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FoxO1 is a member of the forkhead transcription factor family subgroup O (FoxO), which 
is expressed in many cell types, and participates in various pathophysiological processes, 
including cell proliferation, apoptosis, autophagy, metabolism, inflammatory response, 
cytokine expression, immune differentiation, and oxidative stress resistance. Polycystic 
ovary syndrome (PCOS) is the most common endocrine disorder in the women of 
childbearing age, which is regulated via a variety of signaling pathways. Currently, the 
specific mechanism underlying the pathogenesis of PCOS is still unclear. As an important 
transcription factor, FoxO1 activity might be involved in the pathophysiology of PCOS. 
PCOS has been associated with insulin resistance and low-grade inflammatory response. 
Therefore, the studies regarding the role of FoxO1  in the incidence and associated 
complications of PCOS will help provide novel ideas for establishing the treatment strategy 
of PCOS.

Keywords: forkhead transcription factor FoxO1, polycystic ovary syndrome, low-grade inflammatory response, 
insulin resistance, tumor necrosis factor alpha

INTRODUCTION

At present, the incidence rate of polycystic ovary syndrome (PCOS) is about 5.6% among 
women of reproductive age (19–45 years) in Chinese Han population based on a large community-
based study (Li et  al., 2013), but the specific mechanism underlying the pathogenesis of PCOS 
is still unclear. Apart from polycystic ovaries, hyperandrogenism, and ovulatory disorders, 
PCOS is often accompanied by insulin resistance (IR), low-grade chronic inflammatory response, 
obesity, abnormal lipid metabolism, and long-term complications, such as hypertension, type 
2 diabetes, and endometrial cancer (Li et  al., 2013; Barthelmess and Naz, 2014; Nandi et  al., 2014; 
Wang et  al., 2015, 2017a,b; Wang and Wang, 2017; Lin et  al., 2019; Zhang et  al., 2019).

Forkhead transcription factor subfamily O (FoxO) widely exists in various mammalian tissues 
and plays an important role in metabolism, cell proliferation, apoptosis, and stress resistance, 
while FoxO1, a member of FoxO, has been shown to play a vital role during glycolipid metabolism, 
IR, and oxidative stress (Wang et  al., 2016; Lee and Dong, 2017; Murtaza et  al., 2017). Previous 
studies indicate that hepatic IR involves ceramide-induced activation of atypical protein kinase 
C, which selectively impairs protein kinase B (PKB/Akt)-dependent FoxO1 phosphorylation 
(Sajan et  al., 2014, 2015). In granulosa cells (GCs) derived from PCOS patients and the ovarian 
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tissues of PCOS rats, the expression levels of insulin growth 
factor 1 (IGF-1R) and Wnt family member 1 (Wnt1) were found 
to be decreased and PKB/AktSer473/Thr308 phosphorylation was lowered 
(Mao et al., 2018). Recent research demonstrated that Cangfudaotan 
decoction alleviated IR and improved follicular development in 
rats with PCOS via IGF-1-PI3K/Akt-Bax/Bcl-2 pathway (Wang 
et  al., 2020). Advanced glycation end product-induced apoptosis 
involves the formation of reactive oxygen species, nitric oxide, 
and ceramide, and further leads to p38 and JNK mitogen-activated 
protein kinase (MAPK) activation, which in turn induces FoxO1 
and caspase-3 (Alikhani et  al., 2007). MicroRNA-145 (miR-145) 
mimics inhibit the activation of p38 MAPK and extracellular 
signal-regulated kinase through targeting insulin receptor substrate 1  
(IRS1), and overexpressed IRS1 abrogated this suppressive effect 
in the GCs derived from PCOS patients (Cai et  al., 2017). Klotho 
gene knockdown blocked the effects of insulin on apoptosis/
proliferation in the GCs derived from PCOS patients, and inhibited 
caspase-3 activity in the ovarian tissues of PCOS rats (Mao et al., 
2018). Interleukin-1β (IL-1β)-dependent regulation of FoxO1 protein 
content and its localization in a novel ceramide-dependent manner 
through IL-1β stimulation of primary rat hepatocytes and in 
HEK293 cells overexpressing IL-1β receptor have been 
demonstrated previously (Dobierzewska et al., 2012). Yang et al. 
(2020) found that cryptotanshinone (CRY) significantly alleviated 
the changes in the body and ovary weight, and the levels of 
hormone and inflammatory factor in PCOS rats through regulating 
the HMGB1/TLR4/nuclear factor-kappa B (NF-κB) signaling 
pathway. Furthermore, the upregulation of miR-204 improved 
IR of PCOS via the inhibition of HMGB1 and inactivation of 
the TLR4/NF-κB pathway (Jiang et  al., 2020), while increased 
HMGB1 and reduced FOXO1 were found to be  dependent on 
the loss of cystic fibrosis (CF) transmembrane conductance 
regulator (CFTR) function in case of CF (Smerieri et  al., 2014;  
Montanini et  al., 2016b; Cirillo et  al., 2019b).

