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Abstract 
Neurodegenerative diseases, such as Alzheimer’s disease, pose a significant global health challenge with their complex etiology and 
elusive biomarkers. In this study, we developed the Alzheimer’s Identification Tool (AITeQ) using ribonucleic acid-sequencing (RNA-seq), 
a machine learning (ML) model based on an optimized ensemble algorithm for the identification of Alzheimer’s from RNA-seq data. 
Analysis of RNA-seq data from several studies identified 87 differentially expressed genes. This was followed by a ML protocol involving 
feature selection, model training, performance evaluation, and hyperparameter tuning. The feature selection process undertaken in 
this study, employing a combination of four different methodologies, culminated in the identification of a compact yet impactful 
set of five genes. Twelve diverse ML models were trained and tested using these five genes (CNKSR1, EPHA2, CLSPN, OLFML3, and  
TARBP1). Performance metrics, including precision, recall, F1 score, accuracy, Matthew’s correlation coefficient, and receiver operating 
characteristic area under the curve were assessed for the finally selected model. Overall, the ensemble model consisting of logistic 
regression, naive Bayes classifier, and support vector machine with optimized hyperparameters was identified as the best and was 
used to develop AITeQ. AITeQ is available at: https://github.com/ishtiaque-ahammad/AITeQ. 
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Introduction 
Millions across the world are affected by Alzheimer’s disease 
(AD) that leads to cognitive impairments. For timely and effective 
treatment, early and accurate diagnosis of the disease is very 
important. Traditional diagnostic approaches often rely on clinical 
symptoms and neuroimaging, which might not capture the 
molecular intricacies of the disease. Ribonucleic acid-sequencing 
(RNA-seq), a high-throughput sequencing technique, offers a 
comprehensive snapshot of the transcriptome and enables the 
identification of gene expression alterations associated with 
neurodegeneration [1]. 

Machine learning (ML) algorithms have demonstrated remark-
able potential in analyzing large-scale, complex datasets like 
RNA-seq data. By integrating ML techniques, researchers can 

identify disease-specific gene expression signatures, classify 
patient samples, and predict disease progression [2]. ML models 
learn from patterns within the data and can uncover subtle 
relationships that might elude traditional statistical methods. 
Selection of important genes from RNA-seq data is an application 
of supervised ML techniques [3]. 

Identifying reliable biomarkers is a critical step in disease 
diagnosis and prognosis. ML models can aid in the discovery of 
potential biomarkers by pinpointing genes consistently associated 
with disease states. Since numerous RNA-seq studies are based 
on the comparison between cases and controls, one such study 
focused on the development of a logistic regression model where 
disease state was described as a function of RNA-seq reads [4]. 
The support vector machine (SVM) was also used for the early 
detection for both prediction and classification of AD [5]. Another
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Figure 1. Workflow of the study. RNA-seq data of AD and control were retrieved from NCBI. The raw reads were subjected to quality control using 
FastQC and subsequently aligned with the human reference genome (GRCh38.p13) using HISAT2. The quantification of reads was performed using the 
featureCounts algorithm, while the identification of DEGs was conducted using the DESeq2 statistical tool. Feature selection was carried out using four 
methods. It was followed by 13 ML model training, testing, hyperparameter tuning, and evaluation. 

study revealed the efficacy of the decision tree algorithm for 
construction of classifiers that can classify different AD genes 
[ 6]. Random forest model was also implemented to predict the 
individualized conversion from mild cognitive impairment stage 
to AD [7]. A more robust multi stage classifier-based approach 
consisting of K-nearest neighbor (KNN), SVM, and naive Bayes 
classifier was reported to be able to efficiently classify AD [8]. 
For biomarker-based early diagnosis of AD with high classification 
accuracy, gradient boosting algorithm was also used [9]. Analyzing 
single-cell RNA-seq data from patients with AD and healthy indi-
viduals using extreme gradient boosting (XGBoost) revealed genes 
with diagnostic potential [10]. A meta-analysis and ML-based 
integrative study identified differentially expressed microRNAs 
in blood as potential biomarkers for AD using adaptive boosting 
(Adaboost) [11]. Light gradient boosting machine (LightGBM) was 
used for feature selection to detect AD from circulating non-
coding RNAs [12]. 

Predictive modeling for AD detection is common using 
radiomics data. Radiomics has demonstrated promising out-
comes in the diagnosis of AD. Nevertheless, relying solely on 
imaging is insufficient for the detection of AD, and frequent radi-
ological examinations may result in further health complications 
[13, 14]. Hence, multiple methods of detection would be more 
robust than using a single method. 

