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A time-series is any set of N time-ordered observations of a process. In veterinary

epidemiology, our focus is generally on disease occurrence (the “process”) over time,

but animal production, welfare or other traits might also be of interest. A common source

of time-series datasets are animal disease monitoring and surveillance systems. Here,

we scan the application of methods to analyse time-series data in the peer-reviewed,

published literature. Based on this literature scan we focus on autocorrelation and

illustrate the recommended steps using ARIMA (Autoregressive Integrated Moving

Average Models) methods via analysis of a time-series of canine parvovirus (CPV) events

in a pet dog population in Australia, 2009 to 2015. We conclude by identifying the

barriers to the application of ARIMA methods in veterinary epidemiology and suggest

some possible solutions. In the literature scan the selected 37 studies focused mostly

on infectious and parasitic diseases, predominantly for analytical, rather than descriptive

or predictive, purposes. Trends and seasonality were investigated, and autocorrelation

analyzed, in most studies, most commonly using R software. An approach to analyzing

autocorrelation using ARIMA methods was then illustrated using a time-series (week

and month units) of CPV events in a pet dog population in Australia, reported to a

national companion animal disease surveillance system. This time-series was derived by

summing veterinarian reports of confirmed CPV diagnoses. We present data analysis

output generated via the R statistical environment, and make this code available for

the reader to apply to this or other time-series datasets. We also illustrate prediction

of CPV events by rainfall as a covariate. Time-series analysis using ARIMA methods to

understand and explore autocorrelation appears to be relatively uncommon in veterinary

epidemiology. Some of the reasons might include limited availability of data of sufficient

time unit length, lack of familiarity with analytical methods and available software, and

how to best use the information generated. We recommend that wherever feasible, such

time-series data be made available both for analysis and for methods development.
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INTRODUCTION

A time-series is any set of N time-ordered observations of a
process (1). Within the discipline of epidemiology, our goal
is often to understand the underlying processes that generate
time-series of disease events. These processes can be explored
as part of a time-series analysis, particularly when potential
explanatory variables are included as covariates. This can
provide insights into disease causation, and thus contribute to
the formulation of disease prevention and control programs.
However, time-series analysis can also be predictive, with or
without covariates. This facilitates the development of forecasting
systems to anticipate disease occurrence or detect changes in
disease occurrence. Here, we focus on the former goal of
understanding disease occurrence.

A key property of time-series is non-independence of
values at consecutive time periods. This results in a statistical
relationship between values at consecutive time periods and
sometimes at different time lags, known as autocorrelation.
Temporal autocorrelation is a fundamental characteristic of
observations recorded over extended periods of time. We can
appreciate that daily rainfall data, for example, recorded over
a period of months will show autocorrelation: if it rains on
a specific day, it is more likely to rain the following day.
In addition, rainfall might be more common during certain
months, or seasons. Perhaps less obvious is autocorrelation in
time-series of disease occurrence. Diseases can be clustered in
time due to causes that are autocorrelated (such as climate),
due to the methods used to detect disease and the surveillance
programs used (for example, certain diagnostic tests only being
performed on Mondays, or inspectors at abattoirs working
fixed 6-day shifts), and (for infectious diseases) because the
number of infected individuals at one time period directly
affects the number of infected individuals at a subsequent time
period due to disease transmission. Rather than searching for
evidence of temporal clustering (2), autocorrelation methods
assumes it is present and seek it describe and understand it.
Whilst temporal autocorrelation might be expected, often it
is subtle.

Autocorrelation makes common statistical approaches
inappropriate, and alternative techniques are needed. Time-
series analysis invariably begins with descriptive analyses of
the dataset under consideration. This consists of separating
out (“decomposing”) the time-scale dependent characteristics
which make up the observed temporal pattern of disease
or event occurrence. Broadly, these patterns are the long
term (secular), periodic cyclical (if time-independent), and
seasonal trends. The aim of this analysis is to characterize
temporal patterns. There are a variety of methods for
decomposition, including decomposition based on locally-
weighted scatterplot smoothing [“seasonal and trend
decomposition using locally weight scatterplot smoothing
(loess),” STL]; we demonstrate this method in the context
of the CPV events. The process of decomposition, whilst
attempting to remove autocorrelation from a time-series, also
allows an understanding of the autocorrelation itself and its
potential causes.

As part of the process of exploring a time-series, autoregressive
models can be used to determine how much of the observed
time-series can be explained by previous observations in
the time-series itself. Characterization of temporal patterns—
such as trend and seasonality—can be used to understand
potential causes of disease. Autoregressive models to describe
the occurrence of events based on prior observations include
simple autoregressive (AR) models, autoregressive moving
average (ARMA) and autoregressive integrative moving average
(ARIMA) models, which differ in the way previous values
in the time-series are used to describe future values. AR
models are essentially linear regressive models for which
each regression term is a time-lagged value (i.e., a value
measured at a previous time point—the “lag”) of the same
time-series. MA models instead use lagged values of forecast
errors, and ARMA models combine both. ARIMA models can
also include differencing (i.e., the value at one time point
is subtracted from the value at another time point) of the
series. Causation can be further investigated by multivariate
models. For example, autoregressive models can be extended
to include covariates, and in a further extension, information
from more than one time-series can be used in vector
autoregressive models to forecast future values of each time-
series. We demonstrate the way in which visual exploration
of autocorrelation function (ACF) and partial autocorrelation
function (PACF) plots can provide insights into how to fit a
model, and how to select the best model fit for ARMA and
ARIMA models.