At present, the investigation on the contribution of FoxO1  in 
the pathogenesis of PCOS is being conducted. Therefore, exploring 
the underlying mechanism of FoxO1 activity in the pathogenesis 
of PCOS will help provide a novel target for establishing the 
treatment of PCOS and associated complications (Figure  1).

PCOS PATHOGENESIS

The origin of PCOS is multifactorial with individual differences, 
such as abnormal ovarian steroid secretion, hyperinsulinemia, 
increased luteinizing hormone, and other aspects, which lead 
to complementary or synergistic effects, and affect the 
development of the disease (Wang and Wang, 2017) and, 
therefore, the exact cause of PCOS is still unclear. Given the 
polymorphism of PCOS phenotype, it is considered to be  a 
multi-gene-mediated disease (Li et  al., 2013; Barthelmess and 
Naz, 2014; Nandi et  al., 2014; Wang and Wang, 2017). For 
example, PCOS has previously been related to insulin receptor 
(INSR) gene with racial differences (Stewart et al., 2006; Wang 
et  al., 2017a; Lin et  al., 2019), and the family history might 
be  a potential risk factor for the incidence of PCOS (Azziz 
and Kashar-Miller, 2000; Wang and Wang, 2017). It has been 

also reported that visceral obesity, proinflammatory factors, 
hyperinsulinemia, and IR are likely associated with the 
occurrence of PCOS (Wang et al., 2015, 2017b; Hughan et al., 2016;  
Zhang et  al., 2019).

Polycystic ovary syndrome patients with hyperinsulinemia or 
IR are not dependent on obesity, body fat distribution, and 
androgen levels, and the risk of impaired glucose tolerance and 
type 2 diabetes mellitus is higher in these patients than the 
normal individuals (Nandi et  al., 2014). The high androgen 
level and occurrence of IR in PCOS patients might be  related 
to the continuous release of inflammatory factors from adipose 
tissue (Barthelmess and Naz, 2014; Wang and Wang, 2017; Cirillo 
et  al., 2019a; Barber and Franks, 2021). A large number of 
studies have demonstrated a role of inflammation in the 
pathogenesis of PCOS (Alikhani et al., 2007), and the association 
of increased inflammatory markers, such as C reactive protein 
(CRP), ferritin, tumor necrosis factor (TNF) alpha, interleukin-6 
(IL-6), and interleukin-18 (IL-18) with the occurrence of PCOS 
(González et al., 2006, 2007, 2012). Increased levels of plasminogen 
activator inhibitor-1 (PAI-1) and free fatty acid affect the 
phosphorylation of serine residue, leading to IR. PCOS patients 
exhibit high levels of ferritin and transferrin of hemoglobin 
along with a decrease in the levels of anti-inflammatory cytokines 
and anti-oxidant factors, thereby leading to chronic inflammation 
(Escobar-Morreale and Luque-Ramírez, 2011; Escobar-Morreale, 
2012; Yang et  al., 2015). Therefore, obesity may increase the 
level of oxidative stress in adipose tissue, activate the inflammatory 
signaling, and finally aggravate the chronic inflammatory state 
and IR in PCOS patients (Furukawa et  al., 2004).

STRUCTURE AND FUNCTION OF  
FoxO1

The forkhead protein family was discovered in a study regarding 
the abnormal head mutations of Drosophila in 1989, which 
contained a highly conserved DNA binding domain, which 
corresponds to the forkhead conserved region composed of 110 
amino acid residues and the domains of three helixes, three folds, 
and two wing-like structures (Weigel et  al., 1989). At present, 
more than 100 forkhead (FOX) genes have been identified, belonging 
to 19 subfamilies, namely FOXA~S (Genin et  al., 2014). The 
subgroup O of FoxO is the earliest discovered and widely distributed 
subgroup, which comprises FoxO1, FoxO3, FoxO4, and FoxO6 
(van der Vos and Coffer, 2011). The first two are expressed in 
almost all human tissues, while FoxO4 is mainly expressed in 
muscles, kidney, and colon tissues, and FoxO6 is expressed in 
the brain and liver (van der Vos and Coffer, 2011).