In light of these advancements, we aimed to analyze publicly 
available AD-associated gene expression data and build a gene 
signature-based ML framework that can differentiate AD from 
control. For this purpose, several sophisticated feature selection 
methods and ML algorithms were utilized following the identifi-
cation of differentially expressed genes (DEGs). Findings from this 
study are likely to contribute to the better understanding of the 
genes most crucial for AD and utilize them as biomarkers. 

Figure 2. Regions of the brain from where the RNA-seq datasets were 
generated (with sample size n). 

Materials and methods 
A visual representation of the workflow followed in the study is 
illustrated in Figure 1. 

Data retrieval and preprocessing 
The NCBI Gene Expression Omnibus (https://www.ncbi.nlm.nih. 
gov/geo/) database was used to obtain the RNA-seq datasets 
from nine projects [15]. The NCBI BioProject IDs and the sam-
ple source for these projects are PRJNA675355 (source: Puta-
men), PRJNA683625 (source: neural progenitor cells), PRJNA767074 
(source: hippocampus), PRJNA796229 (source: substantia nigra, 
parietal lobe, hippocampus, basal ganglia), PRJNA279526 (source: 
hippocampus), PRJNA232669 (source: dorsolateral prefrontal cor-
tex), PRJNA377568 (source: fusiform gyrus), PRJNA413568 (source: 
lateral temporal lobe), and PRJNA516886 (source: fusiform gyrus; 
Fig. 2). A table containing more detailed information (sample
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size, counts of AD and healthy subjects, gender distribution, age 
range, and brain region) of each project has been included in 
Supplementary Table S1. 

Combining all datasets, the total number of samples were 433 
individuals, of whom 293 were diagnosed with AD and 140 were 
healthy controls. The RNA-seq data analysis workflow consisted 
of several steps. At first, the raw read quality was checked using 
FastQC [16]. Next, the alignment of the reads to the Homo sapiens 
GRCh38.p13 reference genome was carried out using HISAT2 [17]. 
The mapped reads were then distributed to genomic features. 
Finally, gene expression was quantified using FeatureCounts [18]. 
The count table was separated with a ratio of 80:20 with random 
shuffle and stratification where 80% data were kept for training 
and the further analysis, whereas 20% data were used as unseen 
test dataset. On the training dataset, the DESeq2 statistical tool 
was utilized to identify DEGs [19]. In order to adjust the P-values 
and ascertain the reliability of the identified DEGs, the false 
discovery rate method was employed [20]. Between the control 
and AD groups, the fold change (FC) of each gene was calculated. 
Genes with a P-adjusted value of <.01 and a Log2FC value > 
|0.5| were considered as significant DEGs [19]. The normalized 
and variant stabilized count of these significant DEGs were used 
as the features for ML. Moreover, limma::removeBatchEffect() 
function was separately applied on train and test datasets to 
remove the batch effects [21]. The normalized, variance stabilized, 
and batch effect removed datasets were used for feature 
selection. 

Oversampling technique for the minority class 
To overcome the data imbalance, synthetic minority oversampling 
technique (SMOTE) was applied on the training dataset. SMOTE 
created synthetic samples combining real points in the feature 
space to provide new minority class data [22]. 

Feature selection for ML models 
This study utilized a comprehensive array of feature selection 
strategies to unravel the most important features needed for 
training various ML models. The determination of feature impor-
tance was conducted through the application of four separate 
methodologies, namely random forest classifier [23], gradient 
boosting classifier [24], recursive feature elimination [25], and 
LassoCV [26]. Feature selection was performed only on the train-
ing set to avoid information leakage. In our study, we utilized 
the scikit-learn “SelectFromModel” function of the RandomForest-
Classifier and GradientBoostingClassifier algorithms to assess the 
relative importance of each feature in the model. The recur-
sive feature elimination technique entails iteratively eliminat-
ing features with the least significance by employing a linear 
regression model. Furthermore, the LassoCV technique employed 
a Lasso linear regression model to award significance scores to 
features according to their coefficients. These strategies, when 
used together, enabled the identification of important features 
from our dataset. A Venn diagram was constructed with the top 
10 features identified by each approach, and the set of features 
that were found to be common to all methods were selected. 
Subsequently, the selected features were utilized to build and 
refine ML models for AD classification. 

