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Abstract MITF (microphthalmia-associated transcription

factor) represents a melanocytic lineage-specific transcrip-

tion factor whose role is profoundly extended in malignant

melanoma. Over the last few years, the function of MITF

has been tightly connected to plasticity of melanoma cells.

MITF participates in executing diverse melanoma pheno-

types defined by distinct gene expression profiles.

Mutation-dependent alterations in MITF expression and

activity have been found in a relatively small subset of

melanomas. MITF activity is rather modulated by its

upstream activators and suppressors operating on tran-

scriptional, post-transcriptional and post-translational

levels. These regulatory mechanisms also include epige-

netic and microenvironmental signals. Several transcription

factors and signaling pathways involved in the regulation of

MITF expression and/or activity such as the Wnt/b-catenin

pathway are broadly utilized by various types of tumors,

whereas others, e.g., BRAFV600E/ERK1/2 are more specific

for melanoma. Furthermore, the MITF activity can be

affected by the availability of transcriptional co-partners

that are often redirected by MITF from their own canonical

signaling pathways. In this review, we discuss the com-

plexity of a multilevel regulation of MITF expression and

activity that underlies distinct context-related phenotypes of

melanoma and might explain diverse responses of mela-

noma patients to currently used therapeutics.
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Introduction

Melanocytes are pigment-producing cells whose differ-

entiation, proliferation and survival largely depend on

MITF (microphthalmia-associated transcription factor), a

melanocyte-specific transcription factor [for review 1, 2].

Melanoma is a melanocyte-derived tumor in which MITF

dependence is retained [for review 3]; thus, MITF rep-

resents a lineage-restricted regulator that operates in

normal cells, and its activity is also used by malignant

cells. Enforced expression of MITF in immortalized

melanocytes [4] or neural crest progenitor cells [5] when

introduced together with melanoma-specific BRAFV600E

suggests MITF’s role as a melanoma addiction oncogene.

MITF is recognized as a driver of melanoma progression

[for review 6], but its role in suppression of invasion and

metastasis has been also shown [7–10]. By activating the

expression of almost one hundred genes, MITF can reg-

ulate multiple biological processes in melanoma cells

such as differentiation, proliferation, migration, and

senescence [11–13; for review 14, 15]. MITF also exerts

pro-survival role by activating the expression of anti-

apoptotic genes including BCL2A1, BCL2 and BIRC7

(ML-IAP/livin) [for review 16, 17]. Recent studies

implicate MITF in energy metabolism and organelle

biogenesis [18; for review 19]. This variety of often

mutually exclusive cellular programs driven by MITF

stands for distinct phenotypes of melanoma cells [12, 20,

21; for review 22, 23]. MITF is also recognized as a

major regulator in a ‘‘phenotypic switching’’ concept

explaining a high plasticity of melanoma cells [20, 21,

24–27; for review 22, 28]. Therefore, better understanding

of the intracellular mechanisms underlying a contextual

regulation of MITF is of utmost importance. In this

review, we focus on melanoma-related mechanisms
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underlying the regulation of MITF expression and

activity.

