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Abstract: Sickle cell disease (SCD) is the most common hemoglobinopathy worldwide. It is charac-
terized by an impairment of shear stress-mediated vasodilation, a pro-coagulant, and a pro-adhesive
state orchestrated among others by the depletion of the vasodilator nitric oxide, by the increased
phosphatidylserine exposure and tissue factor expression, and by the increased interactions of ery-
throcytes with endothelial cells that mediate the overexpression of adhesion molecules such as
VCAM-1, respectively. Extracellular vesicles (EVs) have been shown to be novel actors involved
in SCD pathophysiological processes. Medium-sized EVs, also called microparticles, which exhibit
increased plasma levels in this pathology, were shown to induce the activation of endothelial cells,
thereby increasing neutrophil adhesion, a key process potentially leading to the main complication
associated with SCD, vaso-occlusive crises (VOCs). Small-sized EVs, also named exosomes, which
have also been reported to be overrepresented in SCD, were shown to potentiate interactions between
erythrocytes and platelets, and to trigger endothelial monolayer disruption, two processes also known
to favor the occurrence of VOCs. In this review we provide an overview of the current knowledge
about EVs concentration and role in SCD.

Keywords: sickle cell disease; SCD; extracellular vesicles; EVs; microparticles; exosomes; biomarkers;
endothelial cells; neutrophils; microRNA

1. Introduction

Sickle cell disease (SCD) results from a single nucleotide mutation in the gene coding
for β-globin. The homozygous inheritance of this allele, noted βS, causes the most frequent
form of SCD, which affects 312,000 neonates worldwide per year [1] and is called sickle cell
anemia (SCA). In SCA, a mutated hemoglobin is produced, the hemoglobin S (HbS), instead
of the normal hemoglobin A. The second most common form of SCD is called HbSC disease
and is due to the co-inheritance of the βS mutation, with the βC allele. Co-inheritance of the
βS allele with other mutations of the β-globin gene, results in other sickle cell syndromes,
among which HbSDPunjab, HbSOarab, and HbS-βthalassemia. This recessive genetic disorder
is clinically characterized by chronic anemia and frequent painful vaso-occlusive crises
(VOCs). Besides VOCs, other complications are associated with this disease, such as acute
splenic sequestrations, acute chest syndrome, pulmonary hypertension, osteonecrosis,
leg ulcers, stroke, and priapism. Hydroxyurea (HU, or hydroxycarbamide) is the most
prescribed drug, whereas L-glutamine, voxelotor, and crizanlizumab, which are authorized
in the United States, have not received approval in Europe yet [2]. A promising research
area has been opened about one decade ago, related to the utility of extracellular vesicles
as diagnostic and prognostic tools, but also as therapeutic targets.

Extracellular vesicles (EVs) are a biomarker and an actor modulating the pathophysi-
ology of SCD. EVs are a heterogenous group of membrane-delimited particles produced by
nearly all cell types and detectable in multiple biological fluids including urine, broncho-
alveolar lavage fluid, sputum, synovial fluid, ascites, saliva, and plasma [3]. None of
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these vesicles contain the cellular machinery required for replication. Although detectable
in physiological condition, EVs have been detected at high levels in numerous diseases
including cardiovascular diseases, atherosclerosis [4], cancer, diabetes, [5] and COVID-
19 [6], with further increased levels for most severe cases, and are, therefore, considered as
biomarkers [7,8]. Indeed, similar to other tests based on blood samples, EVs quantification
and characterization is less invasive than many other techniques used to directly assess
biological states. Therefore, EVs could be biomarkers with a clinical utility in determining
risk in several diseases, including SCD [9]. Originally described as cell dust [10], it has been
shown that EVs play a role in cell-to-cell communication at both paracrine and systemic
levels [11,12]. Indeed, EVs can carry biological molecules such as proteins, lipids, and
ribonucleic acids (RNAs) to their target cells and thus modulate their biological properties
and phenotype [13]. In the current review, we will present the existing knowledge about
the characteristics and biological properties of EVs in the most frequently encountered
hemoglobinopathy worldwide, sickle cell disease.

2. Extracellular Vesicles

Thus far, the most well characterized EVs are exosomes, microparticles (also named
ectosomes or microvesicles), and apoptotic bodies. Although they differ in their biogenesis
pathways, they exhibit some overlap in their physical characteristics, such as their size
and density (see bellows). Since numerous studies do not provide any information on the
biogenesis of these vesicles and used either their size and/or their density to classify them,
the International Society of Extracellular Vesicles has introduced a new classification of
these vesicles and classified them as small EVs (sEVs), medium (mEVs), and large EVs
(lEVs) [14]. However, in this review, we will use the term of exosomes, microparticles, and
apoptotic bodies since they exhibit different biological properties and biogenesis pathways
to an extent [15].

2.1. Classification and Biogenesis of EVs
2.1.1. Classification of EVs

Exosomes, with a diameter range of 30–150 nm, are secreted from an exocytic chamber
called the multivesicular body (MVB). In contrast, microparticles (MPs) exhibit a wider
diameter range of 100–1000 nm and are produced from the outward blebbing of the plasma
membrane. At last, apoptotic bodies (1.0–5.0 µm) are shed from the cytoplasmic mem-
brane of apoptotic cells. Although EVs are spherical, since they do not have an internal
supporting structure similar to cells cytoskeleton, they can appear as cup-shaped struc-
tures [16] owing to fixation and dehydration procedures necessary for EVs visualization
through transmission electron microscopy. When visualized using atomic force microscopy,
they can be deformed during sample preparation and imaging [17]. The latter EVs also
exhibit alteration of the phospholipid symmetry with an abnormal externalization of phos-
phatidylserine, a feature shared with MPs [18]. Table 1 summarizes the main characteristics
of exosomes, microparticles, and apoptotic bodies [17,19].