ML model training 
Scaling of features is an important part of data preprocessing in 
most ML methodologies. In this study, the input features were 
scaled utilizing the “StandardScaler” function from the prepro-
cessing module in the scikit-learn toolkit [27]. The mean and 

standard deviation of the training dataset was applied on the 
test dataset for standard scaling. Afterward, the test dataset was 
utilized to evaluate the performance of the models that were 
trained on the training dataset. The training process involved 
the utilization of 13 ML models, namely logistic regression, SVM, 
decision tree, random forest, naive Bayes, KNN, gradient boosting, 
Adaboost, XGBoost, LightGBM and multilayer perceptron (MLP) 
classifier, Ensemble Model 1 (logistic regression + naive Bayes 
classifier + SVM + MLP classifier with soft voting), and Ensemble 
Model 2 (logistic regression + naive Bayes classifier + SVM with 
soft voting). 

Logistic regression 
In ML, logistic regression is an algorithm that is frequently used 
for solving regression tasks where the dependent variable is cate-
gorical in nature. It predicts the probability of the dependent vari-
ables by estimating the coefficients of the independent variables 
in the ML model [28]. 

SVM 
SVM is a powerful ML model, which is used in both classifica-
tion and regression domains. Recognition of the hyperplane that 
achieves the maximum separation between two classes is the 
primary goal of SVM. Identification of such hyperplanes relies 
upon the identification of the support vectors [29]. 

Decision tree 
Decision tree is an ML model where each internal node of the tree 
is equivalent to a choice made based on a particular attribute, 
and each leaf node corresponds to an output of classification 
or regression. The algorithm iteratively divides the dataset into 
smaller subsets. It continues to look for the feature that contains 
the most significant information, until a predetermined output is 
found [30]. 

Random forest 
Random forest is a notable ensemble learning strategy that is 
utilized for not just classification and regression but also feature 
selection. In case of ensemble learning, numerous decision trees 
are put to use for enhanced accuracy and generalization [23]. 

Naive Bayes 
Naive Bayes is a Bayes’ theorem-based probabilistic model that 
calculates the likelihood of a class from a given set of features. 
It assumes that the features are independent of each other while 
assigning them a class label, thereby getting the name “naive” [31]. 

KNN 
KNN is a nonparametric method that is mainly used to decipher 
problems involving classification and regression. KNN functions 
through the identification of neighboring data points based on 
their similarity [32]. 

Gradient boosting 
Gradient boosting exhibits remarkable efficacy in making 
predictions from intricate datasets, such as RNA-seq data. It is 
an ensemble method that iteratively combines numerous weak 
learners in order to generate strong learners which can eventually 
make accurate predictions [33]. 

Adaboost 
The Adaboost algorithm takes an iterative approach to modify 
the weights assigned to the training data, with the objective of
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focusing on the misclassified cases in each iteration. During each 
iteration, Adaboost uses a weak learner to train on a certain 
subset of the training data. It takes into account its classification 
error and assigns a weight to each training example. The weights 
assigned to misclassified examples are augmented, while the 
weights assigned to correctly classified examples are diminished. 
This technique is iteratively implemented until a predetermined 
outcome is satisfied [34]. 

XGBoost 
XGBoost algorithm enhances the conventional gradient boosting 
approach by integrating well established regularization methods 
such as L1 and L2 regularization, to minimize the possibility 
of model overfitting. Additionally, XGBoost employs a novel 
approach to estimate the second-order gradient of the loss 
function. Thus, it enhances both the speed of convergence and 
the accuracy of the model to solve regression and classification 
tasks [35]. 

LightGBM 
The LightGBM is a framework that utilizes a collection of weak 
learners, most commonly in the form of decision trees, with the 
objective of constructing a strong learner. It operates by iteratively 
including additional models into its ensemble learning approach, 
with a primary objective of lowering the gradient of the loss 
function [36]. 

MLP classifier 
MLP classifiers are artificial neural networks with fully connected 
neurons and activation functions. MLP classifiers can differenti-
ate data that are not linearly separable [37]. 

Ensemble modeling 
Two ensemble models were constructed. The first one incorpo-
rated logistic regression, naive Bayes classifier, SVM, MLP clas-
sifier (Ensemble Model 1). The second one incorporated logistic 
regression, naive Bayes classifier and SVM (Ensemble Model 2). 
The ensemble models also employed a soft voting algorithm to 
merge predictions from the classifiers, leveraging the probability 
of each prediction. 