We begin our discussion of the analysis of time-series data
in veterinary epidemiology from our perspective that ARIMA
methods are not commonly applied within the discipline.
In situations in which methods to analyse time-series data have
been applied, we investigate the more commonly used methods
and data sources reported via a scan of recent literature. This is
motivated by an appraisal of current usage and gaps in the field,
rather than a comprehensive, systematic review, to provide the
reader with a range of literature in which methods for analysis
of times-series data have been used. We then demonstrate the
application of autoregressive models using ARIMAmethods on a
surveillance dataset, and make recommendations to increase the
use of such methods in veterinary science.

LITERATURE SCAN

CAB Abstracts Index via Web of Science was searched using
TOPIC: (time-series) and TOPIC: (analysis) and TOPIC:
(veterinary) during the timespan 1980 to present (31 August
2019), restricted to English language journal articles only. The
titles of all articles returned by this search were screened for
scope [time-series analysis methods applied to animal (including
zoonotic) diseases]. Note that studies in which time-series data
were reported, but which did not describe the application of
time-series analysismethods, were excluded.

A template was developed—via discussion between the
authors—to extract information from each article (see
Supplementary Table 1). Full versions of the subset of articles
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were then obtained and randomly assigned to one of the
three authors.

In total, 60 articles (see Supplementary Table 2) were
identified. Of these, five were unavailable for review and 18
were out-of-scope. The latter included articles in which the
primary event was a disease in humans only (for example,
dengue fever, Crimean-Congo haemorrhagic fever, tick-borne
encephalitis, Ross River fever), or the focus was on detection of
aberrations within a time-series [for example, (3)]. We applied
these exclusions because our aim is to introduce readers to
autoregressive models and applications to animal diseases.

Of the remaining 37 articles, publication year ranged from
1990 to 2019 and studies were conducted in 19 different countries
(Supplementary Table 2). One study was conducted at the global
scale [highly pathogenic avian influenza; (4)]. Data used in
these studies were derived from surveillance systems (including
internet searches) (14); monitoring systems (11), for example
slaughterhouse recording systems; clinical records (6); laboratory
records (3); and bespoke research projects (3). These studies
were focused mostly on livestock (26). The temporal unit of data
collection was most commonly day (17) or month (16), and the
median period (years) covered by the datasets analyzed was 10
(IQR 5–16).

The studies identified focused on a wide range of events, but
mostly either specific infectious diseases (e.g., rabies) or defined
syndromes (e.g., pleurisy and pneumonia).

The purpose of the time-series analysis performed was either
analysis (18), description (12), or prediction (7). Studies were
considered descriptive if they included only visualization of
the time-series or descriptive statistics, whereas those that also
included decomposition of the series, or developed models of
the time-series, were considered analytical. Those that used the
models to predict trends beyond the range of the time-series
were considered predictive. Data analyzed was most commonly
counts of events. Where data was manipulated before analysis,
aggregation to a coarser temporal unit was most common.

Analysis of trends was performed in most (27) studies, mainly
using regression models (13). Autoregression was analyzed in
the majority of studies (23). In six of these, autocorrelation
and partial autocorrelation functions (ACF and PACF; see
section An Example of Time-Series Analysis Methods—Canine
Parvovirus Reports for Definitions and Methods) were used,
and in other studies (10) modeling approaches were used,
including autoregressive models. ARMA or ARIMA models
were described in 13 of the 23 studies in which autoregression
was analyzed. Seasonality was analyzed in 28 studies, however
the methods used varied greatly; for example, visual, ACF and
PACF, seasonal autoregressive models, automated exponential
smoothing state space models, periodograms, and seasonal and
trend decomposition STL.

Forecasting was undertaken in 12 studies. The most common
(18) software used to analyse time-series data was R.

We observed that the most often cited advantage of
using time-series analysis methods was the ability to predict
disease occurrence, contributing to early warning and therefore
disease prevention. Some of the barriers discussed include the
scarcity of long-term, computerized, automatically collected,

and publicly available data; identifying outbreak or disease-
free baselines; event data sparseness (excessive zeros); data
aggregation (temporal scale); time gaps in the data; lack of
constant population at-risk; and model validation.

In summary, in this literature scan, time-series analysis
methods in veterinary science were mostly focused on infectious
and parasitic diseases, analyzed by decomposing and modeling
the time-series. This approach most often involves investigation
of trends and seasonality, and analysis of autocorrelation, usually
aided by the use of R software. Based on this, we next
illustrate methods that can be used to investigate and analyse
trends, seasonality and autocorrelation in veterinary science by
presenting a step-by-step guide to analysis of a canine parvovirus
time-series using R.