Table 1. Main characteristics of exosomes, microparticles, and apoptotic bodies.

Exosome Microparticle Apoptotic Bodies

Size (nm) 30–150 100–1000 1000–5000
Density (g/cm3) 1.13–1.19 1.04–1.07 1.16–1.28

Origin Multivesicular body Plasma membrane Plasma membrane
Formation
mechanism Exocytosis of MVB Budding from PM Budding from PM

Production
pathway ESCRT-dependent * Ca2+-dependent

Apoptosis-related
pathways

MBV: multivesicular body; ESCRT: endosomal sorting complexes required for transport; PM: plasma membrane;
*: ESCRT-independent pathways have also been described.



Bioengineering 2022, 9, 439 3 of 19

2.1.2. Production of EVs

Exosomes derive from the endosomal system and their biogenesis involves three main
steps, namely the intraluminal budding of endosomal compartments, the formation of
the intraluminal vesicles (ILVs), and the fusion of MVBs with plasma membrane. It has
been shown that ILV formation is under the control of Endosomal Sorting Complexes
Required for Transport machinery [20], but the release of exosomes could be regulated
by an Endosomal Sorting Complexes Required for Transport-independent manner, which
involves tetraspanin microdomains and lipids raft [21,22]. If several mechanisms have been
proposed for the release of exosomes [12], the proteins with sorting functions critical for
the recruitment of cargo remain largely unknown. Their formation appears to occur both
constitutively and in response to various triggers in most cell types, if not all [11,23].

In contrast to exosomes and apoptotic bodies, MPs are produced in a few seconds after
stimulation [24]. They are formed by regulated release by budding/blebbing of the plasma
membrane (Figure 1) and their release is increased in cells submitted to stress conditions,
which leads to local cytoskeletal rearrangements and membrane budding [25,26]. Indeed,
the increase of intracellular Ca2+ concentration induced by these conditions affects the func-
tion of three enzymes, namely floppase, scrambase, and flippase, that are involved in the
maintenance of the asymmetry of cellular lipid bilayers, and leads to the externalization of
phosphatidylserine (PS) [27,28]. PS exposure is believed to be a key event in MP formation.
Moreover, the rise of intracellular Ca2+ activates proteases that cleave the cytoskeleton,
thereby weakening its interaction with plasma membrane and allowing the release of
MPs [29]. In addition, several molecules modulating the organization of the cytoskeleton
have been shown to either increase or decrease the production of MPs [19]. MPs are usually
described as exhibiting PS externalization, although MPs without externalized PS have
also been described [30]. Whether this observation results from a lack of sensitivity of the
detection method used remains an unanswered question.
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Figure 1. Biogenesis of EVs. Exosomes are produced following the fusion of multivesicular bodies
(MVB) with plasma membrane. Common exosomal markers are CD63, CD9, CD81, and flottilin.
Microparticle production results from intracellular Ca2+ concentration increase. These medium-sized
EVs expose phosphatidylserine (PS). Apoptotic bodies are produced during apoptosis and are the
larger type of EVs.

While exosomes and MPs could be secreted during all the cellular life, apoptotic
bodies are only produced during programmed cell death. The latest stages of apoptosis
are nuclear chromatin condensation followed by membrane blebbing and the destruction
of the cellular content into distinct membrane vesicles, the so-called apoptotic bodies [31].
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In contrast to the two other types of EV previously described, apoptotic bodies exhibit a
permeable membrane [32]. In addition to these large vesicles produced (1000–5000 nm),
smaller vesicles are also released [33], but it remains unclear whether the production of
these vesicles involves membrane blebbing.

2.2. Isolation of EVs

Most technical procedures used to isolate EVs are based either on centrifugation
or ultracentrifugation of biological fluids and cell supernatants, for apoptotic bodies or
exosomes and MPs, respectively [11]. Ultracentrifugation facilitates later research, but
gives a relatively poor sample purity. Another physical method is based on a density
gradient. This method provides a high purity but is more complex than ultracentrifugation.
Moreover, another method using immunomagnetic beads is less time-consuming than the
two previous ones, but requires reagents, which are significantly more expensive [34]. The
standardized protocols for exosomes purification may include ultracentrifugation coupled
with subsequent sucrose density gradient ultracentrifugation or, alternatively, sucrose
cushion centrifugation [16]. In contrast, standard isolation protocols for MPs are still
lacking. Since it has been well documented that pre-analytical and analytical conditions
significantly impact both quantitative and qualitative MPs analysis [11,35–37], specific
recommendations and guidelines have been produced [37,38]. However, many groups did
not apply these recommendations, leading to confusing and conflicting results. One reason
for not following these recommendations is, for example, that a double centrifugation
at 2500 g used to discard platelets, also depletes the samples in larger MPs [39]. Indeed,
there is an overlap in size between the largest MPs and the smallest platelets [40]. To our
knowledge, no standardized protocols have been produced for isolation of apoptotic bodies.
It is worth noting that none of the procedures used so far have allowed purification of only
one type of EVs.