Hyperparameter tuning 
Hyperparameter tuning is a crucial step in optimizing the 
performance of ML models and was an integral component 
of the current study. The primary objective of hyperparameter 
tuning is to identify the optimal configuration of hyperpa-
rameters that maximizes the models’ performance. In this 
study, we utilized the scikit-learn library in Python to conduct 
comprehensive hyperparameter tuning for all ML models. Our 
hyperparameter tuning process involved utilizing GridSearchCV 
to systematically traverse the hyperparameter space [38]. The 
best-performing hyperparameters were chosen based on the 
results of the search, ultimately enhancing the generaliza-
tion ability of our models and ensuring their robustness to 
overfitting. 

K-fold cross-validation with hyperparameter 
tuned ensemble model 
Cross-validation is an important method in ML, as it provides 
a more reliable estimate of the success of the model on 
unseen data as opposed to a single train-test split. It has the 
ability to remove the variability that might arise as a result of 
using a single partition of the data for testing. After training 

13 previously mentioned models, the “StratifiedKFold” function 
from scikit-learn was used to perform a 10-fold cross-validation 
by concatenating training and test dataset [39]. During each 
iteration, one-fold was used as the validation set. The remaining 
nine-folds were used for training. In each of 10 iterations, the 
performance of the model was evaluated by calculating accuracy, 
Matthew’s correlation coefficient (MCC), Area under the receiver 
operating characteristic curve (AUC–ROC), and F1 score. The 
average of these 10 results was calculated to get an overall 
measure of how the models were likely to work on unseen 
data. 

Establishment of Alzheimer’s Identification Tool 
The full Alzheimer’s Identification Tool (AITeQ) documentation 
containing the instructions on how to run the tool for AD pre-
diction can be found at https://github.com/ishtiaque-ahammad/ 
AITeQ. 

The entire experimental setup has been summed up in 
Figure 3. 

Results 
Eighty-seven DEGS were identified 
The quality assessment of the raw-sequencing data was con-
ducted for a total of 433 raw sequences, revealing that all of 
them were of high quality. After aligning the reads to the human 
reference genome, a total of 62 702 genes were discovered. These 
genes were then subjected to differential expression analysis in 
the quantification step. A comprehensive analysis revealed that a 
total of 87 genes had differential expression in samples obtained 
from patients with AD under P-adjusted value of <.01 and a 
Log2FC value > |0.5| parameters. 

Ensemble Model 2 exhibited best overall 
performance 
Top important features were identified by each of the four feature 
selection tools (Table 1). Among these features, five genes were 
found to be commonly identified by all four tools (Fig. 4). These 
five genes (CNKSR1, EPHA2, CLSPN, OLFML3, and  TARBP1) were  
finally selected as features to be used for training 13 ML models. 
After systematic exploration of a wide range of hyperparame-
ters in order to find the optimal combination for each of the 
13 ML models, the best hyperparameter values obtained have 
been summarized in Table 2. The performance of the models 
was evaluated based on accuracy (Fig. 5), MCC (Fig. 6), AUC–ROC 
(Fig. 7), F1 score for non-AD (Fig. 8), and F1 score for AD (Fig. 9) 
before and after hyperparameter tuning. Supplementary Table 
S2 contains the values of these performance metrics in tabular 
format. Kruskal–Wallis rank sum test was used for calculating the 
statistical significance of the differences in performance (accu-
racy, MCC, AUC–ROC, and F1 score) of the considered classifiers. 
However, the differences in performance were not statistically 
significant according to the Kruskal–Wallis rank sum test. The 
result has been included in Supplementary Table S3. After  hyper-
parameter tuning, the Ensemble Model 2 exhibited the best over-
all performance (Accuracy = 0.74, MCC = 0.41, AUC–ROC = 0.73, F1 
score_non_AD = 0.59, F1 score_AD = 0.81). 

K-fold cross-validation with hyperparameter 
tuned Ensemble Model 2 
Cross-validation is an important method in ML as it provides a 
more reliable estimate of the success of the model on unseen 
data as opposed to a single train-test split. It has the ability
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Figure 3. The experiment setup. After splitting the total data into training and test data, they followed separate courses. The training data were subjected 
to DEG analysis, batch effect removal, SMOTE, feature selection, and standard scaling before model training, while the test data underwent batch effect 
removal (independently from training data) and standard scaling before model testing. The trained models were then applied on the test data. AITeQ was 
established after the tested models went through hyperparameter tuning, selection of best model, and 10-fold cross-validation. Performance evaluation 
was carried out at three different stages (before and after hyperparameter tuning and during 10-fold cross-validation) in order to gain important feedback 
and continue on to the next stage of the workflow. 
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Table 1. Selected features or genes (Ensembl ID) from random Forest classifier, gradient boosting classifier, recursive feature 
elimination, and LassoCV 