We focus on ARIMA methods because beyond a description
of the trend and seasonality of time-series data, ARIMA models
are an accessible method to describe autocorrelations within data
and assess the influence of covariates such as climate variables.
These methods can be considered a foundation in autoregressive
methods for time-series analysis. Other methods—such as
aberration detection algorithms, stochastic modeling approaches
and machine-learning methods—can then be investigated for
applications requiring long-term prediction (5–7).

AN EXAMPLE OF TIME-SERIES ANALYSIS
METHODS—CANINE PARVOVIRUS
REPORTS

Prior to embarking on autoregressive modeling, we need to
consider when it is appropriate to apply these methods—and
when it is not. For such analysis, a dataset of sufficient length
and completeness needs to be available. Without sufficient data,
it is difficult to identify trends and patterns, to build models,
and determine statistical significance. In veterinary science, data
generated by monitoring and surveillance systems are often
analyzed by autoregressive modeling (see section Literature
Scan). However, missing data can be an issue (see section Results
of Analyzing a Time-series of Canine Parvovirus Reports), as can
data gaps in the time-series caused by temporary interruptions
to data collection. Assuming a stable population at-risk simplifies
analysis and interpretation of results, but such assumptions need
to be plausible. Other more general epidemiological issues—
such as selection, ascertainment and measurement bias—also are
applicable to autoregressive modeling and need to be considered.

Here we describe an analysis using autoregressive methods
as an example that readers can use to guide their own analyses
(8). The data and R code used for the analysis are available at
https://zenodo.org/record/3738684#.X1HOYNZuLIU (accessed
04/09/2020).

Our time-series analysis begins with a description of the
data, including the source, results of initial data checking and
any manipulation required to make it suitable for time-series
analysis. The time-series is then plotted, and secular and seasonal
trends are assessed using decomposition then linear regression.
Before fitting an autoregressive model, the series is assessed for
stationarity using graphical and statistical methods. Stationarity
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is a key requirement to fit models to time-series data. A series
is considered stationary if it is not changing systematically over
time. A method for inducing stationarity—differencing—is also
explained and demonstrated. We then fit a number of ARIMA
models and use these to forecast disease cases beyond the range
of the dataset. Finally, we investigate the influence of a covariate
(rainfall) on the time-series and give a brief example of how
cross-correlation and vector autoregressive models can be used
to investigate relationships in time-series.We present the analysis
of the example dataset in a stepwise guide to assist the reader to
replicate the approach on this or other, similar datasets.

We have used the R statistical environment (9) for all
analysis described. For readers not familiar with this platform,
introductory courses and tutorials are widely available online and
we recommend spending some time familiarizing yourself with
the program before attempting this analysis. The code provided
in the Zenodo repository will work if you have R correctly
installed and operating on your computer and have installed the
packages listed below.

The following packages for data visualization, manipulation
and analysis of time-series data used in this analysis: ggplot2 (10),
plyr (11), dplyr (12), lubridate (13), tseries (14), vars (15, 16), and
forecast (17, 18).

To align readers to the associated R code, the corresponding
“chunk” (C) in the code (https://zenodo.org/record/3738684#.
X1HOYNZuLIU, accessed 04/09/2020) is included in
the methods below. Chunks C1-C3 initiate and load the
required packages.

Here, we present a series of six steps to guide the reader in
applying time-series analysis to the example dataset.

Step 1: Describing the Data
This worked example uses data from the Disease Watchdog
system, in operation since 2010 in Australia and initiated to
collect information on infectious diseases of dogs and cats in
Australia (19–22). By 2015, nearly 25,000 disease cases and 19,000
reports had been submitted. The system was deactivated in
early 2017.

Veterinarians and veterinary clinic staff were the contributors
of data within this system. Besides disease diagnoses and their
date of occurrence and postcode of residence, a range of other
patient data was also collected, including age, sex, neuter status,
breed, diagnostic method, and vaccination status. To encourage
timely reporting, data was used to produce near-real time disease
maps which veterinarians accessed to educate their clients (19).
In this example, canine parvovirus (CPV) is used as the event
of interest. CPV is a highly contagious disease of dogs and an
important cause of morbidity and mortality in young dogs (23).
It has a worldwide distribution and occurs as endemic disease or
as local outbreaks.

Records of all CPV cases reported Australia-wide between
October 2009 and November 2015 were extracted from the
Disease Watchdog database. For analysis, cases which were
reported to have been vaccinated at any time were excluded.
Furthermore, only those cases in which the diagnosis of
parvovirus had been confirmed by diagnostic testing were
included. To illustrate approaches to analyzing time-series data,

we applied these methods to events only, where an event consists
of one or more cases reported by the same veterinarian with the
same date of occurrence. We also restricted analysis to events
reported from the state of New South Wales.

The dataset was loaded (C4) and checked for duplicated or
missing data (C5). The number of events, and minimum and
maximum dates of occurrence were reported (C6). The number
of parvovirus events were then aggregated by week and by
month (based on the reported date of occurrence) to create
two time-series datasets (weekly and monthly) for subsequent
analyses (C7−9).