Many techniques have been used for quantitative and/or qualitative analysis of EVs,
such as Western-blot, flow cytometry, dynamic light scattering, nanoparticles tracking
analysis (NTA), scanning and transmission electron microscopy, cryo-electron microscopy,
and atomic force microscopy [17,41]. Some of these techniques, NTA for instance, allow
researchers to determine the concentration of EVs, but not their cell type-of-origin and their
composition. Such techniques can produce results which are challenging to interpret, such
as increased EV levels, which can be accounted for by increases in multiple, or sometimes
only one EV subtype. Moreover, it seems crucial to determine EVs composition to better
interpret increased EV levels, which can result from increased number of cells producing
EVs, and/or from increased activation level of some cells. For all these reasons, up to now,
flow cytometry is clearly the most used technique for EVs analysis, including for exosomes,
using beads conjugated with antibodies targeting specifically proteins overrepresented
on their surface. A flow cytometer allows for each event passing through its flow cell, to
determine its size, granularity, and fluorescence intensity for several wavelengths. Fluores-
cence stems from fluorochrome-conjugated antibodies binding specific targets on or inside
the EV. Considering a target, when the positive and negative populations are not clearly
separated, a Fluorescence Minus One (FMO) control is crucial to set the upper boundary
of the background signal. Using fluorescent probes, such as labeled annexin A5, a protein
with high affinity for PS, and labeled antibodies binding membrane proteins specific of
each blood cell type, plasma concentration and cellular origin of MPs could be theoretically
established. However, flow cytometry encounters several shortcomings, including limited
sensitivity and resolution, leaving uncharacterized a significant proportion of the smallest
MPs, above all with the less sensitive flow cytometers [42]. Clearly, improvements for both
isolation and analytic procedures are still needed.

2.3. Composition of EVs

EVs are composed of membrane lipids, cytoskeletal, cytosolic, and plasma membrane
proteins and may contain several types of RNA including mRNA, miRNA, as well as
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ncRNA [43]. Genomic DNA has also been detected in apoptotic bodies [44]. Overall,
these vesicles contain a large number of molecules with biological activities related to
their involvement in cell-to-cell crosstalk. In addition, it has been recently shown that EVs
contain biologically active cytokines that could be released from these vesicles to their
targeted cells by a yet uncharacterized mechanism [45]. Recent reports also showed that
EVs generated ex vivo contain functional mitochondria [46–48].

Significant attempts have been undertaken to identify the molecular content of the differ-
ent types of EVs and several public on-line databases have been produced, such as Vesiclepedia
(www.microvesicles.org/, accessed on 29 July 2022) [49], Evpedia (www.evpedia.info, ac-
cessed on 29 July 2022) [50], and Exocarta (www.exocarta.org, accessed on 29 July 2022) [51].
It is worth noting that proteomic profiles are highly dependent on the procedures used to
isolate these EVs and, therefore, leading to uncertainties on their real content [43]. Besides,
while protein profiles have been initially thought to allow the identification of EV type,
it seems that no single marker can undoubtedly identify EVs. For example, it has been
shown that CD63, CD81, and CD9 were not specific markers of exosomes but could be
detected in MPs and apoptotic bodies [52,53]. Nevertheless, it has been shown that both
cell type origin and triggers leading to the release of EVs significantly impact their content
and, therefore, their biological properties [43].

3. Pathophysiology of SCD
3.1. Physiological Hemostasis and Inflammation

The pathophysiology of SCD relies on the disturbance of several physiological pro-
cesses, among which coagulation, vasoregulation, and inflammation are crucial. “Hemosta-
sis” comprises all the processes permitting to prevent excessive blood loss following injury,
including vasoregulation, which refers to the mechanisms allowing to modulate blood
vessels diameter. The term “inflammation” corresponds to the reactions to fight against a
pathogen. However, in SCD these reactions can occur in the absence of microorganisms and
are associated with hemolysis-mediated release of DAMPs (damage-associated molecular
patterns) [54] and MPs, among others.

3.1.1. Normal Hemostasis

When a blood vessel is severed or punctured, a three-step process occurs to prevent
further loss of blood: vascular spasm (a vasoconstriction step to reduce blood losses),
platelet plug formation and finally coagulation. As shown in Figure 2A, the coagulation
cascade leads to the conversion of prothrombin into its active form called thrombin, and
ends to the thrombin-mediated conversion fibrinogen into fibrin, which forms a mesh in
which red blood cells and platelets are trapped. The extrinsic pathway, also known as the
tissue factor pathway, is initiated due to a trauma undergone by extravascular cells, which
provokes the exposure of tissue factor, the coagulation factor III. The intrinsic pathway, also
called contact activation pathway, typically begins by the activation of factor XII, when it
encounters anionic molecules of the damaged vessel wall. Importantly, both the intrinsic
tenase and the prothrombinase complexes assemble on negatively charged phospholipids,
it is to say on phosphatidylserine.