The function of transcription factor FoxO1 is complex, which 
is mainly through the activation or inhibition of the transcription 
of its downstream target genes (Xu et  al., 2017; Xing et  al., 
2018). FoxO1  in the endometrium has been shown to play an 
important role in the transformation of endometrium during 
menstruation, and in the protection of fetal mothers from 
oxidative damage during pregnancy (Kajihara et  al., 2013). 
Moreover, FoxO1 knockout leads to embryo death due to vascular 
dysplasia (Hosaka et  al., 2004). It has been reported that mice 
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with specific loss of FoxO1  in liver can resist IR induced by 
high-fat diet, while those with specific over-expression of FoxO1 in 
liver can increase IR (Kim et  al., 2009; Balakumar et  al., 2016; 
Pandey et  al., 2017; Zeng et  al., 2019). The acute inflammation 
process is related to the increase in glucocorticoid production 
activated via the FoxO1 pathway, and then, glucocorticoid reduces 
insulin-like growth factor 1 (IGF-1) production and increases 
TNF alpha/NF-kB signaling during the induction of protein 
hydrolysis system (Kim et  al., 2009; Schakman et  al., 2012).

REGULATION OF FoxO1 ACTIVITY

The transcriptional activity of FoxO1 is mainly accomplished 
through complex post-translational modifications, including 
phosphorylation, acetylation, and ubiquitination. These 
modifications can be  activating or inactivating. The activity of 
specific targets can be altered through four functional sequences, 
thereby resulting in different biological effects (Tsai et al., 2007).

Phosphorylation of FoxO1 is directly by several protein 
kinases, which can modify different sites of this transcription 
factors through changing their subcellular location, DNA 
binding affinity, and transcriptional activity (Zhao et al., 2004; 
Tikhanovich et  al., 2013). FoxO1 is phosphorylated through 
the activation of the serine-threonine kinases, including PKB/
AKT and serum glucocorticoid inducible kinase (SGK), by 
phosphatidylinositol-3 kinase (PI-3K) to associate FoxO1 with 
14-3-3 couple protein binding for translocating from the 
nucleus to the cytoplasm, thereby resulting in its transcription 
inactivation (Wang et  al., 2016). Furthermore, growth factor-
activated protein kinases, such as extracellular signal-regulated 
kinase and cyclin-dependent kinase-2, also induce FoxO1 
phosphorylation and its transport to the cytoplasm through 
different pathways, thereby resulting in a decrease in FoxO1 
transcriptional activity (Zhao et  al., 2004).

Acetylation of FoxO1 promotes and decreases the 
transcriptional activity of FoxO1, which is mediated through 

FIGURE 1 | Regulation and contribution of FoxO1 activity in the pathogenesis of polycystic ovary syndrome (PCOS). FoxO1 activity is mainly regulated by the post-
translational modifications, including phosphorylation, acetylation, and ubiquitination. FoxO1 is involved in the pathogenesis of PCOS through various signaling 
pathways, including phosphoinositide 3-kinase (PI-3K)/protein kinase B (PKB), mitogen-activated protein kinase (MAPK), high-mobility group box 1(HMGB1)/Toll-like 
receptor 4(TLR4)/nuclear factor-kappa B (NF-κB), and Interleukin-1β (IL-1β).
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histone acetyltransferase and deacetylase, thereby regulating 
different biological functions (Lalmansingh et al., 2012). FoxO1 
regulates the affinity and sensitivity of DNA binding regions 
through the acetylation of K262, K265, K274, and K294, thereby 
altering downstream PKB/AKT phosphorylation (Calnan and 
Brunet, 2008; Lalmansingh et  al., 2012). Additionally, FoxO1 
also reduces its own activity through acetylating two basic 
residues, Lys242, and Lys245, in the carboxyl terminal of 
DNA-binding region of cAMP responsive element binding 
protein (Daitoku et  al., 2004).

Unlike the reversibility of phosphorylation/dephosphorylation 
and acetylation/deacetylation of FoxO, ubiquitination of FoxO1 
is irreversible, and thus, is responsible for the degradation of 
FoxO1 (Huang and Tindall, 2011). Ubiquitin-protein ligating 
enzyme (E3) is a key enzyme for recognizing ubiquitin and 
degrading protein substrates. The degradation of FoxO1 is 
achieved via the multi-ubiquitination of multiple E3 complexes 
(Huang and Tindall, 2011).