Gene structure and transcriptional regulation of MITF

In human, MITF locus is mapped to chromosome 3 and

spans 229 kbp. MITF encodes a b-HLH-Zip (basic helix-

loop-helix leucine zipper) transcription factor that belongs

to the MYC superfamily. Together with TFEB, TFEC and

TFE3, MITF constitutes the MiT (microphthalmia) family

of transcription factors [29]. All of them share a common

b-HLH-Zip dimerization motif containing a positively

charged fragment involved in DNA binding, and a transac-

tivation domain (TAD) [29]. As a result of differential usage

of alternative promoters, a single MITF gene produces

several isoforms including MITF-A [30], MITF-B [31],

MITF-C [32], MITF-D [33], MITF-E [34], MITF-H [35],

MITF-J [36], MITF-Mc [37] and MITF-M [38, 39]. These

isoforms differ in their N-termini encoded by exon 1, and

show tissue-specific pattern of expression. The expression of

the shortest isoform MITF-M (a 419-residue protein) is

limited to melanocytes and melanoma cells [39; for review

40]. MITF-Mdel, a variant of MITF-M harboring two in-

frame deletions within the exons 2 and 6, has been identified

as restrictedly expressed in these cells [41]. MITF contains

two TADs responsible for its transcriptional activity; how-

ever, a functional domination of the TAD at N-terminus over

that one at C-terminus has been reported [42]. MITF binds to

DNA as a homodimer or heterodimer with one of the MiT

proteins [29], but does not form heterodimers with other

b-HLH-Zip transcription factors such as MYC, MAX and

USF, despite a common ability to bind to the palindromic

CACGTG E-box motif [43]. It was shown that the heptad

repeat register of the leucine zipper in MITF is broken by a

three-residue insertion that generates a kink in one of the two

zipper helices, which limits the ability of MITF to form

dimers only with those bHLHZip transcription factors that

contain the same type of insertion [43]. Functionally, the

MITF-binding sites in the promoters of target genes involve

E-box: CA[C/T]GTG and M-box, extended E-box with an

additional 50-end flanking thymidine nucleotide:

TCATGTGCT [for review 44].

Genetic alterations in MITF and alternative splicing

Some genetic alterations have been associated with MITF.

Initially, high-density single nucleotide polymorphism

arrays revealed the MITF amplification in up to 20 % of

melanomas, with higher incidence among metastatic mel-

anoma samples [4]. This aberration correlated with

decreased overall patient survival [4]. However, in a recent

study involving targeted-capture deep sequencing, no copy

gains at the MITF locus have been found in a panel of

melanoma metastases [45]. Genetic abnormalities related

to MITF also include single base substitutions in the

regions encoding its functional domains [46]. These

somatic mutations, however, do not affect the DNA-bind-

ing ability of MITF in melanoma cells [47]. Recently, two

independent studies have identified a rare oncogenic

MITFE318K variant representing a gain-of-function allele

for MITF that is present in patients with familial melanoma

and a small fraction of sporadic melanomas [48, 49]. MITF

E318K has been described as a medium-penetrance gene in

melanoma associated with multiple primary melanomas

developed in its carriers [50, 51], and as predisposing to

renal carcinoma as well [48].

Alternative splicing is another mechanism of MITF

regulation in melanoma. Two spliced variants of MITF,

MITF(?) containing an internal six-amino acid fragment

encoded by exon 6a and MITF(-) that lacks this fragment,

have been described. These two variants possess different

activity, with anti-proliferative property of MITF(?). This

effect is tightly related to the interaction between the

N-terminal fragment of MITF(?) with its specific hexa-

peptide [52]. Activation of the MEK1-ERK2 (extracellular

signal-regulated kinase 2) pathway, independently of the

mutational status of BRAF and NRAS, has been indicated as

a mechanism underlying the expression of MITF splice

variants [53]. Additionally, the quantification of these

variants in a panel of 86 melanoma samples revealed the

apparently increased expression of MITF(-) in metastatic

melanomas [53].

Transcriptional activators of MITF

The transcriptional control of MITF is governed by a

number of transcription factors and their regulators asso-

ciated with signaling pathways involved in diverse cellular

processes (Fig. 1). SOX10 (sex-determining region Y-box

10)-responsive element was found between -264 and -

266 in the MITF promoter [54]. In addition, an activating

frameshift or non-sense mutations in SOX10 have been

identified in melanoma cells, and MITF and SOX10 have

been found mutated in a mutually exclusive manner [46].

The nuclear localization of SOX10 is maintained by a

protein tyrosine kinase TYRO3 [55]. SOX10 also cooper-

ates with CREB (cAMP response element-binding protein)

in the responsiveness of MITF to a-MSH (a-melanocyte-

stimulating hormone)-cAMP signaling. This constitutes a

tightly restricted mechanism of regulation due to a ubiq-

uitous expression of CREB and a cell type-limited

expression of SOX10 [56]. CREB is targeted by a number

of regulators that promote its phosphorylation at Ser133,

thus activating CREB-dependent transcription (Fig. 1) [57;

for review 58]. It has been demonstrated that p38, activated
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by either UV (ultraviolet radiation) or receptors, e.g., KIT,