Nitric oxide (or NO) is the main vasodilator [55]. It inhibits the action of the most
potent vasoconstrictor, endothelin-1 [56], by acting at the transcriptional and translational
levels, but also by impeding its release [57]. NO was also shown to inhibit the expression
of adhesion molecules by erythrocytes and leukocytes [58], and to prevent platelet aggrega-
tion [59]. The production of this vasodilator gas by NO synthase (NOS), from arginase, is
stimulated by shear stress, platelet aggregation, and thrombin; whereas hypoxia and some
pro-inflammatory cytokines increase endothelin-1 concentration (Figure 2B). However,
wall shear stress (WSS), the dragging frictional force generated by blood flow and blood
viscosity, is the main physiological NOS stimulus [60]. Moreover, both increase [61] and
decrease [62,63] in arterial caliber in response to increases or decreases in WSS, respectively,

www.microvesicles.org/
www.evpedia.info
www.exocarta.org
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and have been shown to involve endothelial release of NO. These results highlight the key
role of NO, to allow vessels to adapt their diameter variations in WSS.
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Figure 2. Physiological coagulation cascade activation, vasoregulation, and diapedesis. (A) Coagula-
tion cascade relies on the activation several factors and is composed of two pathways, the intrinsic,
and the extrinsic one, which both lead to the common final pathway; (B) Vasoregulation is mainly
regulated by the balance between the vasoconstrictor endothelin-1 (ET-1), and the vasodilator nitric
oxide (NO), which inhibits ET-1; (C) During diapedesis, free circulating neutrophil are tethered, then
they start rolling slower and slower due to their tethers and slings, until their firm arrest. Hereafter
they crawl to find the exit location where they are extravasated.

3.1.2. Normal Inflammation

In case of infection, neutrophils are the first recruited leukocytes. When they encounter
a pathogen, they can phagocytose it, release granules containing antibacterial proteins into
the extracellular milieu to kill it, or in case of a high activation level, release neutrophil
extracellular traps (NETs) to trap the microorganism [64] and facilitate its phagocytosis.
The notion that NETs could not only trap, but kill pathogens thanks to their decorating
antimicrobial proteins [65], is still a matter of debate.

Typically, neutrophil recruitment to an infected site requires its tethering, rolling, firm
adhesion, crawling, and transmigration to reach the infected site (Figure 2C). Tissue-resident
leukocytes release inflammatory mediators to change the endothelium adhesive properties,
or endothelial cells can be activated following the detection of pathogens by means of
pattern-recognition receptors (PRRs). Therefore, endothelial cells express P-selectin at their
membrane, within minutes. P-selectin interaction with neutrophil P-selectin glycoprotein
ligand-1 (PSGL-1), allow the tethering (that is, the capture) of the free-circulating leuko-
cyte. Endothelial cell activation also triggers de novo synthesis and as such upregulation of
E-selectin, within about 90 min [66,67]. E-selectin, which preferentially binds neutrophil
L-selectin, projects less further above the endothelial surface of endothelial surface than
P-selectin, and have partially overlapping functions with this last protein, allows to slow
neutrophil rolling [68]. Additionally, firm adhesion stems from interaction of integrins with
intercellular adhesion molecule-1 (ICAM-1) and ICAM-2 endothelial molecules. Lympho-
cyte function-associated antigen-1 (LFA-1, also called CD11a-CD18) and macrophage-1
antigen (MAC-1, also known as CD11b-CD18) are constitutively expressed by neutrophils
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but, to allow adhesion they require activation by a combination of mechanisms involving:
positively charged chemokines [69], MRP8/14 secretion [70], talin, and kindlin-3 binding
to the β chain of LFA-1, which, respectively, also cause conformational changes to further
decrease rolling velocity and to allow neutrophil arrest [71]. The leukocyte then begins a
MAC-1 dependent crawling step towards the exit site [72]. It is worthwhile noting that
neutrophils recruitment in other tissues, where high shear stress is encountered, such as
the brain for instance: platelets which can express more P-selectin than endothelial cells,
first adhere to the endothelium, and then allow neutrophils recruitment [73]. However,
after firm adhesion and crawling, it generally takes 2–5 min for the neutrophils to cross
the endothelium, and then 5–15 min to cross the basement membrane [66]. Subsequently,
neutrophils are directed by a gradient of chemo-attractants [74]. This review focuses on
intravascular adhesive mechanisms, and only briefly deals with extravasation given that
this process is less relevant to SCD pathophysiology; but for more specific details readers
are encouraged to refer to excellent reviews by Ley et al., 2007, and Vestweber, 2015 [66,70].

3.2. Dysregulated Mechanisms in SCD

SCD is a complex, evolutive, and clinically heterogeneous disease. In deoxygenated
vascular areas, HbS forms polymers, which makes sickled red blood cells (RBCs) less
deformable and more fragile. The resulting hemolysis stimulates the bone marrow and
accounts for the elevated count of stress reticulocytes of SCD patients. Whereas the transit
time of RBCs in deoxygenated territories should be insufficient to cause their sickling [75];
platelets, neutrophils, and endothelium pro-adhesive phenotypes observed in SCD, may
decrease microvascular blood flow, thereby increasing RBC transit time and allowing their
sickling before leaving the microcirculation [76]. These sickled RBCs, but also activated
neutrophils, platelets, endothelial cells are the main actors in SCD. Therefore, although
SCD results from a single point mutation, its pathophysiology relies on the disturbance
of several pathways, owing to abnormalities such as elevated hemolysis level and stress
undergone by the vascular endothelium.

3.2.1. Pro-Coagulant State

A procoagulant state is one of SCD pathophysiology hallmark [77,78]. SCD hyperco-
agulable state has been associated with increased risks of pulmonary hypertension [79],
in situ thrombosis of small vessels and venous thrombosis [80]. SCD patients exhibit low
protein C and S levels, suggesting their chronic consumption due to a constantly activated
coagulation cascade [81]. Tissue factor (TF) was reported to be elevated on SCD patients’
monocytes [82], neutrophils [83], and circulating endothelial cells [83]. Heme has been
shown to promote TF expression by mononuclear and endothelial cells [84,85]. This is
consistent with the constant detection in SCD patients’ plasma, of high levels of coagulation
markers such as D-dimers, plasmin-antiplasmin (PAP) complexes, thrombin-antithrombin
(TAT) complexes, and prothrombin fragment 1.2 (F1.2) [81].