Step 2: Visualization
Summary information on CPV events was calculated for the
time series at both the weekly and monthly aggregation,
and each dataset was plotted with a smoothed curve of
events overlaid to visually assess trend (C11). The smoothing
process in R is achieved by loess regression (see section
Step 4 for a technical explanation of this method). This is
exploratory analysis that can be used to inform further analytical
approaches. Smoothed curves for both events/week (Figure 1)
and events/month (Figure 2) demonstrate a decreasing trend
over time, with the frequency of events being relatively stable
during the period 2010 to 2013. If the aim of the analysis was
to investigate risk factors for the pattern of events observed,
this might suggest that the time-series can be truncated
to the period 2010 to 2013, inclusive. If changes in CPV
surveillance are of interest, further analysis might include
the entire time-series. In addition, these initial plots and
smoothed curves can inform the temporal scale of analysis.
Visual assessment of Figures 1 and 2 suggests that monthly
aggregation of events is sufficient to preserve the patterns
present in the data. However, if the aim of analysis is to
identify covariates associated with these patterns, the temporal
units used to collect covariate data would also need to
be considered.

Step 3: Linear Regression
After conversion of the events series to a computer-recognized
“time-series object” (C12), linear regression analysis was used
to further explore and quantify secular and seasonal trends
(C13). The outcome was the number of events per week (or
per month) and the predictors were time in weeks (or months)
to assess trend, and week (or month) of the year to assess
seasonality. Linear regression is used to confirm impressions
from time-series plots and smoothed curves (step 2), to test the
statistical significance and to quantify these trends. Identifying
such trends is a major component of analysis of time-series data,
and can lead to hypothesis-generation regarding potential causes
of such patterns.

Step 4: Decomposition
The time-series were then decomposed to separately visualize

temporal components including trend and seasonality and the

remainder component (also known as “random” or “white

noise”). Again, such visualization facilitates the identification
and characterization of patterns and potentially what might be
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FIGURE 1 | Confirmed canine parvovirus events/week reported from New South Wales in a surveillance system in Australia, 2009–2015. Blue line, loess smoothed

curve of events/week with 95% CI (gray).

causing such patterns. For example, the trend or seasonal pattern
might dominate. Alternatively, removing trend and season might
still result in the remainder time-series showing a discernable
pattern. This suggests greater complexity in the time-series (or
the incorrect choice of window size to calculate trend and
seasonal components).

Two methods were used: moving averages and “seasonal and
trend decomposition using loess” (STL; C14). Both are additive
models of the form Y[t] = T[t] + S[t] + e[t] in which Y[t]
is the model output at time t, T[t] is the trend component at
time t (which includes cyclical and longer trend patterns, the
“trend-cycle” component), S[t] is the seasonal component at time
t and e[t] is the remainder (or residual i.e., what remains in
the time-series after removing seasonal and trend components)
at time t. If the variance of the trend or seasonal components
of the time-series is not constant throughout the time-series, a
multiplicative decomposition is likely to be more appropriate
than an additive model.

In moving averages the trend component is determined using
a moving average window of an appropriate width. This trend
component is then subtracted from the original values, and the
data grouped by the seasonal element and averaged for each
season. The seasonal component is determined by subtracting the
average of the seasonal averages from each seasonal average.

A challenge is the choice of an appropriate moving average
width. A default width of three time units can be chosen,
meaning that for every observation in the time-series, the
observation immediately preceding and immediately following

that observation is used to calculate an average value. If data
within a time-series have been collected with a known periodicity
(for example, observation of disease conditions at an abattoir
collected every Monday and Tuesday), this could also be used to
inform the moving average width.

The STL method is an iterative process that recalculates
the seasonal and trend components by a loess smoothing
procedure that initially fits a low-order polynomial to the data.
A robustness weighting is calculated for each time point between
each iteration, and incorporated into the smoothing procedure in
the next iteration, which also uses the trend component from the
previous iteration (24).

Step 5: Fitting Autoregressive Models
Once the time-series has been explored using the methods above,

we use the information gained from these analyses to select and

fit an ARIMA model. For demonstration and due to the findings

in these exploratory analyses, seasonal autoregressive models

with an ARIMA structure were then fitted to the time-series.
Autoregression is the relationship between values in a time-series
and values in that same time-series measured previously in time

(the lag). For example, an autoregressive model of lag 1 describes

the relationship between observations and their value in the

preceding time unit. The Auto Regressive (AR) terms refer to the
number of lagged values in the model. In the non-seasonal part
of the model, the order of lagged values is termed “p,” and in the
seasonal part of the model the order of lagged values is termed
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FIGURE 2 | Confirmed canine parvovirus events/month reported from New South Wales in a surveillance system in Australia, 2009–2015. Blue line, loess smoothed

curve of events/month with 95% CI (gray).

“P.” Moving Average (MA) terms—not to be confused with the
calculation of a moving average in series decomposition—refer
to the number of lagged errors in the model. It is essentially the
relationship between current and lagged errors in the time-series.
In the non-seasonal part of the model, the order of lagged errors
is termed “q,” and in the seasonal part of the model the order
of lagged errors is termed “Q.” Integration (I) terms refer to the
number of differences used to make the time-series stationary.
In the non-seasonal part of the model, the order of differences
is termed “d,” and in the seasonal part of the model the order of
differences is termed “D.” The overall structure of the model can
be written as (p, d, q) (P, D, Q) m, in whichm refers to the number
of time-series observations in a seasonal cycle.