phosphorylates CREB and promotes its binding to the

MITF promoter [57]. p21Cip1, a cell cycle inhibitor, has

been identified as a CREB co-factor involved in cAMP-

dependent MITF expression in melanoma [59]. MITF

expression can be also mediated by the complex of two key

effectors of the Wnt (wingless-type) signaling pathway,

LEF1 (lymphoid enhancer-binding factor 1) and b-catenin

[20, 60]. In contrast to b-catenin, a phenotype-specific

expression of LEF1 has been shown in melanoma cells

limiting LEF1/b-catenin-dependent MITF transcription to a

defined cellular context [20]. Importantly, MITF can

cooperate with LEF1 as a non-DNA-binding coactivator to

enhance its own expression [60]. It has been also demon-

strated that mediators of a-MSH/cAMP/PKA (protein

kinase A) signaling can redirect b-catenin to the CREB-

specific promoters to activate transcription of CREB target

genes including MITF [61]. Most recently, a transcription

factor involved in epithelial–mesenchymal transition [62;

for review 63, 64], ZEB2 (zing finger E-box binding pro-

tein 2) has been shown to activate MITF expression, and a

ZEB2 loss that resulted in a decreased MITF level and

several MITF-dependent target genes was associated with

melanoma progression [65]. In contrast to activating

potential of ZEB2 on the MITF promoter, ZEB1 has been

found to directly repress MITF expression in retinal pig-

ment epithelium [66]. Thus, the role of ZEB1 in the context

of MITF expression in melanoma needs to be elucidated.

On the level of chromatin remodeling, it has been dem-

onstrated that a SWI/SNF complex containing BRM

(Brahma) or BRG1 (Brahma-related gene 1) promotes

MITF expression [67].

Transcriptional repressors of MITF

Several transcription factors have been identified as direct

repressors of MITF (Fig. 1). Inverse expression of GLI2

(glioma-associated oncogene family member 2) and MITF-

M, relating to the mutually exclusive transcriptional pro-

grams, has been observed in melanoma cells [26]. GLI2 is

a Kruppel-like transcription factor activated by TGFb
(transforming growth factor b) [26]. Furthermore, a GLI2

binding site was identified in the -334/-296 region of the

MITF promoter confirming direct inhibitory activity of

GLI2 towards MITF [68]. The contribution of PAX3

(paired box 3) to MITF expression represents another

melanoma-specific mechanism. Although positive regula-

tion of MITF by PAX3 in melanocytes is well described

[69], PAX3 is thought to function independently of MITF

[70] or even play a repressive role on MITF expression in

melanoma [21]. PAX3 is activated by PI3 K (phosphati-

dylinositol 3-kinase) [71] and STAT3 (signal transducer

and activator of transcription 3) [72] in melanoma cells,

and a negative PAX3-dependent regulation of MITF

expression is mediated by BRN2 encoded by POU3F2 [21,

71]. Notably, BRN2-mediated repression of MITF tran-

scription represents a mechanism distinguishing between

melanoma cells and melanocytes due to the lack of BRN2

expression in the latter, which might be explained by the

involvement of melanoma-specific BRAFV600E in BRN2

Fig. 1 Transcriptional and post-transcriptional regulation of MITF

expression. The variety of MITF regulators, activated by diverse

signaling pathways often modified in melanoma, comprises a number

of transcription factors either promoting MITF expression (positive

regulators; shown in green) or inhibiting its transcription (negative

regulators; shown in red). Upstream regulators of these transcription

factors may indirectly affect MITF level. A correlation is also

observed between MITF level and activity of transcription factors,

e.g., NF-jB, not operating on MITF promoter. Moreover, a chroma-

tin-remodeling complex SWI/SNF promotes MITF expression. In

addition, MITF transcript can be either negatively regulated by miRs,

or stabilized by the association with CRD-BP
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upregulation [73]. Moreover, inverse expression of MITF

and BRN2 was shown in vitro [8] and in vivo [7]. The

antagonistic MITF and PAX3 expression has been pro-

posed as a switch model in which MITF and miR-211,

residing in the sixth intron of TRPM1, can activate one

cellular program while suppressing another one driven by

PAX3 and BRN2 [9, 21, 74]. MITF repression is also

mediated by DEC1 (differentially expressed in chondro-

cytes protein 1) whose recruitment to the MITF promoter is

regulated by HIF1 (hypoxia-inducible factor 1) [75].

As HIF1a is a MITF target [76] and can be expressed in

melanoma cells not only under hypoxic conditions [77],

this mechanism constitutes an interesting negative feed-

back loop regulating MITF expression.