The hyperactivity of the coagulation system in SCD is also caused by reticulocytes or
RBCs exhibiting externalized phosphatidylserine (PS). Owing to intravascular and extravas-
cular hemolysis, SCD patients exhibit erythropoiesis expansion and, therefore, increased
reticulocytosis. Although PS exposure by immature reticulocytes seems to be normal dur-
ing hematopoiesis, hyposplenia, or functional asplenia observed in SCD due to abnormal
RBCs trapping, increases the count of PS-exposing circulating mature reticulocytes [86].
Moreover, increased intracellular calcium concentration due to sickling and dehydration,
but also oxidative stress, account for elevated counts of PS-exposing sickle RBC and reticu-
locytes [87–89]. These cells may promote the activation of the coagulation cascade, since
PS is known to provide a docking site for tenase and prothrombinase complexes, which
activates the intrinsic pathway (Figure 3A). This correlates with reports of correlations
between F 1.2, D-dimers and PAP complexes, and PS-bearing sickle RBCs [90,91].



Bioengineering 2022, 9, 439 8 of 19

Bioengineering 2022, 9, x FOR PEER REVIEW 9 of 20 
 

the occurrence of a vascular occlusion [106]. The key role of neutrophils is highlighted by 

the absolute contraindication of myeloid growth factors such as granulocyte macrophage 

colony-stimulating factor (GM-CSF) or granulocyte colony-stimulating factor (G-CSF) in 

SCD patients [107–110]. Aged neutrophils [111], which are overrepresented in SCA pa-

tients [112], present a 70% increase in the adhesive molecule MAC-1 [113]. This last integ-

rin appears to have a crucial role in SCD since it allows neutrophils to adhere to endothe-

lial ICAM-1, but also to capture circulating RBCs [76] (Figure 3C). 

The RBC lifespan, which is normally of 120 days, is reduced in SCD to about 12 days. 

Hemolysis favors the release from the bone marrow, of reticulocytes; reaching a tenfold 

increase in their count, compared to normal conditions. These reticulocytes express high 

levels of adhesion molecules, among which intercellular molecule-4 (ICAM-4), a molecule 

shown to bind to MAC-1 and so allow RBC-neutrophil interactions [114]. Sickle patient 

RBCs commonly exhibit externalized PS, what promotes their adhesion [87]. Sickle red 

cells also exhibit alterations leading to the abnormal activation of erythroid adhesion mol-

ecules such as Lu/BCAM, ICAM-4 and CD44 [115,116]. As a consequence, erythrocytes 

interactions with the endothelium or with circulating of adherent platelets and neutro-

phils are facilitated [104,117,118] (Figure 3C). In addition, the pro-adhesive phenotype of 

RBCs of SCD patients and the reduced vasodilatory capacity account for an increased 

number of interactions between RBCs and endothelial cells, which was shown to upregu-

late the expression of VCAM-1 and ICAM-1 genes [119]. 

Besides, enhanced oxidative stress, partly due to HbS auto-oxidation, which induces 

superoxide anion, hydrogen peroxide, and hydroxyl radical production [120,121], is asso-

ciated with vascular alterations in SCD patients [122]. Free heme promotes the secretion 

of pro-inflammatory cytokines by activating monocytes/macrophages [123], platelets 

[124], endothelial cells [84], and neutrophils [125]. Moreover, NETs released by the latter 

cell type, were detected at high concentration in the plasma of SCD patients at steady 

state, with a further increase during crisis [125,126].  

 

Figure 3. Pro-coagulant and pro-inflammatory context in SCD. (A) In SCD, phosphatidylserine (PS) 

and tissue factor (TF) are exposed at elevated levels by several cell types and microparticles, which 

contributes to the increased activation state of this coagulation cascade; (B) The high hemolysis rate 

observed in SCD, contributes to the loss of vasodilatory reserve reported in this disease. Indeed, 

following hemolysis, free arginase will deplete the substrate allowing to form nitric oxide (NO), and 

free hemoglobin will carry out NO-scavenging. Therefore, the level of the vasoconstrictor endo-

thelin-1 (ET-1) is increased; (C) Several mechanisms including increased interactions of erythrocytes 

Figure 3. Pro-coagulant and pro-inflammatory context in SCD. (A) In SCD, phosphatidylserine (PS)
and tissue factor (TF) are exposed at elevated levels by several cell types and microparticles, which
contributes to the increased activation state of this coagulation cascade; (B) The high hemolysis rate
observed in SCD, contributes to the loss of vasodilatory reserve reported in this disease. Indeed,
following hemolysis, free arginase will deplete the substrate allowing to form nitric oxide (NO), and
free hemoglobin will carry out NO-scavenging. Therefore, the level of the vasoconstrictor endothelin-
1 (ET-1) is increased; (C) Several mechanisms including increased interactions of erythrocytes with
endothelial cells, allow the overexpression of intercellular adhesion molecule-1 (ICAM-1). Moreover,
SCD neutrophils have been shown to overexpress the integrin macrophage MAC-1, thereby allowing
increased interaction with the vascular endothelium and with erythrocytes.