The time-series (weekly and monthly reported CPV events)
were assessed for stationarity to determine the orders for d and
D to use in the ARIMA model. Initially, an automated function
in R was used to determine if differencing was required for
both the non-seasonal components (d) and seasonal components
(D) of the ARIMA model using a sequence of unit root
tests (KPSS test as default, C16). Stationarity was then further
assessed using visualization of time-series plots, auto-correlation
function (ACF) plots, and statistical tests (C17−18). Statistical
tests included the Ljung-Box test, the Augmented-Dickey Fuller
(ADF) test and the Kwiatowski-Phillips-Schmidt (KPSS) test.
In the case of a non-stationary time-series, the time-series was
first-differenced and assessed again for stationarity. The objective
of applying this range of methods is to ensure that any need

for differencing—either non-seasonal or seasonal—is identified.
Some methods (particularly statistical tests) might not suggest
the need for differencing in specific datasets, so a conservative
approach is to apply several methods.

ACF and PACF plots were also used to assess the moving
average (MA; q, Q) and autoregressive (AR; p, P) non-seasonal
and seasonal components of the weekly and monthly ARIMA
models following differencing (C19). The ACF plot allows us to
visualize the correlation between values in the series and values
lagged at a certain number of time points previously, whereas
the PACF plot shows the correlation between values in the series
and those at a given lag after removing the effect of values at
intervening lags. ACF plots can indicate the moving average
order q to include in an ARIMA model i.e., the lag at which
autocorrelation becomes statistically non-significant. Similarly,
the PACF plot can inform on the autoregressive order p to
include. These functions can also be used to inform on seasonal
moving average and autoregressive orders, respectively. We give
a practical demonstration of how to interpret ACF and PACF for
the purposes of ARIMA model parameterization in section An
Example of Time-Series Analysis Methods—Canine Parvovirus
Reports, using the time-series of CPV events.

Auto-fitting was used to select a starting model (C20−21).
Further models were constructed that were simpler (lower
parameter terms than the auto-fitted models) but still within
the parameter terms for (p, d, q) (P, D, Q) that were estimated
during exploratory analysis (C22). The models with the lowest
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Akaike Information Criterion (AIC) estimates were selected.
Model fit was assessed by visualization of predicted time-series
relative to observed time-series, and examination of residuals
for stationarity (time-series plot, ACF plot, Ljung-Box test)
and normality. Because of the auto-fitting algorithms used
to identify candidate ARIMA models, it is important to also
visualize model(s) selected to ensure these make logical sense
and have a biological explanation. Once a final model has been
selected, it can be used to predict events for a specified time
period beyond the range of the time-series. A predictive model
can form the basis of a forecasting system, in which timely
anticipation of disease events allows response strategies to be
implemented. There are examples of forecasting in veterinary
science using time-series analysis (see section Literature Scan).
We demonstrate the use and interpretation of these methods in
the context of the CPV data below.

Step 6: Multivariate Analysis
To illustrate multivariate time-series analysis methods, a
corresponding time-series of rainfall was created. The center of
the postcodes in NSW from which CPV was reported during the
study period was identified. This was achieved by joining case
and event data to a polygon shapefile of NSW postcodes (ArcGIS
v. 10.5. ESRI). We then identified the central feature (Spatial
Analyst. ESRI), postcode 2850. From this postcode, a Bureau of
Meteorology weather recording station was identified [Mudgee
(062021), 32.58◦S, 149.58◦E] and daily rainfall data during the
period 1 January 2009 to 31 December 2015 was extracted 1. Any
missing data in the time-series were supplemented by accessing
data from the closest weather recording station [Mudgee Airport
AWS (062101)]. The rainfall time-series was then aggregated to
a monthly time unit to produce a time-series of total monthly
rainfall. Dependent on the data, other metrics might be more
appropriate, such as monthly median daily temperature or total
monthly degree-days.

Covariate time-series datasets are often derived secondarily
to the primary time-series of interest (often disease data
in veterinary science). Besides climate (including rainfall,
temperature and humidity), time-series data might be available
on economic indicators, landscape and environmental variables
and demographics. For analysis, data need to have the same
temporal scale and duration (including time lags) as the primary
time-series of interest, and should also broadly match the spatial
extent (i.e., when covariates are used, they should be derived from
the same area as the outcome of interest, rather than from a larger
or a different area).

The presence of substantial data gaps in the series (other
than randomly distributed missing data as in our CPV–rainfall
example) can render such series unusable if it is not possible to
impute data.

The rainfall data were prepared, described and decomposed to
assess temporal trends (C23). Quantitative assessments further
investigated the trend, seasonality and need for differencing
(C24). An automated function was used to fit a dynamic model
(ARIMA with rainfall as a predictor) to the CPV and rainfall

1http://www.bom.gov.au/climate/data/ accessed 30 September 2019.

time-series (C25). Model fit was assessed by visualization of the
predicted time-series relative to the observed time-series, and
examination of residuals for stationarity (time-series plot, ACF
plot, Ljung-Box test) and normality.