Several proteins have been found to indirectly suppress

MITF expression by acting as upstream inhibitors of

positive regulators of MITF expression (Fig. 1). Indepen-

dently of its effect on GLI2, TGFb inhibits PKA that

otherwise promotes CREB-dependent MITF transcription

[68]. DKK1 (Dickkopf-1), a secreted inhibitor of the Wnt/

b-catenin pathway, has been shown to suppress both MITF

expression and the MITF-dependent differentiation pro-

gram [78]. Accordingly, both DKK1 expression and

secretion have been substantially reduced in the multicel-

lular anchorage-independent melanospheres showing high

expression of MITF and numerous MITF target genes [79].

ATF2 (activating transcription factor 2) displays inhibitory

activity towards SOX10 both in melanocytes and mela-

noma cells, resulting in a decreased MITF transcript level

[80]. A co-immunoprecipitation approach confirmed

selective affinity of BCSC1 (breast cancer suppressor

candidate-1) to SOX10, but not other MITF regulators such

as CREB, and down-regulated MITF mRNA level was

observed upon BCSC-1 overexpression [81]. MITF

expression is also affected by IFN-c (interferon c) that

inhibits CREB binding to the MITF promoter by inducing

the association of CBP (CREB binding protein) with

STAT1 [82].

Regulation of MITF transcript stability

Melanoma cells show high expression of CRD-BP (coding

region determinant-binding protein), an mRNA-binding

protein that has been found to stabilize MITF transcript

[83]. MITF transcript is also under control of several small

non-coding RNAs, microRNAs (miRs), which promote

mRNA degradation or suppress protein synthesis via

binding to 30-UTR of a target transcript [23]. miR-137,

located in the locus 1p22, negatively regulates MITF [84,

85]. No mutations have been found in the putative miR-

137-binding sites in the MITF mRNA 30-UTR, however,

miR-137 possesses a 15-bp tandem repeat in the pre-miR-

137 sequence that alters the processing and function of

miR-137 in melanoma cell lines [84]. In metastatic mela-

noma samples, MITF transcript has been determined as a

target of miR-182-mediated degradation [86]. miR-182 is a

member of the miR cluster residing in a chromosomal

locus (7q31–34) frequently amplified in melanomas.

Interestingly, overexpression of MITF has been related to

the suppression of the miR-182-dependent pro-invasive

effect [86]. p53-dependent miR-182 has been also found to

down-regulate MITF in uveal melanoma [87]. The 30-UTR

of MITF transcript is also targeted by miR-148 [88], miR-

101 [89] and miR-218, and inverse correlation between

MITF and miR-218 has been observed in melanocytes and

melanoma cell lines [90]. Notably, exosome-dependent

miR exchange between melanoma cells may influence

MITF transcript level as well [for review 91].

Regulation of MITF protein level and activity

The transcriptional activity of MITF depends on its post-

translational modifications and availability of co-operating

partners (Fig. 2). MITF can be regulated by phosphoryla-

tion maintained by ERK1/2 (at Ser73), p90RSK (at Ser409)

[92], GSK3b (at Ser298) [93, 94] and p38 (at Ser307) [95]. In

general, phosphorylation enhances transcriptional activity

of MITF [94, 95; for review 96]. The phosphorylation at

Ser73 promotes the interaction with a MITF co-factor,

histone acetyl transferase p300/CBP within the transacti-

vation domain of MITF [92]. On the other hand, this

modification promotes the binding of PIAS3 (protein

inhibitor of activated STAT3) that involves the N-terminal

fragment of PIAS3 and the leucine zipper of MITF [97,

98]. Interaction with PIAS3 leads to the attenuation of

MITF transcriptional activity. This effect is, however,

inhibited when MITF is phosphorylated at Ser409 in a

p90RSK-dependent manner [97]. The phosphorylation of

MITF at Ser73, a residue located within a degradation-

promoting PEST sequence, is also a prerequisite to the

MITF proteasome-dependent turnover [99] e.g., in

response to ultraviolet C radiation [100]. Lys201 has been

identified as a site of UBC9-mediated ubiquitylation of

MITF [99]. Proteasome-mediated MITF protein degrada-

tion has also been observed after double phosphorylation at

Ser73 and Ser409 [92]. An unphosphorylatable mutant at

Ser73/Ser409 has been very stable but transcriptionally

incompetent [92], indicating that signals promoting tran-

scriptional activity and degradation of MITF protein are

coupled in melanoma cells. Both phosphorylations pro-

moting MITF degradation depend on melanoma-specific

BRAFV600E causing the enhanced activation of MAPK

(MAP kinase)/ERK1/2 pathway [101]. Deubiquitinase

USP13 (ubiquitin-specific protease 13) has been linked to
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the protection of MITF from proteasomal degradation in

melanoma cells [102]. MITF can be also processed by the

effector caspases. It has been demonstrated in melanoma

cells that MITF-derived C-terminal peptide cleaved by

these proteases has a pro-apoptotic function [103].