Random forest Gradient boosting classifier Recursive feature elimination LassoCV 

ENSG00000059588 ENSG00000059588 ENSG00000059588 ENSG00000059588 
ENSG00000092607 ENSG00000092607 ENSG00000092853 ENSG00000092607 
ENSG00000092853 ENSG00000092853 ENSG00000116774 ENSG00000092853 
ENSG00000116679 ENSG00000116254 ENSG00000142615 ENSG00000116774 
ENSG00000116774 ENSG00000116774 ENSG00000142627 ENSG00000122224 
ENSG00000116824 ENSG00000117592 ENSG00000142675 ENSG00000127472 
ENSG00000117091 ENSG00000122224 ENSG00000157064 ENSG00000142627 
ENSG00000122224 ENSG00000123080 ENSG00000157978 ENSG00000142675 
ENSG00000123080 ENSG00000142615 ENSG00000184371 ENSG00000162571 
ENSG00000127472 ENSG00000142627 ENSG00000235777 ENSG00000183298 
ENSG00000142615 ENSG00000142675 ENSG00000203859 
ENSG00000142627 ENSG00000143631 ENSG00000231615 
ENSG00000142675 ENSG00000157064 ENSG00000232878 
ENSG00000143119 ENSG00000157978 
ENSG00000143631 ENSG00000162618 
ENSG00000157064 ENSG00000181656 
ENSG00000157978 ENSG00000215808 
ENSG00000158014 ENSG00000225675 
ENSG00000172260 ENSG00000227056 
ENSG00000181656 ENSG00000227466 
ENSG00000183298 ENSG00000227741 
ENSG00000183317 ENSG00000228187 
ENSG00000184371 ENSG00000231364 
ENSG00000187513 ENSG00000231615 
ENSG00000197106 ENSG00000232650 
ENSG00000203859 ENSG00000233623 
ENSG00000215808 ENSG00000235777 
ENSG00000215874 ENSG00000236290 
ENSG00000223489 ENSG00000284696 
ENSG00000225087 ENSG00000117592 
ENSG00000225675 
ENSG00000226759 
ENSG00000227056 
ENSG00000227741 
ENSG00000228057 
ENSG00000230523 
ENSG00000230817 
ENSG00000231364 
ENSG00000231615 
ENSG00000232650 
ENSG00000232878 
ENSG00000233623 
ENSG00000235777 
ENSG00000236290 
ENSG00000237505 
ENSG00000270911 
ENSG00000284696 

to remove the variability that might arise as a result of using 
a single partition of the data for testing. The “StratifiedKFold” 
function from scikit-learn was used to perform a 10-fold cross-
validation by concatenating training and test dataset using the 
hyperparameter tuned Ensemble Model 2. During each iteration, 
one-fold was used as the validation set. The remaining nine-
folds were used for training. After each of the 10 iterations, 10 
individual accuracy, MCC, AUC–ROC, and F1 scores were obtained 
based on how well the models performed on the validation set. 
The average of these 10 accuracy, MCC, AUC–ROC and F1 scores, 
was calculated to get an overall measure of how the models were 
likely to work on overall data ( Fig. 10). The raw values of each 
fold of cross-validation have been included in Supplementary 
Table S4. 

AITeQ implementation 
The structure of the final AITeQ ensemble model is described in 
Figure 11. AITeQ documentation can be found at https://github. 
com/ishtiaque-ahammad/AITeQ. The tool can be used directly 
through the Google colab platform [40]. 

Discussion 
Integration of ML methods with transcriptomics data processing 
has been reported to benefit the understanding of complicated 
neurodegenerative illnesses like AD. Along these lines, the current 
study aimed at analyzing RNA-seq data using ML algorithms to 
predict AD. The findings from this study will contribute to the

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae291#supplementary-data
https://github.com/ishtiaque-ahammad/AITeQ
https://github.com/ishtiaque-ahammad/AITeQ
https://github.com/ishtiaque-ahammad/AITeQ
https://github.com/ishtiaque-ahammad/AITeQ
https://github.com/ishtiaque-ahammad/AITeQ
https://github.com/ishtiaque-ahammad/AITeQ