Finally, a vector autoregessive model was fit to the CPV and
rainfall time-series following examination of a cross-correlation
plot between the CPV and rainfall time-series (C26−28). These
models assume that a bi-directional relationship (“feedback”)
between the variables is possible. Whilst this might be a
useful premise in the context of time-series of disease in
different populations (for example, “who infects whom?”), in
the context of this dataset this is implausible (CPV events
cannot cause rainfall). However, we include the code for
demonstration purposes.

RESULTS OF ANALYZING A TIME-SERIES
OF CANINE PARVOVIRUS REPORTS

Step 1: Data Description
Between 2009 and 2015, a total of 24,602 cases and 19,048 events
were reported in the Disease Watchdog system. Of these, 20,182
and 15,499 respectively were dog cases and events. During this
time period, there were a total of 7,933 CPV cases and 5,837 CPV
events reported.

Following application of selection criteria (diagnostic method,
nil vaccination history), a total of 2,987 events (3,584 cases)
remained for analysis (1.2 cases per event). The earliest and latest
reporting dates were 6 October 2009 and 1 November 2015,
respectively. The duration of the time-series dataset was 2,218
days, 315 complete weeks and 74 complete months. The median
(range) number of cases reported per week was 9 (1–45), and the
median (range) number of events reported per week was 8 (1–30).

Step 2: Visualization
The temporal distributions of weekly and monthly events are
shown in Figures 1,2, respectively. A decrease in reported events
during the period was apparent in both time-series (indicated by
the blue line generated by a loess smoothing function). There
were no gaps in the time-series of events.

Step 3: Linear Regression
Linear regression analysis indicated that the decrease in
events/week was 1.22 each year (95% CI 0.87−1.57 events/week
each year). Statistically significant (P ≤ 0.05) decreases in the
number of events were observed in weeks 11, 24, 26−29, 31−35,
and 38. Linear regression analysis indicated that the decrease
was 5.76 monthly events/year (95% CI 3.02−8.50 events/year).
Statistically significant (P ≤ 0.1) decreases in the number of
events were observed in July and August (winter season).

Step 4: Decomposition
Plots of the decomposed time-series are shown in Figures 3,4.
The trend lines were consistent with Figure 2, and seasonal
cycles were apparent. The weekly and monthly seasonal cycles
were overlaid in Figure 5 and illustrated that whilst the patterns
were consistent with the regression analyses and with each
other, monthly seasonality had a simpler, less variable pattern
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FIGURE 3 | Components of a time-series of weekly confirmed canine parvovirus events reported from New South Wales in a surveillance system in Australia,

2009–2015. Y-axis units, parvovirus events/week. Gray bars on right y-axis indicate the equivalent magnitude of variation of each component (“trend,” “seasonal,”

“remainder”) relative to the “data” series, which demonstrates that most variation in the series is in the “remainder” component.

FIGURE 4 | Components of a time-series of monthly confirmed canine parvovirus events reported from New South Wales in a surveillance system in Australia,

2009–2015. Y-axis units, parvovirus events/month. Gray bars on right y-axis indicate the equivalent magnitude of variation of each component (“trend,” “seasonal,”

“remainder”) relative to the “data” series, which demonstrates that most variation in the series is in the “remainder”, and “trend” components.
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FIGURE 5 | Seasonal component of time-series of weekly (red) and monthly (black) confirmed canine parvovirus events reported from New South Wales in a

surveillance system in Australia, 2009–2015.

FIGURE 6 | Time-series (top), autocorrelation function (left), and partial autocorrelation function (right) plots of weekly aggregated confirmed canine parvovirus

events reported in a surveillance system in Australia, 2009–2015.
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FIGURE 7 | Time-series (top), autocorrelation function (left), and partial autocorrelation function (right) plots of monthly aggregated confirmed canine parvovirus

events reported in a surveillance system in Australia, 2009–2015.

than weekly seasonality. Both weekly and monthly remainder
components appeared to oscillate symmetrically around zero.

Step 5: Autoregressive Models
Decreasing trend in the weekly and monthly time-series, as
well as significant autocorrelation of 10 weeks and 2 months
in weekly and monthly ACF plots, respectively, suggested non-
stationarity (Figures 6,7). Automated testing of both weekly and
monthly series with a sequence of KPSS tests suggested that first
differencing of one order would make the series stationary for
the non-seasonal component of subsequent ARIMAmodels, and
that differencing was not necessary for the seasonal components
of these models. The differenced time-series plots and ACF
plots of the weekly and monthly time-series were plausibly
stationary—trend was less apparent and there was only one lag of
significant autocorrelation in the weekly ACF plot and no initially
autocorrelated lags in the monthly ACF plot (Figures 8,9).

Statistical tests of the weekly and monthly raw time-series
were consistent with these findings (Table 1). Ljung-Box tests of
both time-series suggested non-independence (P < 0.05). This
was expected due to the autocorrelation observed in the ACF
plots. ADF tests of both series suggested stationarity around
trend (P > 0.05). This was consistent with the time-series plots
in which there was decreasing trend but symmetrical oscillation
of the series around this trend. KPSS tests for trend-stationarity

also suggested trend-stationarity for both time-series (P > 0.1),
and lack of level-stationarity (trend was present) for both series
(P = 0.01).