MITF activity is also modulated by SUMOylation at two

lysine residues, Lys182 and Lys316 [104]. SUMOylation of

MITF depends on an E1 SUMO-activating heterodimeric

enzyme SAEI/SAEII and E2 SUMO-conjugating enzyme

UBC9 [104] (Fig. 2). It has been concluded that this

modification plays an essential role in the regulation of

MITF activity, and non-SUMOylatable MITF mutants

displayed increased transcriptional activity on distinct sets

of target genes [48, 49, 104, 105]. It has been also indicated

that PIAS3 can promote MITF SUMOylation at both SU-

MOylation sites [105]; however, this observation has not

been clearly supported by another report [104]. A recent

study on melanoma patients bearing the MITFE318K variant

[51], in which a point mutation occurs at the consensus

binding site for SUMOylation [105], supports the conclu-

sion that this substitution does not affect MITF protein

stability and nuclear localization.

Besides aforementioned regulations, MITF activity also

depends on the availability of co-operating partners such as

p300/CBP [92]. p300/CBP is a versatile regulator that links

transcription factors bound to DNA with a basal

transcriptional machinery, thus promoting the assembly of

pre-initiation complex [for review 106]. Immunofluores-

cence and immunoprecipitation studies have demonstrated

that MITF can physically interact with BRM and BRG1,

and depending on the type of SWI/SNF complex composed

of either the BRG1 or BRM subunit, different sets of

MITF-dependent genes are activated [107]. This, however,

is not an exclusive role of the BRG1-containing SWI/SNF

complex in melanoma since its MITF-independent activity

has been shown as well [108]. SOX10 can synergistically

activate the MITF-dependent genes as demonstrated for

MET [109]. It has been also shown that MITF can redirect

b-catenin from the Wnt signaling pathway, and engage it to

the activation of MITF-dependent genes [110]. Thus, SWI/

SNF complex, SOX10 and b-catenin can function not only

as activators of MITF expression (Fig. 1), but also as its

co-factors. HINT1 (histidine triad nucleotide-binding pro-

tein 1) has been identified as an inhibitor of transcriptional

activity of MITF acting through binding the chromatin at

the MITF sites [111]. Moreover, since HINT1 expression is

lost in primary melanomas [111], it may support a role of

MITF in melanomagenesis.

The mechanisms behind the regulation of MITF level

and activity are still being explored. Most recently, very

interesting correlations have been observed between

activity of MITF and other transcription factors, probably

Fig. 2 A schematic domain structure of MITF-M protein, a

melanocyte/melanoma-specific isoform, and its key regulatory mech-

anisms. MITF-M comprises 419 amino acids. The functional domains

of MITF-M common for all isoforms are encoded by the exons from 2

to 9. Phosphorylation enhances the transcriptional activity of MITF.

However, this modification may also promote proteasome-dependent

degradation of MITF, or enhance interaction between MITF and

p300/CBP. MITF can be subjected to USP13-mediated deubiquity-

lation, thus preventing MITF from proteasomal degradation. In

addition, MITF can be a target for other modifications, including

SUMOylation and caspase-mediated cleavage
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not operating on the MITF promoter (Fig. 1). HOXA1

