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Abstract: In order to ensure the safety of spacecrafts in orbit, impact location is an important part of
structural health monitoring systems. In this paper, an impact location algorithm based on posterior
probability correlation is proposed to solve the problem, that is, the impact point in the stiffened
structure of a spacecraft is difficult to locate. The algorithm combines the Gaussian cross-correlation
possibility weight method and the Bayesian posterior probability method. The cross-correlation
possibility weight superposition based on grids was used to reduce the dependence of the accuracy
of time difference extraction. Gaussian and normalized fitting were used to compensate the reflection,
modal transformation, and amplitude attenuation of a stiffened plate. The location result was further
optimized by the posterior probability. The proposed algorithm can be applied to the impact source
localization of complex stiffened plate structures. The experiment results showed that the average
location error can be 2.57 cm with proper sensor network schemes.

Keywords: impact location; acoustic emission; spacecraft; stiffened structure; posterior probability

1. Introduction

With the development of space technology and aerospace engineering, the number of spacecrafts
in orbit is increasing rapidly in recent years [1,2]. Spacecrafts in orbit are subject to long-term service in
the space environment. Space debris and spacecrafts with orbital heights of 200 to 800 km may collide
frequently, causing damage to the spacecraft structure and threatening the safety of astronauts [3,4].
In 2013, liquid ammonia leaked out from a pipeline near the solar cell wing of the International Space
Station due to debris impact. On 23 August 2018, the International Space Station was hit by space
debris, causing air leak in the cabin of the Missile MS-09 orbital module [5]. Thus, the identification
and location of debris impacts are prerequisites for structural integrity assessments and restoration of
spacecrafts, which guarantee the safety of spacecrafts and astronauts.

Nowadays, methods used in spacecraft impact location mainly include the fiber grating method [6]
and the acoustic emission method [7]. A wide detection range can be realized in the fiber grating
method. However, complicated layouts limit its application in complex structures of spacecrafts.
For example, NASA has arranged 36 Bragg grating sensors on a 38 × 38 cm spacecraft shell plate to
locate the orbital debris impact [8]. Compared with the fiber grating method, the acoustic emission
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method has gained a lot of attention because of its advantages of few nodes, easy implementation,
and strong adaptability [9].

At present, some traditional acoustic-emission-based impact location techniques, such as the time
difference of arrival (TDOA) method, have been widely used [10–12]. This technique collects the TDOA
of acoustic signals at different sensors, with the wave speed of a signal and the positions of sensors
known and the source of an acoustic signal obtained with the use of the Triangulation method [12].
The accuracy of the TDOA method mainly depends on the accuracy of the arrival time of the signal
and the accuracy of the wave speed. To make the TDOA method more accurate and suitable for more
materials, many researchers have improved this traditional method. Mohd et al. [13] proposed an
impact location algorithm based on continuous wavelet transform. This method improves the accuracy
of signal arrival time by time–frequency analysis and obtains more accurate impact location results
than the traditional fixed threshold method. Ciampa et al. [14] used continuous wavelet transform
to achieve impact locations in composite materials. Sharif-Khodaei et al. [15] used the multi-layer
perceptron (MLP) neural network to calculate an impact location in a composite material based on
various parameters such as the arrival time and the maximum signal amplitude. Salamone et al. [16]
used a macrofiber composite (MFC) sensor array to determine the propagation direction of an impact
signal and achieved an impact location in a variety of materials. All of the above methods can achieve
accurate impact locations in ordinary flat plates.

However, for spacecrafts, in order to ensure the sufficient structure mechanical strength,
some periodic stiffened structures are usually provided on an outer surface thereof. The internal Lamb
wave propagation characteristics are complicated due to reflection and transmission by a stiffener.
Most of the above impact location studies are based on flat plates, which cannot be utilized for spacecraft
structures directly. Aiming at this problem, Li et al. [17] proposed an adaptive energy compensation
threshold filtering algorithm to achieve an accurate impact location in stiffened aluminum plates.
Nevertheless, the filter band in this method needs to be reselected for different structures, and the
number of sensors is small with the insufficient stability of the location results. Ebrahimkhanlou
and Salamone carried out many related studies. They proposed a novel, single-sensor acoustic
emission (AE) source localization algorithm [18,19], with the use of the total least squares method and
a multipath model. In addition, a deep-learning-based framework to localize an acoustic emission
source in plate-like structures that have complex geometric was also proposed by them [20,21]. All the
methods can achieve good results in experimental conditions, while some further study can also be
made in more complex conditions and materials.