AITeQ for Alzheimer’s prediction | 7

Table 2. Best hyperparameter values for ML models following tuning 

ML model Hyperparamters Selected value 

Logistic regression C 0.01 
SVM C 0.1 

Gamma 0.001 
Decision tree Max depth 10 

Min samples_leaf 1 
Min samples split 2 

Random forest N estimators 300 
Max depth None 

Naive Bayes Var smoothing 1e-09 
KNN N neighbors 3 

p 1 
Weights distance 

Gradient boosting Learning rate 0.01 
Max depth 6 
N estimators 300 

Adaboost Learning rate 0.5 
N estimators 150 

XGBoost Max depth 7 
N estimators 100 

LightGBM Learning rate 0.3 
Max depth 6 
N estimators 200 

MLP Activation relu 
hidden_layer_sizes 150 
max_iter 1500 
Solver lbfgs 

Ensemble Model 1 (logistic regression + naive Bayes 
classifier + SVM + MLP classifier with soft voting) 

logistic__model__C 0.01 
svm__model__C 0.1 
svm__model__gamma 0.001 
mlp_activation relu 
mlp_hidden_layer_sizes 150 
mlp_max_iter 1500 
mlp_solver lbfgs 
nbc_Var smoothing 1e-09 

Ensemble Model 2 (logistic regression + naive Bayes 
classifier + SVM with soft voting) 

lgr_model__C 0.001 
nbc_model__var_smoothing 1e-09 
svm_model_C 0.1 
svm_model__gamma 0.1 

Figure 4. A Venn diagram of features (genes) selected by four distinct 
feature selection algorithms—random Forest classifier, gradient boosting 
classifier, recursive feature elimination, and LassoCV. Five genes were 
unanimously predicted by all four methods. 

ongoing efforts for early and precise diagnosis of AD by utilizing a 
refined five-gene signature as an accurate predictor of the disease. 

The work relied heavily on the thorough analysis of RNA-
seq data from publicly available datasets in NCBI. Quality eval-
uation, read alignment, and quantification constituted parts of 
the preprocessing processes were essential for generating valid 
inputs for the ML models in the subsequent step. The complex 
transcriptomic aberrations associated with AD were highlighted 
by the finding that over 87 genes undergo differential expression 
in individuals with the condition. 

One of the most crucial aspects of this study was the selection 
of features (genes) while developing a robust predictive model for 
AD. Using a combination of techniques, such as the random for-
est classifier, gradient boosting classifier, recursive feature elim-
ination, and LassoCV, five genes were consistently determined 
to be important across all employed techniques. Implementing 
multiple methods improved the credibility of the gene signa-
ture, resulting in a more dependable method for predicting AD. 
This was in accordance with a number of previously conducted 
ML studies that utilized feature selection to solve classification
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Figure 5. Accuracy of different models before hyperparamter tuning lgr (logistic regression), rf (random forest), nbc (naive Bayes classifier), xgboost 
(extreme gradient boosting), adaboost (adaptive boosting), dct (decision tree), lghtgbm (light gradient boosting machine), gbm (gradient boosting 
machine), knn (k-nearest neighbor), svm (support vector machine), mlp (multilayer perceptron), ensmbl1 (lgr + nbc + svm + mlp with soft voting), 
ensmbl2 (lgr + nbc + svm with soft voting). Accuracy of different models after hyperparamter tuning (hpt) lgr_hpt, rf_hpt, nbc_hpt, xgboost_hpt, 
adaboost_hpt, dct_hpt, lghtgbm_hpt, gbm_hpt, knn_hpt, svm_hpt, mlp_hpt, ensmbl1_hpt (lgr + nbc + svm + mlp with soft voting), ensmbl2_hpt 
(lgr + nbc + svm with soft voting). 

Figure 6. MCC evaluation of different models before hyperparamter tuning lgr (logistic regression), rf (random forest), nbc (naive Bayes classifier), 
xgboost (extreme gradient boosting), adaboost (adaptive boosting), dct (decision tree), lghtgbm (light gradient boosting machine), gbm (gradient boosting 
machine), knn (k-nearest neighbor), svm (support vector machine), mlp (multilayer perceptron), ensmbl1 (lgr + nbc + svm + mlp with soft voting), 
ensmbl2 (lgr + nbc + svm with soft voting). MCC evaluation of different models after hyperparamter tuning (hpt) lgr_hpt, rf_hpt, nbc_hpt, xgboost_hpt, 
adaboost_hpt, dct_hpt, lghtgbm_hpt, gbm_hpt, knn_hpt, svm_hpt, mlp_hpt, ensmbl1_hpt (lgr + nbc + svm + mlp with soft voting), ensmbl2_hpt 
(lgr + nbc + svm with soft voting). 
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Figure 7. AUC–ROC evaluation of different models before hyperparamter tuning lgr (logistic regression), rf (random forest), nbc (naive Bayes classifier), 
xgboost (extreme gradient boosting), adaboost (adaptive boosting), dct (decision tree), lghtgbm (light gradient boosting machine), gbm (gradient 
boosting machine), knn (k-nearest neighbor), svm (support vector machine), mlp (multilayer perceptron), ensmbl1 (lgr + nbc + svm + mlp with soft 
voting), ensmbl2 (lgr + nbc + svm with soft voting). AUC–ROC evaluation of different models after hyperparamter tuning (hpt)- lgr_hpt, rf_hpt, 
nbc_hpt, xgboost_hpt, adaboost_hpt, dct_hpt, lghtgbm_hpt, gbm_hpt, knn_hpt, svm_hpt, mlp_hpt, ensmbl1_hpt (lgr + nbc + svm + mlp with soft voting), 
ensmbl2_hpt (lgr + nbc + svm with soft voting). 