FoxO1 AND PCOS

Polycystic ovary syndrome is a disease with an endocrine 
disorder and the development of PCOS may be  caused due 
to the imbalance in the levels of sex hormones, inflammatory 
factors, and insulin. Notably, FoxO1 expression was found to 
be  increased significantly in cumulus cells of PCOS women 
with BMI 21.5  ±  2.5  kg/m2 than that in non-PCOS patients 
with BMI 20.7  ±  2.1  kg/m2 (Shi et  al., 2015).

FoxO1 and Insulin Resistance
Polycystic ovary syndrome patients with hyperinsulinemia or 
IR were reported to be  about 44–77% (Vigil et  al., 2007). IR 
is a state of pathological metabolism with decreased ability to 
use glucose, and thus, insulin secretion is increased to compensate 
and maintain the normal blood glucose level, thereby leading 
to hyperinsulinemia. Interestingly, hyperinsulinemia not only 
increases androgen secretion through selectively increasing the 
sensitivity of theca cells to luteinizing hormone, but also 
increases the level of free androgen through inhibiting the 
synthesis of sex hormone binding globulin in the liver, thereby 
promoting the occurrence of PCOS (Bremer and Miller, 2008; 
Wang et al., 2015, 2017a,b; Lin et al., 2019; Zhang et al., 2019).

FoxO1 is a key downstream molecule of the INS/IGF-1 
signaling pathway, regulating the circulatory metabolism and 
hormone levels in liver, pancreas, hypothalamus-pituitary 
axis, and adipose tissue through increasing the level of 
circulating glucose (Wang et  al., 2015, 2017a,b; Kamagate 
and Dong, 2018; Lin et  al., 2019; Zhang et  al., 2019). For 
example, FoxO1 elevates the blood glucose levels through 
acting on the key enzymes, such as glucose-6-phosphatase 
and phosphoenolpyruvate carboxykinase during the process 
of gluconeogenesis, and it also affects the apoptosis of beta 
cells and development of type 2 diabetes mellitus through 
INS/IGF-1 signaling (Wang et  al., 2015, 2017a,b; Kamagate 
and Dong, 2018; Lin et  al., 2019; Zhang et  al., 2019). Rosas 
et al. (2010) found that the expression of glucose transporter 

4 (GLUT4) related molecules in endometrium during secretory 
phase of normal menstrual cycle was beneficial for glucose 
uptake, while some molecules in PCOS patients related with 
hyperandrogenism decreased, and the exposure of GLUT4 
and absorption of glucose reduced, thereby resulting in IR. 
Kohan et  al. (2010) found that the decrease in GLUT4 
expression in endometrium of PCOS patients with IR was 
related to FoxO1 phosphorylation, indicating that FoxO1 
phosphorylation inhibited the expression of GLUT4 gene, 
and thus, affected the function of endometrium and caused IR.

FoxO1 and Chronic Inflammation
The expression of several chronic inflammatory factors was 
found to be  increased in PCOS patients, including CRP, IL, 
and TNF alpha. These inflammatory factors reduce the sensitivity 
of tissue cells to insulin through endocrine, paracrine, and 
autocrine mechanisms, thereby leading to IR (González et  al., 
2006, 2007, 2012; Escobar-Morreale et  al., 2011). Conversely, 
there is a common pathway between the signal transduction 
of inflammatory factors and INSR. Inflammatory factors can 
directly interfere with the phosphorylation of INSR, thereby 
changing the downstream pathway, leading to IR. Conversely, 
some inflammatory factors can increase the expression of rate-
limiting enzymes that catalyze steroid production in theca cells 
and increase androgen levels in PCOS patients.

González et  al. demonstrated that the expression of NF-kB 
increased in PCOS patients with high blood glucose, and the 
increased activity of NF-kB resulted in the secretion of 
pro-inflammatory cytokine TNF alpha (González et  al., 2006, 
2012; Escobar-Morreale et al., 2011). TNF alpha induces lipolysis 
of visceral fat, releases free fatty acids, and eventually leads 
to IR and hyperandrogenism (González et al., 2006, 2007, 2012; 
Escobar-Morreale et  al., 2011). Elevated androgen may change 
the local expression of androgen receptor in the ovaries, and 
then increase the occurrence of PCOS (González et  al., 2006, 
2012; Escobar-Morreale et  al., 2011). Ibfelt et  al. (2014) found 
that TNF alpha induces IR through inhibiting the tyrosine 
phosphorylation of insulin receptor substrates, and also affects 
the intracellular glucose transport through downregulating the 
expression of GLUT4. Miao et  al. (2012) found that TNF 
alpha is positively correlated with FoxO1 expression and FoxO1 
might increase the production of pro-inflammatory factors in 
diabetic hepatocytes with IR. Li et al. (2017) found the association 
of FoxO1 signaling with the aggravation of inflammation and 
occurrence of IR in PCOS macrophages.