In order to realize accurate and stable impact locations in stiffened spacecraft structures, this paper
proposes an impact location algorithm based on posterior probability correlation. According to the
impact acoustic emission signal of a sensor network, a cross-correlation Gaussian possibility weight
location (CCGPWL) algorithm and a posterior probability location result optimization algorithm are
used to evaluate the possibility of the occurrence of impact in each area of the test plate to obtain an
impact location. The method confirms the location result by the possibility weight of the multigroup
cross-correlation superposition of the sensor array and reduces the requirement for the accuracy of
time information. At the same time, the influence of signal reflection and amplitude attenuation in the
stiffened plate is reduced by Gaussian fitting and normalization. The effectiveness of the algorithm
was confirmed by experiments on three sensor network schemes and 13 impact points.

The paper is organized as follows: The method is described in Section 2. The experiment setup
is introduced in Section 3. In Section 4, the results and discussion are presented. The conclusion is
in Section 5.

2. Method

In this section, the flowchart of the impact location algorithm proposed in this paper will be
described in detail. As shown in Figure 1, the posterior possibility weight correlation impact location
(PPWCIL) algorithm proposed in this paper can be divided into three procedures: signal acquisition,
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preliminary impact location, and final impact location. The signal acquisition process acquires an
impact signal by a sensor network. The sensors are placed at certain places on a test plate to form
the network. The preliminary impact location procedure aims to locate the impact with an acoustic
emission signal directly, and the result is called a preliminary location result (PLR) in this paper.
The final impact location procedure aims to reduce the location error of the PLR by processing a
plurality of PLRs using a posterior probability calculation.
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To obtain the PLR, the filtered signal is processed using the CCGPWL algorithm. The CCGPWL
algorithm calculates the impact possibility weight of each area of the test plate with the cross-correlation
curve of every two signals, and the place with the largest impact possibility weight is identified as
a PLR. The CCGPWL method reduces the accuracy requirements for signal arrival time through a
probabilistic model to accommodate complex signal propagation characteristics in complex stiffened
panel structures. The detailed process of the CCGPWL algorithm will be described in Section 2.1.

Due to the complicated wave propagation characteristics of the stiffened structure, the PLR
may have some errors. In order to reduce the location error, a posterior probability location results
optimization (PPLSO) algorithm is used to get a final location result (FLR), which is more accurate.
The PPLSO algorithm uses a set of PLRs as a sample to calculate the impact probability of each area
with a posterior probability equation. The detailed process of the PPLSO algorithm will be described
in Section 2.2.

2.1. CCGPWL Algorithm

As mentioned in the previous section, the CCGPWL algorithm uses cross-correlation to calculate
an impact possibility weight. If there are N sensors in the sensor network and any two sensors
are used as one sensor pair, Nsp = (N2

− N)/2 sets of cross-correlation coefficients can be obtained.
The cross-correlation represents the degree of correlation between two time series at different time
differences. For a certain point, a delay for different paths is determined and can correspond to a value
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in the cross-correlation curve. The maximum value will be obtained, if the certain point is the impact
location. Through the superposition of coefficients between multiple sensors, an impact possibility
weight map can be obtained to determine the PLR.