Figure 8. F1 score evaluation (non-AD samples) of different models before hyperparamter tuning lgr (logistic regression), rf (random forest), nbc (naive 
Bayes classifier), xgboost (extreme gradient boosting), adaboost (adaptive boosting), dct (decision tree), lghtgbm (light gradient boosting machine), gbm 
(gradient boosting machine), knn (k-nearest neighbor), svm (support vector machine), mlp (multilayer perceptron), ensmbl1 (lgr + nbc + svm + mlp with 
soft voting), ensmbl2 (lgr + nbc + svm with soft voting). F1 score evaluation (non-AD samples) of different models after hyperparamter tuning (hpt) 
lgr_hpt, rf_hpt, nbc_hpt, xgboost_hpt, adaboost_hpt, dct_hpt, lghtgbm_hpt, gbm_hpt, knn_hpt, svm_hpt, mlp_hpt, ensmbl1_hpt (lgr + nbc + svm + mlp 
with soft voting), ensmbl2_hpt (lgr + nbc + svm with soft voting). 
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Figure 9. F1 score evaluation (AD samples) of different models before hyperparamter tuning lgr (logistic regression), rf (random forest), nbc (naive 
Bayes classifier), xgboost (extreme gradient boosting), adaboost (adaptive boosting), dct (decision tree), lghtgbm (light gradient boosting machine), gbm 
(gradient boosting machine), knn (k-nearest neighbor), svm (support vector machine), mlp (multilayer perceptron), ensmbl1 (lgr + nbc + svm + mlp with 
soft voting), ensmbl2 (lgr + nbc + svm with soft voting). F1 score evaluation (AD samples) of different models after hyperparamter tuning (hpt) lgr_hpt, 
rf_hpt, nbc_hpt, xgboost_hpt, adaboost_hpt, dct_hpt, lghtgbm_hpt, gbm_hpt, knn_hpt, svm_hpt, mlp_hpt, ensmbl1_hpt (lgr + nbc + svm + mlp with soft 
voting), ensmbl2_hpt (lgr + nbc + svm with soft voting). 

Figure 10. Performance evaluation of the selected model after 10-
fold cross-validation with standard deviations. Accuracy (0.691 ± 0.059), 
MCC (0.391 ± 0.117), AUC–ROC (0.766 ± 0.092), F1_AD (0.695 ± 0.070), 
F1_non_AD (0.697 ± 0.055). 

problems more accurately especially in the biological domain 
[ 41–44]. 

ML algorithms formed the basis of the predictions made in this 
investigation. The flexibility and power of ML was characterized 
by the use of a wide variety of algorithms to recognize patterns 

from RNA-seq data. Following the example of other published 
studies that systematically experimented with hyperparameters 
led to improved model performance in our study [45, 46]. 

A sign of the intricacy of AD categorization is the discovery 
of trade-offs across various measures (accuracy, precision, recall, 
F1 score, MCC, and AUC–ROC) used to evaluate the model per-
formance. This is a common practice followed by a number of 
earlier studies that have emphasized the necessity to use multiple 
criteria to objectively evaluate classification models instead of 
relying on a single one [47–49]. 

It is to be noted that the most promising result of this study is 
the establishment of a five-gene signature that holds true across 
all ML models. This signature has the potential to be integrated 
into a biomarker panel for AD diagnosis. There is a history of such 
gene signature-based novel diagnostic biomarkers discovery using 
integrated ML and transcriptomic investigations, for example in 
the cases of AD [50], breast cancer [47], coronavirus disease-2019 
[50], psoriasis [51], tuberculosis [52], and so on. 