FoxO1 and Obesity
During the last four decades, obesity has driven the rise in 
obesity-related co-morbidities, including PCOS (Barber and 
Franks, 2021). PCOS is associated with IR, which is independent 
of (but amplified by) obesity (Barber and Franks, 2021). Multiple 
factors contribute to the severity of IR in PCOS, including most 
notably, weight gain (Barber and Franks, 2021). In the study 
conducted by Šimková et  al. (2020), the authors demonstrated 
that there were no differences in hormonal, but in metabolic 
parameters, between normal-weight and obese PCOS women. 
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Obese PCOS women exhibited significantly higher IR, fatty-liver 
index, triglycerides, and cytokines (IL-2, IL-13, and IFN-gamma; 
Šimková et  al., 2020). Ni et  al. (2015) found that the expression 
level of high-mobility group box 1 (HMGB1) was increased in 
the serum from PCOS women with IR/hyperinsulinemia. Further 
investigation discovered that the high concentration of insulin 
not only mimicked IR model, but also promoted apoptosis of 
ovarian GCs through HMGB1 (Ni et al., 2015). Montanini et al. 
(2016a) also found that HMGB1 expression was increased in 
CF patients with deranging glucose metabolism. The increase 
in HMGB1 was related to the loss of CFTR function, and insulin 
lowered HMGB1 (Montanini et  al., 2016a). CFTR inhibitor and 
siRNA experiments demonstrated that the changes in FoxO1 
were also related to CFTR loss of function in CF (Smerieri 
et  al., 2014), and reduced FoxO1 is correlated with reduced 
gluconeogenesis and increased adipogenesis, which are the 
characteristic features of insulin insensitivity (Smerieri et  al., 
2014). In PCOS women with BMI 25.92  ±  0.99  kg/m2, CFTR 
and FoxO1 expression levels reduced in GCs (Cirillo et  al., 
2019b), and HMGB1 expression increased in follicular fluids 
and serum of PCOS women (Cirillo et  al., 2019b). Additionally, 
miRNAs analyzed by Cirillo et  al. (2019a) demonstrated the 
changes in PCOS ovaries and their relationships with inflammation 
and insulin sensitivity. Montanini et al. also found that significant 
changes in the expression of these four miRNAs (miR-146a, 
miR-155, miR-370, and miR-708) were dependent on the genotype 
and glucose tolerance state in CF patients (Cirillo et  al., 2019a), 
which were selected as the potential FoxO1 regulators (Cirillo 
et  al., 2019a). Cai et  al. (2017) found that IRS1 gene is a direct 
target of miR-145, which was downregulated in GCs derived 
from PCOS patients. Further analysis demonstrated that miR-145 
mimics inhibited cell proliferation and promoted apoptosis in 
GCs derived from PCOS women (Cai et  al., 2017).

SUMMARY AND CONCLUSION

In conclusion, FoxO1, as a crucial transcription factor, plays 
an important role in regulating the gene expression, participating 
in gluconeogenesis, low-density lipoprotein production, oxidative 

stress, and cell apoptosis (Weigel et  al., 1989; Furukawa et  al., 
2004; Escobar-Morreale and Luque-Ramírez, 2011; Escobar-
Morreale, 2012; Kajihara et  al., 2013; Genin et  al., 2014; van 
der Vos and Coffer, 2011; Yang et  al., 2015; Wang et  al., 2016; 
Lee and Dong, 2017; Murtaza et  al., 2017; Xu et  al., 2017; 
Xing et al., 2018). Additionally, many studies have demonstrated 
that FoxO1 plays an important role in the pathogenesis of 
PCOS. The changes in the levels of hormones, TNF alpha, 
and GLUT4  in PCOS patients may affect the regulation of 
FoxO1 signaling on glucose transport, thereby leading to IR 
(Huang and Tindall, 2011). Moreover, the changes in FoxO1-
mediated signaling may further induce the occurrence of 
low-grade chronic inflammation in the body, thereby leading 
to the hyperandrogenism of PCOS (Bremer and Miller, 2008; 
Rosas et  al., 2010; Barthelmess and Naz, 2014; Nandi et  al., 
2014; Kamagate and Dong, 2018). Therefore, the study regarding 
the association of FoxO1 with the pathogenesis of PCOS can 
provide a basis for the etiology of PCOS, and a novel theoretical 
support for establishing the treatment of PCOS.
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