Firstly, the test plate needs to be divided into small grids, in order to be able to calculate the impact
possibility weight of each area of the test plate. The size of the grids is determined by the required
resolution, and the grid size was 1 cm × 1 cm in this paper. After grid division, the cross-correlation
curve of every two sensor’s signal is calculated. As the number of sensors used in this paper was 8,
a total of 28 cross-correlation curves were obtained. In ideal situations, the curve has only one peak
value. However, in situations of complex stiffened structures, since the wave produces reflection,
transmission, and modal transformation, the single-peak cross-correlation characteristic becomes
blurred, which may cause a location error with the CCGPWL algorithm. To solve this problem,
a Gaussian fitting procedure and a normalized procedure were applied on the cross-correlation
curve to obtain an ideal curve. The cross-correlation curve is shown in Figure 2 as an example.
As can be seen from Figure 2, the cross-correlation curve forms a Gaussian curve that approximates a
normal distribution. Such a treatment weakens the effects of reflection and refraction of the stiffener,
while normalization weakens the effect of the stiffener on signal strength attenuation.
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The impact possibility weight calculation method for each grid will be described below. The value
of cross-correlation for one grid corresponds to the propagation distance of two sensors to the center of
the grid. The impact possibility weight of each grid was calculated by Equation (1):

Ik =

Nsp∑
n=1

Pn(tk,n)

Nsp
, (1)

where Ik is the impact possibility weight of the kth grid, Nsp is the number of the cross-correlation
curves, Pn(t) is the value of the nth cross-correlation curve at tk,n and tk,n is the the time difference for
two sensors at the nth sensor pair in the kth grid. If the impact is indeed located in the kth grid, the
value of Pn(tk,n) is the peak value of the nth cross-correlation curve, and the impact possibility weight Ik
is near 1 theoretically; otherwise Pn(tk,n) is smaller than the peak value. In ideal conditions, the time
difference for two sensors tk,n can be calculate by Equation (2):

tk,n =
dk,n − dk,n+1

v
, (2)

where v is the wave velocity and dk,n and dk,n+1 are the propagation distances of two sensors to the
center of the kth grid, respectively.
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After impact probabilities of all grids are calculated, the grid with the largest impact possibility
weight is recognized as a PLR. Compared with the common TDOA method, the CCGPWL algorithm
uses a cross-correlation curve to calculate an impact possibility weight rather than an arrival time.
Moreover, the fitting and normalization of the cross-correlation curve weakens the reflection, modal
transformation, and attenuation of a stiffened plate. Therefore, in principle, the CCGPWL algorithm
can locate impact on a complex stiffened structure.

2.2. Posterior Probability Location Result Optimization Algorithm

A set of PLRs of the same impact point obtained by the CCGPWL algorithm can be expressed as
Z, a sample vector for the PPLRO algorithm, which can be shown as:

Z = [Z1, Z2, Z3 . . .Z j . . .ZJ], (3)

where Zj = [xj yj]T is the location result vector of the jth PLR used as a PPLRO algorithm’s sample and
the number of the elements in the sample vector Z is J. Due to external factors such as noise, Zj may
contain certain errors, which can be expressed as:

Z j = R + e j, (4)

where R is the true impact location and ej is the error contained in the PLR.
The PPLRO algorithm can optimize PLRs to obtain a more accurate and stable FLR. The PPLRO

algorithm also needs to divide a test plate into small grids and locate impact location by calculating
the impact probability of each grid. Different from the CCGPWL algorithm, the PPLSO algorithm uses
PLRs as a sample to calculate the posterior probability of each grid and is not directly related to an
impact signal. To represent the impact probability of the ith grid as P(Si), then P(Si) can be expressed as:

P(Si) =

J∑
j=0

P(Si|Z j)P(Z j), (5)

where P(Si|Zj) indicates the probability that the impact point locates within the ith grid with the sample
vector being Z. It can be seen that P(Z), the probability that PLRs are expressed as a sample vector Z,
does not change with the change of the calculated grid. The probability P(Si) of the impact location
located in different grids depends on the posterior probability P(Si|Z). According to the Bayesian
formula, the posterior probability equation P(Si|Z) is proportional to P(Z|Si), so the grid with the largest
probability P(Si) is also the grid with the largest probability P(Z|Si). An FLR can be obtained by finding
the maximum value of P(Z|Si).