3.2.2. Decreased Nitric Oxide Bioavailability

SCD patients are known for having a 50% increase in cardiac output [92], and a lack
of RBC deformability [93]. These two altered parameters contribute to the increased WSS
observed by Belhassen et al. in SCD patients [60]. Intriguingly, this augmented level
was accompanied by an unchanged vessel diameter, when compared to healthy controls;
thereby suggesting an impaired capacity to adjust vessel caliber to WSS in SCD. This failure
to adjust arteries diameter could result from defects in the transduction of the shear stress
signal, from impairments in the synthesis or the release of NO, or from an accelerated
degradation of NO. The results of this group excluded the two first hypothesis, in the favor
of the last one. Consistently, NO bioavailability is known to be drastically reduced in SCD
owing to the elevated hemolytic rate [94]. Indeed, hemolysis allows the release of arginase,
which impedes NO production by using L-arginine to produce ornithine (Figure 3B).
Hemolysis also induces the release of hemoglobin in the plasma, which reacts with NO
to form methemoglobin and nitrate. Consistently, decreased L-arginine concentration,
coinciding with high arginase plasma levels, were reported in SCD patients [95], but
also elevated concentrations of free hemoglobin and methemoglobin [95,96], which all
account for a decreased NO bioavailability [97] and, therefore, a reduced WSS-mediated
vasodilation. The decreased bioavailability of NO and the resulting endothelial dysfunction
have been associated with an increased risk of pulmonary hypertension [98], legs ulcers [99],
stroke [100] and priapism [101]. Besides, NO being an inhibitor of endothelin-1 (ET-1),
the decrease of its bioavailability accounts for the high level of ET-1 observed in SCD.
ET-1 binding to its receptor, has been shown to increase calcium concentration inside
erythrocytes and to facilitate Gardos channel opening, thereby potentiating erythrocyte
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dehydration and so increasing HbS concentration and its propensity to polymerize [102].
Moreover, since NO is an inhibitor of the expression of adhesive proteins by the vascular
endothelium [58], NO-scavenging by free heme and arginase-mediated decrease in NO
production both have a role in the pro-adhesive phenotype of endothelial cells in SCD.

3.2.3. Pro-Inflammatory State

Blood flow obstruction during VOCs, causes severe pain, and repeated VOCs can
lead to organ failure. A substantial proportion of the knowledge regarding the adhesive
processes leading to VOCs was acquired thanks to murine models of the disease [103,104]
or to microfluidics [105]. The etiology of the main SCD-associated complication, VOC,
involves the capture of neutrophils by the activated endothelium. Upon rolling, these
neutrophils exhibit active integrin that allow their full arrest. This adhesion in post-
capillary venules causes trapping of platelets, other neutrophils, and above all RBCs,
which lead to the occurrence of a vascular occlusion [106]. The key role of neutrophils is
highlighted by the absolute contraindication of myeloid growth factors such as granulocyte
macrophage colony-stimulating factor (GM-CSF) or granulocyte colony-stimulating factor
(G-CSF) in SCD patients [107–110]. Aged neutrophils [111], which are overrepresented in
SCA patients [112], present a 70% increase in the adhesive molecule MAC-1 [113]. This
last integrin appears to have a crucial role in SCD since it allows neutrophils to adhere to
endothelial ICAM-1, but also to capture circulating RBCs [76] (Figure 3C).

The RBC lifespan, which is normally of 120 days, is reduced in SCD to about 12 days.
Hemolysis favors the release from the bone marrow, of reticulocytes; reaching a tenfold
increase in their count, compared to normal conditions. These reticulocytes express high
levels of adhesion molecules, among which intercellular molecule-4 (ICAM-4), a molecule
shown to bind to MAC-1 and so allow RBC-neutrophil interactions [114]. Sickle patient
RBCs commonly exhibit externalized PS, what promotes their adhesion [87]. Sickle red
cells also exhibit alterations leading to the abnormal activation of erythroid adhesion
molecules such as Lu/BCAM, ICAM-4 and CD44 [115,116]. As a consequence, erythrocytes
interactions with the endothelium or with circulating of adherent platelets and neutrophils
are facilitated [104,117,118] (Figure 3C). In addition, the pro-adhesive phenotype of RBCs
of SCD patients and the reduced vasodilatory capacity account for an increased number
of interactions between RBCs and endothelial cells, which was shown to upregulate the
expression of VCAM-1 and ICAM-1 genes [119].

Besides, enhanced oxidative stress, partly due to HbS auto-oxidation, which induces
superoxide anion, hydrogen peroxide, and hydroxyl radical production [120,121], is associ-
ated with vascular alterations in SCD patients [122]. Free heme promotes the secretion of
pro-inflammatory cytokines by activating monocytes/macrophages [123], platelets [124],
endothelial cells [84], and neutrophils [125]. Moreover, NETs released by the latter cell type,
were detected at high concentration in the plasma of SCD patients at steady state, with a
further increase during crisis [125,126].

3.3. EVs as Novel Biomarkers in SCD

Circulating EV concentration has been shown to be increased in several cardiovas-
cular diseases [5,127]. Since plasma EVs concentration and composition reflects specific
signatures of cellular activation and injury, EVs characteristics may represent in the future,
a useful diagnostic and prognostic tool in several diseases.