(homeobox transcription factor 1) has been identified as a

potent inhibitor of MITF expression whose activity might

be concomitant with the activation of the TGFb pathway

[112]. An interesting repression mechanism has been

reported in melanoma cells expressing IL-1R (interleukin-1

receptor). The stimulation of melanoma cells with inter-

leukin-1a or 1b resulted in the reduction of MITF

expression, and it has been suggested that this process is

NF-jB-dependent [113]. Accordingly, a suppressive role

of the NF-jB signaling on MITF level has been reported

[114]. A reverse correlation has been observed between

MYC-related chromosomal copy number gains in 8q24 and

MITF expression [115]. In contrast, suppression of ETV1

(E twenty-six variant 1) was associated with a decreased

level of MITF protein [116]. Whether c-MYC and ETV1

can act as direct regulators of MITF remains to be eluci-

dated. Other poorly characterized regulators have been

associated with MITF level, and the detailed mechanisms

of their actions need to be clarified. PRMT5 (protein

arginine methyltransferase 5) is an enzyme involved in

post-translational protein modifications. PRMT5 expres-

sion has been found to be increased in melanoma, and

siRNA-mediated depletion of PRMT5 resulted in a sub-

stantial decrease in the level of MITF protein indicating a

positive regulatory effect [117]. A similar influence on the

MITF level has been demonstrated for PDE4D (phospho-

diesterase subtype 4D), and PDE4D-depleted cells have

shown a decreased MITF transcript level [118].

Final conclusions

MITF operates within a wide range of activity levels

determining melanoma cell fate (Fig. 3) [20, 24–27; for

review 22, 23, 28]. Melanoma cells expressing MITF at

high level can either differentiate or proliferate. Low

activity of MITF is related to stem cell-like or invasive

potential. Finally, long-term MITF suppression drives cell

senescence. Although genetic alterations, including muta-

tions and amplification of MITF, are found in melanoma

samples [4, 46, 48, 49], fluctuating MITF activity in mel-

anoma cells is rather due to microenvironmental cues,

critical epigenetic states and modifications of upstream

signaling pathways [7, 8, 10, 79, 104–138]. Different

combinations of those factors determine transcriptional

activity of MITF which in turn contributes to diverse cel-

lular capabilities. This may explain a variable MITF

expression across melanoma specimens but also between

different areas of individual tumor samples reflecting both

inter-tumoral heterogeneity and diversity of melanoma cell

subpopulations comprising a tumor mass [123, 124; for

review 125].

MITF does not exhibit a druggable target, and MITF-

aimed approaches are thought to be rather based on the

modulation of its upstream regulatory pathways [126, 127].

A number of natural and synthetic compounds have been

used to modify MITF activity. A few natural compounds

that either reduced or increased MITF transcript level in

heterogeneous patient-derived melanoma populations were

identified in our laboratory [128]. A dietary flavonoid

fisetin that targets Wnt/b-catenin pathway has substantially

reduced MITF expression and influenced MITF-dependent

cellular processes [129]. Downregulation of MITF at the

transcriptional level was observed for ciglitazone that also

showed anti-melanoma effects in vivo [130]. Hirsein A

reduced the expression of MITF by modulating the

expression of diverse components of MAPK signaling

pathway [131]. Several studies have linked a high MITF

level with the resistance to MAPK-pathway inhibitors

[132, 133; for review 134–136]. MITF targets are up-reg-

ulated by MAPK-pathway inhibitors [137], and enforced

expression of MITF in BRAFV600E melanoma cells pro-

motes resistance towards inhibitors of RAF, MEK and

ERK [for review 134]. As MITF expression can be reduced

by histone deacetylase inhibitors (HDACi) [138], com-

bined HDAC and MAPK inhibition was shown to prevent

MITF-driven resistance in melanoma cells [132]. Another

study suggests, however, that intrinsically resistant mela-

nomas can be characterized by low expression/activity of

MITF accompanied by enhanced activity of NF-jB sig-

naling, and BRAF inhibition in MITF-high, drug-sensitive

cells induces a transition to the MITF-low/NF-jB–high

state [114]. Most recent findings that modulation of MITF

Fig. 3 MITF expression and activity in melanoma cells are deter-

mined by genetic alterations, epigenetics, changes in upstream

signaling pathways and microenvironment. Different combinations

of those factors result in varied transcriptional activity of MITF which

contributes to diverse cellular programs from differentiation and

proliferation at high level of MITF activity to stemness and

senescence at the lowest one. However, the outcome is not stable

and can be modified by fluctuations in microenvironment-dependent

critical epigenetic states and signaling pathways. Several MITF-

dependent feedback mechanisms are also determined

1254 M. L. Hartman, M. Czyz

123



activity can drive phenotype switching in vivo, and abro-

gating MITF activity in melanoma leads to tumor

regression, but a low level of wild-type MITF is oncogenic

[27] indicate that further studies are needed.
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