In order to construct the probability function P(Z|Si), an event βj is introduced here. P(βj) represents
the probability that the jth PLR in the sample vector Zj is the impact location, and j = 0 means that there
is no PLR to accurately locate the impact location. At the same time, considering the probability that
two or more PLRs accurately locate the impact location is very low, it can be assumed that:

J∑
j=0

P(β j) ≈ 1. (6)

Then, P(Z|Si) can be expanded by the full probability equation:

P(Z|Si) =

J∑
j=0

P(Z|Si, β j)P(β j). (7)
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Assuming that the occurrence of a mistake location of each PLR is independent of each other,
the probability of the occurrence of a mistake location is PF. The times of the occurrence of a mistake
location in the sample vector can be considered to be subject to the Poisson distribution. Then,
the probability that the sample vector has h mistake location results can be represented as µF(h).
The expectation of the Poisson distribution was set to 10 in this paper, as there were 10 repeat
experiments at each impact point and almost none of the PLRs achieved the right impact location.
In addition, there are two cases for the calculation of P(βj): for j = 0, which means there are no correct
PLRs in the sample vector and all the results are mistake location results, then the number of mistake
location results is J, which is the number of elements in the sample vector; if j , 0, then there is only
one PLR in the sample vector, i.e., the correct location, and the number of mistake location results is
J − 1. Then, P(βj) can be calculated by Equation (8): P(β j) = µF(J), j = 0

P(β j) =
(1−PF)·µF(J−1)

J , j , 0
. (8)

Assuming that the mistake location results are evenly distributed on the test plate and the number
of the grids divided in the CCGPWL algorithm is M, then the probability that the sample vector is Z
when the impact point locates in the ith grid and the jth PLR locates the impact point, P(Z|Si, βj) can be
expressed as:  P(Z|Si, β j) =

1
MJ , j = 0

P(Z|Si, β j) =
1

MJ−1 P(Z j|Si), j , 0
. (9)

P(Z|Si) can be expressed as:

P(Z|Si) =
µF(J)

MJ +
µF(J − 1)(1− PF)

JMJ−1

J∑
j=1

P(Z j|Si). (10)

Assuming that the error ej obeys a two-dimensional Gaussian distribution with a mean of zero
and a covariance matrix of H, the PLR Zj obeys a two-dimensional Gaussian distribution with a mean
of R and a covariance matrix of H, which can be written as:

P(Z j|Si) ' (R, H). (11)

To simplify Equation (10), we assume that the PLR Zj obeys a one-dimensional Gaussian
distribution in distance to the real impact point. Therefore, Equation (10) can be expressed as:

P(Z|Si) =
µF(J)

MJ +
µF(J − 1)(1− PF)

JMJ−1

J∑
j=1

g(di, j), (12)

where g(d) is the one-dimensional Gaussian distribution, of which the variance is set to 13 by counting
the variance of the PLRs of the experiments, di,j is the distance between PLR Zj and the center of the ith

grid. After calculating all the impact probabilities P(Z|Si) of all the girds, the center with the maximum
impact probability is seen as the FLR.

As it is desirable to obtain FLRs with a better resolution, the grids size may be smaller than the
grids in the CCGPWL algorithm. In our experiments, the grids size for the CCGPWL algorithm was
1 cm × 1 cm, while the girds size for the PPLRO algorithm was 0.5 cm × 0.5 cm. The number of grids
of the PPLRO algorithm was four times than that of the CCGPWL algorithm. In order to reduce the
calculation amount, a tree search model was used in the PPLRO algorithm. As shown in Figure 3,
when performing the calculation, the test plate is divided into relatively large grids for calculation
firstly, and then the grid with the largest impact probability is the area of interest, which is divided into
smaller grids for calculation. This process will continue, until the ideal resolution is obtained.
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3. Experiment Platform Setup

In this section, a corresponding experimental platform was designed to verify the property of
the impact location algorithm for a stiffened plate in a spacecraft. The experimental setup consisted
of an acoustic emission acquisition system (DS2-16B, Softland Times, Beijing, China), eight signal
amplifiers (AE Amplifier, Softland Times, Beijing, China), eight acoustic emission sensors (Nano 30,
PAC, America), a test plate (material: 5A06), a computer, and a laser debris generator.

