed images [23]. The three-year follow-up study of the same

Table 1. Clinical characteristics of the subjects.

Probable DLB (n = 18) Probable AD (n = 21) p value

Sex (M/F) 9/9 8/13 0.672†

Age (y) 76.6 (5.8) 76.8 (6.7) 0.79‡

Years of education 12.2 (2.8) 12.6 (3.0) 0.67‡

MMSE 21.9 (3.1) 21.2 (2.9) 0.52‡

CDR (0.5, 1, 2, N/A) 7, 10, 0, 1 6, 12, 2, 1 0.39‡

Hoehn & Yahr (0, 1, 2, 3) 1, 3, 8, 6 21, 0, 0, 0 0.000‡�

pareidolia test 8.76 (8.2) 0.05 (0.22) < 0.0000‡�

NPI_12 11.6(12.4) 5.2(4.3) 0.0335‡�

NPI-visual hallucination 2.53(2.7) 0.0 < 0.0000‡�

CFI 2.35(2.396) 0.0 < 0.0000‡�

123I-MIBG scan(positive/negative) 11(11/0) 0 -

DaTSCAN1 (positive/negative) 13(12/1) 1(0/1) -

Patients taking AchEI

donepezil (≦5mg, >5mg) 13(7, 6) 11(9, 2) -

other than donepezil (more than half the maximum doses in Japan)a 0 5 (5) -

Patients taking levodopa/DDI 5 0 0.015†�

Date is mean (SD).
†χ2 test
‡Mann-Whitney U test

a The maximum doses approved in Japan are 18mg/day for rivastigmine and 24mg/day for galantamine.

MMSE: mini-mental state examination, CDR: clinical dementia rating scale

NPI: neuropsychiatric inventory, CFI: cognitive fluctuation inventory.

https://doi.org/10.1371/journal.pone.0265484.t001

Table 2. Sensitivity and specificity of DLB-index in differentiating between probable DLB and probable AD.

All subjects Subjects excluding those taking

donepezil > 5mg

Subjects excluding those taking any AChEIs more than half the maximum

doses in Japan

n(DLB, AD) 39 (18, 21) 31 (12, 19) 27 (12, 15)

Sensitivity (95%

CI)

72.2 (46.5–

90.3)

83.3 (51.6–97.9) 83.3 (51.6–97.9)

Specificity (95%

CI)

85.7 (63.7–

97.0)

89.5 (66.9–98.7) 86.7 (59.5–98.3)

Accuracy (95%

CI)

79.5 (63.5–

90.7)

87.1 (70.2–96.4) 85.2 (66.3–95.8)

AChEIs: acetylcholinesterase inhibitors.

https://doi.org/10.1371/journal.pone.0265484.t002
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cohort reported a sensitivity of 77% and a specificity of 97% [24]. In the differential diagnosis

between DLB and non-DLB dementia that was predominantly caused by AD, the pivotal study

of DaTSCAN1 reported a sensitivity of 77.7% and a specificity of 90.4%, and a diagnostic

accuracy of 85.7% [25].

The main limitation of this study is the small sample size, which was determined from feasi-

bility considerations rather than a formal sample size calculation. Therefore, the findings

should be confirmed in future larger-scale trials. The criterion-related validity is assessed

against a gold standard. In this study, the gold standard was not neuropathologic findings but

clinical diagnosis according to the latest version of the clinical diagnostic criteria. Although

MIBG scintigraphy and DaTSCAN1 can enhance the accuracy of the clinical diagnosis of

DLB and AD, positivity for either biomarker was not prerequisite for inclusion in the DLB

cohort, and negativity for both biomarkers was not used to negate involvement of Lewy body

pathology in the AD cohort. As such, uncertainty in the gold standard may have impacted out-

comes. The diagnosis of one subject in the DLB cohort whose DaTSCAN1 did not support

the diagnosis of DLB was questionable. As the real diagnosis of this patient is likely to be AD,

although MIBG scintigraphy had not been done, eliminating this patient from the DLB cohort

improves sensitivity somewhat. On the other hand, amyloid imaging was not performed, and

cerebrospinal fluid-based AD biomarkers were not measured. However, even if these indicate

the presence of AD pathology, positivity does not rule out the presence of Lewy body pathol-

ogy. Up to 50%-80% of patients with DLB have coexisting AD pathology, i.e., amyloid plaques

and neurofibrillary tangles [26, 27]. DLB patients with concomitant AD pathology represent a

specific diagnostic challenge, as abnormal cerebrospinal fluid AD biomarkers and positive

amyloid positron emission tomography [28] can lead to an incorrect diagnosis of AD. A previ-

ous EEG study [29] found no significant differences between DLB patients with and without

AD co-pathology. The possibility that subjects in the AD cohort misclassified as DLB were in

fact AD-DLB mixed pathology cannot be ruled out. In a future study, we need to systematically

utilize both DaTSCAN1 and MIBG scintigraphy to select subjects both in the DLB and AD

cohorts to enhance the likelihood of the clinical diagnoses being correct.