The set of five genes (CNKSR1, EPHA2, CLSPN, OLFML3, and  
TARBP1) identified through our investigation demand closer 
attention in terms of their relationship with AD. According 
to the UniProt database, CNKSR1, EPHA2, CLSPN, OLFML3, and  
TARBP1 encode Connector enhancer of kinase suppressor of ras 1, 
Ephrin type-A receptor 2, Claspin, olfactomedin-like protein, and 
probable methyltransferase TARBP1, respectively [53]. Studies 
have suggested the role of CNKSR1 in brain development [54], 
EPHA2 in axon guidance [55], and CLSPN in cell homeostasis 
[56]. OLFML3 has been recognized as a microglia-specific gene 
whose loss of expression disrupts microglia-associated biological 
functions [57]. Previously, OLFML3, EPHA2, and  TARBP1 were 
found to be associated with AD [58–60]. An in vitro study showed
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Figure 11. Schematic representation of AITeQ. Following scaling, the input passes through logistic regression, naive Bayes classifier, and SVM with 
well-defined hyperparameters. The three predictions are then subjected to a soft voting mechanism that makes the final prediction. 

that EPHA2 enhances proinflammatory cytokine release in 
microglia cells [ 59]. Olfactomedin-like protein was enriched in 
amyloid plaque proteome in early onset AD [58]. TARBP1 was also 
differentially expressed in other gene expression-based studies 
[60]. 

The practical value of this study lies in the discovery of a robust 
set of predictors that can accurately differentiate between AD 
patients and healthy people. This is because ML has the ability 
to accurately identify small alterations in gene expression that 
might have been unnoticed by conventional analytic techniques. 
Gene expression signatures offer a more extensive depiction of 
cellular activity in comparison to individual biomarker testing. 
The limitations of using biomarkers include the fact that high 
levels of amyloid are already present in some people who show 
no symptoms of AD, variability of biomarker profiles over the 
course of the disease, heterogeneous progression of AD, low lev-
els of biomarkers in the blood, and so on [61]. On the other 
hand, positron emission tomography (PET) scans, although useful 
for evaluating brain activity, it provide a less comprehensive 
image when it comes to AD. PET scans also entail a certain 
degree of radiation exposure, which might not be suitable for 
all individuals, especially pregnant women or young children 
[62]. In this regard, gene signature-based predictions offer acces-
sibility to more people. There is also a potential for misdiag-
nosis by PET scans as suggested by one study [63]. Hence, the 
usage of ML to analyze gene signatures as proposed in this study 
has great potential in enabling safer and more precise detection 
of AD. 

While translating the findings from this study, there are a num-
ber of caveats to keep in mind despite the encouraging results. It is 
a retrospective study that relies on a limited number of datasets. 

As a result, it has the potential to introduce certain biases that 
might impact how well the conclusions generalize to new data. 
Therefore, it is imperative to validate the findings with a larger 
number of samples collected from a variety of demographics. 
Another challenge is the variability in RNA-seq data due to biolog-
ical and technical factors, such as batch effects, sequencing depth, 
and normalization methods. Batch effects can lead to spurious 
correlations between genes and disease outcomes, while sequenc-
ing depth and normalization methods can affect the accuracy 
and reproducibility of gene expression measurements [64]. ML 
algorithms can be sensitive to these factors, and appropriate 
data preprocessing and normalization methods are necessary to 
ensure accurate classification results [65]. Apart from all these, 
the multifaceted nature of neurodegenerative disorders, including 
but not limited to non-coding RNA-mediated regulations, protein– 
protein interaction networks, and epigenetic alterations, calls for 
an approach that goes beyond just focusing on gene expression. 

Conclusion 
Results from the current study opened up several promising new 
lines of inquiry. The promise of ML in understanding the complex 
nature of AD has been demonstrated by its application on disease 
prediction from RNA-seq data. The importance of a possible 
biomarker panel for accurate diagnosis of AD is highlighted by 
the discovery of a consistent five-gene signature. It is crucial to 
further investigate the functional role played by the identified 
five-gene signature with respect to AD etiology. The diagnostic 
potential of the gene signature should be validated in subsequent 
studies involving a variety of populations through longitudinal 
investigations.
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Key Points 
• A set of five genes (CNKSR1, EPHA2, CLSPN, OLFML3, 

and TARBP1) were identified following differential gene 
expression and feature importance analysis. 

• Twelve diverse ML algorithms were trained and tested 
using the gene expression patterns of the identified five 
genes. The ensemble model consisting of logistic regres-
sion, naive Bayes classifier, and SVM with customized 
hyperparameters was found to be the best-performing 
model for differentiating AD samples from control. 

• AITeQ, a user-friendly, reliable, and accurate ML frame-
work for AD prediction was developed based on the five-
gene signature. 
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