The test plate used in the experiment was a stiffened 5A06 aluminum alloy plate, which is
commonly used in spacecraft structures. There were a total of eight stiffeners on the reverse side of the
test plate. The specific parameters of the test plate are shown in Table 1. The actual structure of the test
plate is shown in Figure 4.

Table 1. Parameters of the test plate.

Parameter Value Parameter Value

Length of the plate (mm) 1000 Height of the stiffener (mm) 20
Width of the plate (mm) 1000 Thickness of the stiffener (mm) 4

Thickness of the plate (mm) 2.5 Spacing of the stiffener (mm) 200
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The laser debris generator mainly consisted of two parts: a laser generator and a piece of aluminum
foil. The laser generator was used to generate a high-energy laser beam, and the laser beam shone on
the aluminum foil and generated aluminum debris with a high speed. The speed of the aluminum
debris reached 5 km/s, and its size of it was about 0.1 mm. The repetitive error of the laser debris
generator was less than 0.1 mm, which met experimental requirements. During the experiment, a total
of 13 impact points were selected to generate impact signals, three sensor network schemes were
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selected for signal acquisition, and each impact point generated impact signals 10 times. The sensor
network schemes and the location of the impact point are shown in Figure 5.
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The experiment platform schematic diagram is shown in Figure 6. The impact signal generated
by the laser debris generator was collected by the sensors. After it was amplified by an amplifier,
the signal then was converted into a digital signal by an acoustic emission instrument and finally was
saved in a computer. A location algorithm using Matlab codes was run and gave a location result.
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Before experiments, it was necessary to calculate the speed of wave propagation in the structure,
and eight Nano-30 sensors in a straight line were arranged at equal intervals. The impact signal was
excited at one end of the sensor array, and the A0 mode of the signal was collected according to the
eight sensors. The Lamb wave arrival time was used to calculate the velocity of a sound wave in the
specimen. Taking the average of 10 measurements as the final result, the A0 mode Lamb wave velocity
in the test piece was measured to be 3.12 km/s.

4. Results and Discussion

The data were processed with the PPWCIL algorithm proposed in this paper, and the location
results were obtained. This section first explains the location process in detail through a set of data as an
example. Then, the key parameters such as sensor distribution and filter frequency band are analyzed.
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4.1. PLRs with the CCGPWL Algorithm

In order to introduce the algorithm flowchart and explain the influencing factors of each process,
the signals collected by the type 1 sensor network was chosen to be analyzed. The time-domain impact
signals at an impact point (−20, 15) are shown in Figure 7.
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From the perspective of the waveform, the time-domain map shows the characteristics of an
apparent impact signal with noise. Significant spikes appeared at the beginning, and the signal
gradually decreased due to the dispersion of the Lamb wave and the damping of the plate. However,
due to the obvious reflection phenomenon in the stiffened plate, there was still a small-amplitude
waveform after the attenuation. The method in this paper uses the cross-correlation method to calculate
the impact possibility weight difference of the time difference information, it is more tolerant with the
subsequently reflected signals, which made up for the insufficiency of the reflected wave intensity in
the stiffened plate.

From the point of view of the arrival time, the signal obtained by the sensor near the impact point
arrived earlier. From the point of view of the magnitude, the signals acquired by the sensors, which
were closer to the impact point, had a relatively larger magnitude and a better curve shape. The signal
propagation path corresponding to the far-distance sensor was long, and after the effect of the stiffener,
the attenuation of the wave was more serious.

The impact signals were subject to low-frequency ambient noise during propagation, such as
noise generated by mechanical vibration. In addition, other devices generated high-frequency
electromagnetic noise during operation, which also increased the difficulty of signal analysis. Based
on the above analysis, for the impact source location process, the impact signal should be filtered
and preprocessed first, and the low-frequency mechanical noise interference and high-frequency
electromagnetic noise interference were eliminated while retaining the effective information of the
signal. The filter frequency band was set as 300–400 kHz. The signals after filtering are shown in
Figure 8. It can be seen that the signals had attenuation in magnitude but the quality of the signals
was improved.
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After obtaining the filtered signal, a cross-correlation curve and its Gaussian fitting curve were
obtained. In this paper, eight sensors were used, and two sensors were selected for cross-correlation
operation. A total of 28 cross-correlation curves were obtained. The impact possibility weight of
each grid on the test plate was calculated according to the Gaussian curve. The difference in distance
between the two sensors at the center of the grid was easy to calculate, and the time difference was
obtained by the ratio between the distance and wave velocity. A time difference was used to obtain a
corresponding value in the cross-correlation curve as a component of the impact possibility weight in
this grid.