In SCD, the concentration of the two most commonly identified MPs subtypes, RBC-
, and platelet-MPs is increased, compared to healthy controls [128,129] (Table 2). HU
treatment impact on MPs concentration is controversial, since several reports showed
decreases [128–130], unchanged [14,131], or increased [132,133] levels. These conflicting
results could be accounted for by the large interindividual variation in MPs concentra-
tion in SCD. However, a longitudinal study reported no change in MPs concentration
in patients receiving HU for 24 months [134]. To further characterize the biomarker sta-
tus of MPs, an observational study with an estimated enrollment of 360 participants has
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also been initiated (NCT012422878). A positive history of osteonecrosis of the femoral
head [135], leg ulcers [136], acute chest syndrome, and pulmonary hypertension [129]
has been associated with elevated concentration of MPs from various cell types. During
VOC, the concentration of PLT- and RBC-MPs was also reported to be increased in cross-
sectional settings [132,137,138], and in longitudinal studies including 17 SCD patients [139]
or 32 SCA patients [140]. Our group reported that SCA patients with frequent VOCs had
increased levels of PLT-MPs, compared to SCA patients with rare crises [141]. In SCA
patients, we showed using two longitudinal cohorts, that circulating PLT- and RBC-MPs
PS exposure level was increased during VOC, but decreased after two years under HU
treatment, when compared to steady-state conditions [39,134,140]. Therefore, PS exposure
by these MPs subtypes seems to be a promising marker of clinical severity and of HU
treatment efficacy. Further studies based on large cohorts are warranted to determine if
MPs PS exposure is a prognosis marker. Moreover, it seems important to determine if the
cost effectiveness of such a test is favorable, above all for the medical monitoring of patients
having frequent VOCs or patients who cannot be treated with HU. Moreover, the 2-year
long HU treatment provoked an increase in the size of RBC-MPs, probably resulting from
the improved RBC hydration provided by this drug [134].

Table 2. Studies reporting increased EV levels in SCD. Markers proving an origin from RBCs,
reticulocytes, platelets, monocytes, endothelial cells, leukocytes, or progenitor cells are mainly
CD235a, CD71, CD41a, CD14, CD106, CD45, or CD309/CD34 respectively.

Reference (Number
of Included Patients) Method EV Type EV Cell

Type-of-Origin EVs Concentration

Dembélé et al. [136]
(232 SCA patients) Flow cytometry MPs

RBCs, platelets,
monocytes, endothelial
cells, progenitor cells

RBC-MPs/mL: 6678 (SCA),
1533 (Controls); PLT-MPs/µL:

3320 (SCA), 2627 (Controls)

Kasar et al. [138]
(45 SCD patients) Flow cytometry MPs

RBCs, platelets,
endothelial cells,

monocytes

RBC-MPs (events/µL): 7.59 (SCD),
0.10 (Controls);

PLT-MPs (events/µL): 12.58 (SCD),
1.59 (Controls)

Shet et al. [137]
(16 SCD patients) Flow cytometry MPs RBCs, platelets,

monocytes

RBC-MPs/µL: ~650 (SCD),
~30 (Controls); PLT-MPs/µL:

~50 (SCD), ~50 (Controls)

Gerotziafas et al. [142]
(92 SCA patients) Flow cytometry MPs RBCs, platelets

RBC-MPs/µL: 1370 (SCA),
69 (Controls); PLT-MPs/µL:
1897 (SCA), 752 (Controls)

Garnier et al. [143]
(33 SCD patients) Flow cytometry MPs

RBCs, platelets,
monocytes, endothelial

cells, leukocytes

RBC-MPs/µL: 631 (SCA),
260 (HbSC); PLT-MPs/µL:
6485 (SCA), 4014 (HbSC)

Lappin-carr et al. [144]
(33 SCD patients)

Imaging flow
cytometry Exosomes

RBCs, endothelial cells,
hematopoietic

progenitors,
lymphocytes,

monocytes, platelets

RBC-Exo/µL: 31,338 (SCD),
9661 (Controls); PLT-Exo/µL:
2702 (SCD), 1116 (Controls)

Khalyfa et al. [145]
(32 SCA patients)

Imaging flow
cytometry, electron

microscopy
Exosomes

Endothelial cells,
endothelial progenitor

cells, monocytes,
platelets, RBCs

RBC-Exo/µL: 2,760,753 (SCA),
1,768,125 (Controls); PLT-Exo/µL:

5653 (SCA), 5435 (Controls)
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Unlike for MPs, only a few reports regarding exosomes in SCD have been published,
and none dealing with apoptotic bodies. We collaborated with a group who showed that
circulating exosome concentration was increased in SCD patients, compared to the con-
trols [144,145]. They also reported associations between the severity of the disease and the
counts of exosomes produced by monocytes, lymphocytes, and endothelial cells [145]. Of
note, the same group reported a signature of microRNAs contained into circulating exo-
somes, which distinguished severe from mild clinical profile between SCA patients [145].
These results suggest that circulating exosomes could become useful diagnostic and prog-
nostic tools used in clinical settings.

3.4. Effects of EVs in SCD

The externalization of PS is a key feature of MPs. Indeed, as stated before, MPs PS
provides a docking site for the intrinsic tenase and the prothrombinase complex [146–148].
In line with the pro-coagulant role of MPs due to their PS and TF [137], Scott syndrome,
characterized by a defect in platelet-derived MPs production, has been associated with
increased bleeding [149]. MPs generated ex vivo by platelets or erythrocytes, have also been
shown to trigger thrombin generation via factor XIIa [150]. However, whether circulating
MPs have similar biological properties remains unknown. Moreover, although PLT-MPs
are known to represent the commonest MPs subtypes in the circulation, most studies in
SCD, report associations between the concentration of RBC-MPs and coagulation cascade
activation. This paradox may be explained by the higher exposure of PS by RBC-MPs,
compared to PLT-MPs observed at steady state, in HU-treated or untreated patients, and
even during crisis [39,143].