Statistical test results for stationarity of the differenced time-
series were similar, except that the KPSS test suggested level-
stationarity (no trend) for both series. Overall, given the observed
series, ACF and PACF plots and the findings of the statistical
tests, both differenced time-series appeared more stationary than
raw weekly and monthly time-series, suggesting d = 1 of the
non-seasonal part of the weekly and monthly ARIMA models.

The ACF plot of the weekly time-series has a fast initial decay
with only the first lag significant. This indicates q = 1 for the
weekly ARIMA model. The ACF plot of the monthly time-series
has limited autocorrelation at 2 lags. This could indicate q= 0−2
for themonthly ARIMAmodel. The PACF plot of the weekly data
has a fast decay with significant partial autocorrelation in the first
two lags. This suggests p= 2. The PACF plot for the monthly data
has limited partial autocorrelation significant. This suggests p =

0−2 for the monthly ARIMA model.
For seasonality, there are spikes in the weekly ACF at

approximately 2 years, indicating Q = 1−2. There are 3 spikes
around 6 months in the PACF, indicating P = 3. For seasonality
in the monthly data, there are consistent spikes at 6 months,
suggesting Q = 2, and limited spikes in the PACF, suggesting
P= 0−1.
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FIGURE 8 | Time-series (top), autocorrelation function (left), and partial autocorrelation function (right) plots of differenced weekly aggregated confirmed canine

parvovirus events reported in a surveillance system in Australia, 2009–2015.

Auto-fitted ARIMA models for weekly and monthly time-
series had (p, d, q) (P, D, Q) [m] structures (3,1,1) (1,0,0) [52]
with drift to allow a decreasing trend over time (AICc= 1834.24)
and (2,1,1) (2,0,0) [12] (AICc= 632.61). Other simpler structures
were assessed with reduced orders for (p, d, q) (P, D, Q) that were
still within the orders estimated in the exploratory analysis.

The final selected ARIMA models for the weekly and
monthly time-series had the structures (2,1,1) (1,0,0) [52] with
drift and (2,1,1) (2,0,0) [12] (auto-fitted model), respectively.
Parameter values are shown in Tables 2,3. These models had
the simplest structure and lowest AICc, plausible forecast
plots, and reasonably normally distributed residuals that were
time-independent (ACF plots of residuals and Ljung–Box test;
P > 0.05).

Step 6: Multivariate Analysis
Although decomposition of the monthly rainfall time-series
(Figure 10) suggested a decreasing trend and seasonality, neither
were quantitatively significant. The rainfall time-series appeared
stationary (visually as a time-series and with ACF and PACF
plots, and also following statistical tests). Automated model
fitting of an ARIMA model of the monthly CPV events time-
series with rainfall as a predictor suggested that there was an
association between the previous 3 months’ rainfall and CPV
events (Table 4). The coefficients indicate that current and prior

rainfall are associated with an increase in parvovirus cases—
whilst current and recent (1–2 month lags) rainfall are associated
with an increase in cases currently, rainfall 3 months previously
are associated with a reduction in cases reported. Although all but
the 1 month rainfall lag coefficient are not statistically significant
(95% CIs include 1; P > 0.05), all variables are required in this
model to produce the best model fit.

Interpretation
Without detailed interpretation of the epidemiology of CPV
in NSW, general interpretation of the output from the above
analysis and some observations are as follows. During the
study period, most cases of CPV occurred as individual case
reports rather than events, but focusing on events (in which
cases are likely epidemiologically-linked) produces information
that is more meaningful for disease control and prevention.
The selection criteria applied mean that this event time-series
is accurate, even though it might not represent the entire
study population (owned dogs in NSW between 2009 and
2015) because of the voluntary nature of reporting within the
surveillance system. The length of the time-series analyzed is
2,218 days. Although this is a large size (N), daily fluctuations
in reporting necessitate aggregation to the week and month level
to better understand trends and patterns. In addition, knowledge
of daily patterns of occurrence and reporting are unlikely to
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FIGURE 9 | Time-series (top), autocorrelation function (left), and partial autocorrelation function (right) plots of differenced monthly aggregated confirmed canine

parvovirus events reported in a surveillance system in Australia, 2009–2015.

TABLE 1 | P-values of statistical tests for stationarity on weekly and monthly

time-series of confirmed canine parvovirus events reported in a surveillance

system in Australia, 2009−2015.

Weekly Monthly

Test Raw Differenced Raw Differenced

Ljung-Box <0.001 <0.001 <0.001 <0.001

ADF 0.86 0.42 0.95 0.60

KPSS trend >0.1 >0.1 >0.1 >0.1

KPSS level 0.01 >0.1 0.01 >0.1

ADF, augmented Dickey Fuller; KPSS, Kwiatowski-Phillips-Schmidt-Shin. P > 0.05

indicates failure to reject the null hypothesis.

match the temporal scale of disease causation investigations and
management of the disease.