In ideal conditions, the grid, in which an impact point is located, corresponds to a time delay that
points to the maximum value in the Gaussian curve, as shown in Figure 9. However, the position in the
time axis of the maximum value of the curve may have some offsets under the ideal conditions, called
Gaussian curve offset in the paper, and will lead to a location error. In addition, the discrete error is also
a reason for the location error. The discrete error is caused by the grid division. When calculating the
time delay, the center of the grid is chosen as an assumed impact point, while in realistic conditions the
impact location may have some distance to the grid center, causing a discrete error. The discrete error
can be reduced by reducing the size of the grid but increases the amount of computation. The Gaussian
curve offset is mainly caused by a low noise–signal ratio, which is usually seen in the curve calculated
by signals acquired by sensors far from the impact point. By filtering the signals with a proper filter
frequency band, the degree of the curve offset can be reduced.
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Although some time difference errors occurred in the partial cross-correlation curve, the effect of
this time error was reduced since 28 results was superimposed, which also explains the advantage of
the location process by impact possibility weight in this paper and can adapt to the complex wave field
effect of stiffened plates.

The impact possibility weight maps-drawing process is shown in Figure 10. After combining
all 28 Gaussian curves, an impact possibility weight map with a high resolution can be obtained.
Each pixel in the impact possibility weight map represents the impact possibility weight Ik of the
corresponding grid, and Ik is calculated by using Equation (1). For a set of sensor pairs, the principle
of the impact possibility weight imaging for the entire region is similar to that of the TDOA method.
For each grid, there is a fixed time difference that corresponds to a cross-correlated value. However,
for a time difference, many points can form a hyperbola. Therefore, for a pair of sensors, the resulting
curve cannot directly locate the location of the impact. In theory, two curves can get the location
of the impact. The method in this paper superimposes 28 images to obtain more accurate location
information. The center of the grid with the largest impact possibility weight is recognized as a PLR.
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The PLRs of 10 experiments at an impact point (−20, 15) are shown as Table 2. It can be seen from
Table 2 that the location results were accurate and stable. The minimal location error was 0.7071 cm
and the maximum error was 1.5811 cm. The PLRs of other 12 impact points were also calculated for
further processes in the next section.
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Table 2. Preliminary location result (PLRs) of 10 experiments at an impact point (−20, 15).

Number. Result Error (cm) Number Result Error (cm)

1 (−19.5, 13.5) 1.5811 6 (−20.5, 14.5) 0.7071
2 (−19.5, 13.5) 1.5811 7 (−20.5, 13.5) 1.5811
3 (−20.5, 14.5) 0.7071 8 (−20.5, 15.5) 0.7071
4 (−19.5, 13.5) 1.5811 9 (−20.5, 14.5) 0.7071
5 (−20.5, 13.5) 1.5811 10 (−19.5, 13.5) 1.5811

4.2. FLRs with the PPLSO Algorithm

After obtaining a set of PLRs, the PPLSO algorithm was used to obtain an FLR. The PLR of
each impact point was seen as a sample vector for the PPLSO algorithm, as mentioned in Section 2.2,
and each point had 10 PLRs. Take an impact point (−20, 15) as an example to introduce the PPLSO
algorithm procedure. A set of PLRs obtained by the CCGPWL algorithm shown in Table 2 were used
as a sample vector. The algorithm first divided the test plate into four big girds in our experiment,
as shown in Figure 11. After the division, the impact probability of each grid was calculated by
Equation (12). Then, the grid with the largest impact probability, as indicated by the red slash areas in
Figure 11, was further divided. This procedure was repeated, until the ideal resolution was obtained.
Moreover, the center of the grid with the largest impact probability in the last time division was
recognized as an FLR, which was (−20.75, 14.25) for the impact point (−20, 15).
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Figure 11. Procedure of the posterior probability location results optimization (PPLSO) algorithm.