In this study, the use of AChEIs was allowed due to ethical concerns and to facilitate timely

enrollment. Analyses excluding subjects taking cholinesterase inhibitors were done a posteri-

ori, although it should be noted that such a post-hoc analyses can be biased. It is known that

cholinergic activity affects EEG. There have been numerous studies of EEG changes following

scopolamine administration, and scopolamine has been found to cause background EEG slow-

ing [30]. In AD, cholinergic neurons in the basal forebrain are lost. Deficiencies in cholinergic

neurons have been reported to result in changes in the background alpha-wave activity (slow-

ing, decreasing amplitude, decreasing periodic oscillatory changes, and generalization),

appearance of slow waves, decreasing fast waves, and irregularities in rhythm formation [31].

The cholinergic deficits are greater and occur earlier in DLB compared to AD [32, 33]. Cholin-

ergic losses in DLB affect both brainstem and basal forebrain presynaptic nuclei, in contrast to

AD [34]. In patients with DLB, marked slowing of background activity (lack or slowing of

alpha waves), frequent slow wave intrusion, transient slow wave activity in the temporal

region, and large fluctuations in background activity have been reported [35, 36]. The greater

slowing of the EEG in DLB than in AD is thought to be related to a greater loss of cholinergic

neurons in DLB. AChEIs are used to treat the symptoms of DLB and AD based on its neuro-

chemical features [37, 38]. AChEIs affect EEG as well as cognitive functions in DLB and AD.

Several studies have shown that AChEIs affect resting state EEG rhythms in AD patients. After

a few weeks of the treatment, delta or theta rhythms decrease, dominant alpha rhythms

increase, and cognitive functions slightly improve [39, 40]. On the other hand, there is only

one cross-sectional study exploring the effects of donepezil on EEG [41] found a significantly
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lower EEG power density in the delta and theta bands in DLB subjects taking donepezil than

in subjects not taking donepezil, whereas there was no significant difference in AD patients.

This means that there would be differential effect of AChEIs in DLB and AD. As the choliner-

gic deficit may partly account for the EEG slowing in DLB and AD, the administration of

AChEIs can reverse the EEG slowing in both diseases [42, 43]. However, the loss of cholinergic

neurons projecting to the cortex is greater and has a faster progression in DLB compared to

AD [44]. Therefore, the use of AChEIs could reduce the value of MC-004 by masking the EEG

features of DLB and resulting in patients being misdiagnosed as AD. In fact, in the present

study, misclassified subjects in the DLB cohort were somewhat more often taking high doses

of donepezil than subjects who were correctly classified. Therefore, use of the MC-004 algo-

rithm should be used prior to the use of high doses of donepezil and avoided in subjects taking

high doses of donepezil. For subjects taking galantamine or rivastigmine, which have a short

plasma half-life, it would be recommended to ask subjects to postpone taking their daily dose

until after EEG recording. Future studies should include only subjects naïve to donepezil, or

limit the use of AChEIs as described above, in order to evaluate the true performance of MC-

004. This is not an obstacle for using MC-004 as a diagnostic tool, because it would be utilized

for patients at an initial stage of diagnosis, where no or only a low dosage of AChEIs has been

started.

Moreover, DaTSCAN1 /MIBG and AD biomarkers (cerebrospinal fluid or positron emis-

sion tomography) are highly desirable in follow-up studies. Longitudinal follow-up for autopsy

verification of the patients would also be useful. As most patients with DLB have co-existing

AD pathology, the impact of it should be determined in the future studies.

Conclusion

In conclusion, the qEEG-based machine learning algorithm, MC-004 was able to discriminate

between DLB and AD with accuracy of 79.5% (95% CI 63.5–90.7%). MC-004 is a promising

biomarker for DLB, and has the potential to improve the detection of DLB in a diagnostic pro-

cess. Further validation studies based on more proper population, such as those with con-

trolled AChEIs use and with biomarker-supported diagnoses, are indicated.
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