PS was shown to allow MPs binding to endothelial cells [151,152]. Consistently,
increased PS exposure was associated to increased fusion with these cells [39,151,153].
These results are supported by the report of the expression of a PS receptor (PSR) by
endothelial cells [85], thereby allowing MPs to bind to these cells, and to modify their
phenotype. Moreover, PS was shown to allow MPs to retain heme, which was hereafter
transferred to endothelial cells [154]. RBC-MPs were shown to be internalized by myeloid
cells and to promote inflammatory cytokine secretion along with adhesion to endothelial
cells [155]. Barry and colleagues reported that PLT-MPs induced endothelial ICAM-1
expression [156], and Wang et al. showed that monocyte-derived MPs increased ICAM-1,
VCAM-1, and E-selectin expression, also in endothelial cells [157]. These results may partly
explain why the infusion of MPs was shown to trigger vaso-occlusion mice kidney [154].
Since the content of MPs is known to be influenced by the stimuli triggering their production
and by their cell type of origin, our group used circulating MPs, instead of MPs generated
ex vivo. Our results showed that MPs circulating during VOC, triggered a PS-dependent
ICAM-1 overexpression, compared to MPs from the same patients but at steady state [39].
On the contrary, ICAM-1 expression was reduced when MPs were isolated from the plasma
of SCA patients under HU treatment (Figure 4). Moreover, the adhesion of SCD neutrophils
to MPs-stimulated endothelial cells was decreased when using MPs from HU-treated
patients, and increased in an ICAM-1 dependent manner using MPs from patients in
VOC. We also showed that RBC-MPs from SCA patients at steady state, increased ICAM-1
expression and cytokines production in a TLR-4-dependent manner, compared to MP from
healthy controls [158].

Exosomes generated ex vivo by mesenchymal stem cells, multipotent progenitors
found in various tissues and having tissue-repair functions, were recently shown to have
procoagulant activities thanks to their PS and TF [159]. If such exosomes are found in
sufficient levels in the blood of SCD patients, they could play a crucial procoagulant
role in this disease. Vats et al. showed that pretreatment of platelets with LPS induced
inflammasome activation and the production of EVs richly packaged with IL-1β [160].
These EVs had a size corresponding to the one of exosomes, between 50 and 100µm for
most of them. Injection of such EVs from SCD platelets, was sufficient to induce lung
vaso-occlusion in SCD mice. Moreover, this deleterious effect of platelet-derived exosomes



Bioengineering 2022, 9, 439 12 of 19

was reduced using an IL-1 receptor antagonist. Their results suggest that drugs preventing
platelet exosomes production may be of benefit in SCD. Contrary to the previous group,
which used exosomes generated ex vivo, another one used circulating exosomes. The mode
of the size distribution curve for their EVs was 95nm, and these EVs were rich in exosomal
proteins (CD63 and flottilin-1). This group showed that SCD exosomes cause endothelial
monolayer disruption [144,145,161]. Importantly, the extent of the endothelial disruption
was even greater using exosomes circulating during acute chest syndrome [161] or during
VOC [162], compared to exosomes purified from the plasma of patients at steady state.
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Figure 4. Actors contributing to the occurrence of vaso-occlusions in SCA. Multiple triggering
mechanisms lead to a pro-coagulant, a pro-adhesive, and a vasoconstrictive state in SCD. They are
partly due to phosphatidylserine (PS) and tissue factor (TF) increased expression by MP, to MPs-
mediated increase of endothelial intercellular molecule-1 (ICAM-1) expression and to nitric oxide
(NO) decreased bioavailability, respectively. In this context, neutrophils can abnormally adhere to the
activated vascular endothelium. Next, secondary interactions with erythrocytes and platelets can
lead to a vaso-occlusion, a key event leading to vaso-occlusive crises (VOCs).

4. Conclusions

MPs concentration and PS exposure have been repeatedly shown to be modulated
according to clinical conditions such as HU treatment or crisis. However, the content
of circulating MPs has been poorly studied and should be further addressed to better
understand MPs biological properties. Although they are less studied, exosomes of SCD
patients may also become useful biomarkers given that their count and the microRNAs they
contain are associated to the severity of the disease. EVs were shown to carry cytokines in
several clinical conditions [45]. This pool of encapsulated cytokines should also be studied
as it modulates cell phenotype, such as plasma cytokines do. Furthermore, given that the
size, the content and the properties of EVs are known to fluctuate according to the factors
provoking their release [157,163,164], more effort should be made to replicate mechanistic
discoveries obtained with EVs generated ex vivo, using circulating EVs.

Circulating SCA MPs have been shown to trigger a PS- and ICAM-1-dependent
increase in neutrophil adhesion [39], the first step in the mechanisms leading to vaso-
occlusion. Since MAC-1 and LFA-1 complete blockade can be dangerous [165], given that
these integrins are crucial in diapedesis; other strategies based on a MPs PS-blocker such as
annexin A5, or targeting selectins [106], could be helpful by reducing neutrophil stasis in
post-capillary venules.
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Altogether, the studies cited in this manuscript show that EVs are biomarkers and
actors in SCD, they illustrate the dramatic increase in the knowledge acquired in this field
since EVs discovery in 1967 [10], thereby raising even more interest for future advancements
needed to better fight against SCD.
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