The apparent decrease in reported events during the period—
especially toward the end of the series—likely reflects decreasing
enthusiasm for reporting in the surveillance system and then
an extended period of it being decommissioned. In addition to
this long-term trend in the CPV event data, seasonality was
apparent. This makes biological sense, since virus survival is
affected by climatic factors (25), dog management and behavior
can vary with the seasons and human activity, and breeding
cycles might add additional seasonality to CPV transmission.

TABLE 2 | Coefficients and 95% confidence intervals for parameters in an ARIMA

model fitted to a weekly time-series of confirmed canine parvovirus events

reported in a surveillance system in Australia, 2009−2015.

Parameter Coefficient 95% range

AR1 0.46 0.41 – 0.52

AR2 0.30 0.23 – 0.37

MA1 −1.00 −1.02 – −0.98

SAR1 0.11 −0.04 – 0.19

Drift −0.02 −0.04 – −0.00

Analysis also demonstrates how monthly aggregated data is
better than weekly aggregated data (and by implication, daily
reported data) for highlighting the seasonal patterns. Removing
trend and seasonal components, the remainder of this series
had a regularly repeating pattern, indicating that this series
of CPV events can be described using an ARMA or ARIMA
model. Through a series of documented procedures, ARIMA
models fit to the weekly and monthly CPV event series had
(generally positive) seasonal and non-seasonal autoregression
parameters of order 1 or 2 and a negative non-seasonal moving
average of order 1. This indicates that the occurrence of CPV
depends on preceding CPV in the relatively short term (prior
1 or 2 weeks or months, or season), modulated negatively
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FIGURE 10 | Time-series of confirmed canine parvovirus events reported in a surveillance system in Australia, 2009–2015 (top) and corresponding rainfall (below)

recorded from Mudgee, NSW (32.58◦S, 149.58◦E). Blue line, loess smoothed curve of events/month with 95% CI (gray).

TABLE 3 | Coefficients and 95% confidence intervals for parameters in an ARIMA

model fitted to a monthly time-series of confirmed canine parvovirus events

reported in a surveillance system in Australia, 2009−2015.

Parameter Coefficient 95% range

AR1 0.80 0.51 – 1.08

AR2 −0.29 −0.56 – −0.03

MA1 −0.90 −1.12 – −0.68

SAR1 0.16 −0.09 – 0.39

SAR2 0.29 0.03 – 0.56

by short term variation. This can be interpreted as a disease
that responds quickly to recent conditions, consistent with the
dynamic transmission of CPV within domestic dog populations.
Inclusion of rainfall as a predictor of monthly CPV events did
not change the model structure or modify parameter estimates

substantially, but indicated that increased rainfall in the previous
2 months and lower rainfall in the month before this is associated
with increased number of CPV events reported in the current
month. In addition, model fit (AICc) to the data is improved by
the inclusion of rainfall, suggesting that rainfall might play a role
in the pattern of CPV occurrence. Again, this association might
be explained via virus survival or dog behavior (25, 26).

CONCLUSIONS AND
RECOMMENDATIONS

To increase the application of methods to analyse time-series
data in veterinary epidemiology we recommend that wherever
feasible, such time-series data be made available both for analysis
and for methods development. We recommend that time-series
data be made available, because of those studies identified in our
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TABLE 4 | Coefficients and 95% confidence intervals for parameters in a Vector

Auto-regressive model fitted to a monthly time-series of confirmed canine

parvovirus events and rainfall reported in a surveillance system in Australia,

2009–2015.

Parameter Coefficient 95% range

AR1 0.58 0.30 – 0.86

AR2 −0.32 −0.56 – −0.08

MA1 −0.79 −0.98 – −0.60

SAR1 0.17 −0.05 – 0.39

SAR2 0.43 0.19 – 0.67

Rainfall 0m lag 0.07 −0.01 – 0.16

Rainfall 1m lag 0.12 0.04 – 0.21

Rainfall 2m lag 0.06 −0.03 – 0.15

Rainfall 3m lag −0.10 −0.18 – −0.01

literature scan and reviewed, about one-third described time-
series data but failed to use time-series analysis methods; rather,
the data were summarized without exploring temporal trends
and patterns and autocorrelation. Application of time-series
analysis methods has the potential to generate further insight
into the occurrence and distribution of animal diseases, disease
causation and how it can be used to facilitate surveillance and
disease control.

In addition, we recommend that further efforts are made to
make analysis of time-series data (whether in R or other software
platforms) more user-friendly and accessible. Although lack of
availability of data of sufficient length can preclude time-series
analysis, lack of familiarity with analytical methods and available
software might also limit the information generated by such
analyses. In addition, we also recommend that epidemiologic
assumptions underlying the analysis of time-series data—
particularly a constant population at-risk, non-sparse data, and
sources of bias—be thoroughly investigated in veterinary studies.
We have not described such investigations here, because they are
common to all epidemiologic analyses using observational data.

With developments in monitoring and surveillance systems,
and some systems being in existence for extended periods of
time, we expect more time-series data to become available
together with more software options. However, time-series
applications require further promotion to increase adoption
and use in veterinary epidemiology. Given that the most
often cited advantage of using time-series analyses is the
ability to predict disease occurrence, contributing to early
warning and therefore disease prevention, application of this
analytical method in veterinary epidemiology and preventive
medicine is warranted.
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