The FLR’s location error of each impact point is shown in Figure 12. The location error of FLRs
was less than 6 cm with an average error of 2.57 cm. To verify the effectiveness of the PPLSO algorithm,
a comparison of location errors between the average value of PLRs and the FLR of each impact point
with the use of the type 1 sensor network and a filter frequency band of 300–400 kHz is shown in
Table 3. It can be seen from Table 3 that, at most impact points, the location error of FLRs was smaller
than that of the average value. The average error of FLRs was 2.57 cm, while the error of average value
of PLRs was 4.37 cm. This means that the PPLSO algorithm can obtain a better result than the common
average approach.
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4.3. The Influence of the Filter Frequency Band and the Sensor Network Scheme on Final Location Results

In the PPWCIL method studied in this paper, the key parameters are the filtered frequency band
and the sensor network scheme. In this section, the effects of the above parameters are statistically
analyzed. The final location average errors and standard deviations of the errors in different cases are
shown in Figure 13. All types of sensor network had a large average error in the low-frequency filter
band, and with the increase of the filter band frequency, the average error became smaller, while the
optimal value was obtained at a frequency band of 300–400 kHz. The minimum average error was
obtained with the type 1 sensor network in the filter frequency band of 300–400 kHz. The minimum
average error was 2.57 cm. As shown in Figure 13b, the relationships between average error and filter
band showed a similar trend to those in Figure 13a, and the minimum error standard deviation was
also obtained with the type 1 sensor network in the filter frequency band of 300–400 kHz, of which the
value was 1.59 cm. In summary, the optimal FLR can be obtained using the type 1 sensor network and
the filter frequency band of 300–400 kHz. A more detailed analysis will be made below.
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During the location process, the location accuracy of the CCGPWL algorithm directly affected the
accuracy of the final result. Among them, whether the cross-correlation curve can obtain the maximum
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value in the time difference corresponding to the real impact point is the most critical. In the ideal case,
the location of the peak value of the Gaussian curve accurately corresponded to the distance between
the two sensors, which were used to calculate the curve. In this case, the grid, which was closer to
the impact location, obtained a larger impact possibility weight. However, since the influence of the
stiffeners and signal attenuation, the Gaussian curve has some offsets, which causes location errors,
as mentioned in the previous section.

In the course of the experiment, the true time difference Treal by a true distance from the pair
of sensors was calculated. In the Gaussian cross-correlation curve, the peak corresponds to a time
difference Tpeak. If they can match exactly, they will get the best results. Therefore, the difference can
be defined as:

Terror = |Treal− Tpeak|. (13)

Terror is a parameter worth studying. A set of impact signals of the impact point (−20, 15) collected
by the type 1 sensor network were used to compare the Terror with different filter frequency bands,
as shown in Figure 14. The abscissa in Figure 14 represents the 28 sets of cross-correlation curves
corresponding to the eight sensors used in this paper.
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(d) 300–400 kHz; (e) 400–500 kHz.

The average Terror with a frequency band of 20–100 kHz was 2.38 ms, which was larger than the
other frequency bands and is the main reason leading to a large location error. The average Terror
with a frequency band of 400–500 kHz was also relatively large, but it can be seen from Figure 14 that
the number of curves with a large deviation is only six, which is much less than that in 20–100 kHz,
leading to a smaller location error. Further, the best frequency band was 300–400 kHz with the smallest
average Terror of 0.044 ms.

A similar comparison was also made with different sensor network schemes. Maintaining the
filter frequency band of 300–400 kHz and using impact signals acquired by different sensor networks,
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the Terror are shown in Figure 15. It can be seen that the difference of offset with different sensor
network schemes was not as obvious as that with different filter frequency bands, but it has the same
trend, that is, the smaller the Terror, the smaller the location error.
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network; (c) type 3 sensor network.

4.4. Comparison between the CCGPWL Algorithm and the TDOA Method

To compare the performance between the CCGPWL algorithm and the TDOA method,
the traditional TDOA method was used to process the same signals to obtain location results.
The TDOA method in this paper uses signals acquired by four sensors. The sensors’ locations and
impact points are shown in Figure 16. The time differences between sensor 1 and sensor 2, sensor 2 and
sensor 3, sensor 3 and sensor 4, and sensor 4 and sensor 1 were used. In addition, the average value of
all the crossover points between the hyperbola curves calculated by the time differences was regarded
as the location result. The signals were filtered with a frequency band of 100–400 kHz. The threshold
of the TDOA method was set to 130 mV, which caught the arrival time of the S0 Lamb wave. The wave
speed of the S0 Lamb wave was calculated with an experiment. The wave speed of the S0 Lamb wave
was 5.31 km/s. The arrival time obtained by signals of the impact point (−25, 15) is shown in Figure 17.
It can be seen from Figure 17 that, as the paths from the impact point to the sensors are different,
the signals’ attenuations are different because of the influence of the distance and stiffener. This may
affect the accuracy of the arrival times obtained by using a fixed threshold and lead to a location error.
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Figure 16. Schematic diagram of the experimental scheme. Blue dots indicate the sensor positions, red
dots indicate the impact points, the black line at the edge indicates the boundary of the test piece, and
the black line inside indicates positions of the stiffeners.
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The average errors of location results calculated by the TDOA method are shown in Table 4.
It can be seen from Table 4 that more than half of the impact points had bad location results with the
use of the TDOA method. It was shown that the impact point, which was closer to the center of the
sensor network working area, had normal location results, while those points, of which the paths to
sensors and the number of passed stiffeners were very different, were no longer located with the TDOA
method. This phenomenon showed that, in a stiffened plate, the position of the impact point affects
the performance of TDOA method significantly. In addition, by comparing the results of the impact
points, of which the TDOA average error was less than 50 cm, we can find that the average error of the
TDOA method was 9.85 cm while the value of the CCGPWL algorithm was 6.37 cm. It was shown that
CCGPWL algorithm performs moderately better than TDOA method. In conclusion, the accuracy of
the CCGPWL algorithm is slightly better than the TDOA method, but the stability of the CCGPWL
algorithm is much better than that of the TDOA method.

Table 4. Comparison between the CCGPL algorithm and the time difference of arrival (TDOA) method.

Impact
Location

CCGPWL Average
Error (cm)

TDOA Average
Error (cm)

Impact
Location

CCGPWL Average
Error (cm)

TDOA Average
Error (cm)

(−20, 15) 1.23 55.99 (>50) (20, −15) 12.11 137.57 (>50)
(−10, 10) 8.31 3.44 (10, −10) 9.75 4.49
(−15, 5) 14.54 148.43 (>50) (15, −5) 3.95 12.95

(0, 0) 6.40 13.57 (20, 15) 1.15 207.53 (>50)
(−20, −15) 1.59 83.37 (>50) (10, 10) 6.69 14.12
(−10, −10) 3.13 10.54 (15, 5) 6.13 68.13 (>50)
(−15, −5) 1.76 106.63 (>50)

5. Conclusions

This paper proposes a posterior probability correlation impact location algorithm, which can locate
impact locations in stiffened structures of spacecrafts. The accuracy and stability of this algorithm
were verified by experiment, and the influences of sensor network scheme and filter band were also
studied. The results showed that the proposed algorithm is adaptive to the collision location of
spacecraft complex stiffened plates, and good location results can be obtained in a complex beam
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propagation environment of stiffened plates. The experiment results also showed the influence on the
FLR of the difference in the sensor network scheme was relatively small. The posterior probability
correlation impact location algorithm shows high accuracy and stability, with an average location
error of 2.57 cm. The comparison between the CCGPWL algorithm and the TDOA method shows the
CCGPWL algorithm has good stability while the accuracy of the CCGPWL algorithm can be further
improved in future study.
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