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Simple Summary: Recent studies have identified Nerve Fiber Density (NFD) as a prognostic
biomarker for Cholangiocarcinoma (CCA). In the field of CCA treatment with checkpoint inhibitors
(ICI) is increasing but not all patients respond. Good biomarkers to predict response to ICI are lacking.
The present study investigates the immune cell composition and expression of checkpoint molecules
in relation to NFD in perihilar cholangiocarcinoma (pCCA) patients. Our study identified NFD to
correlate with PD-1+ T cells as a biomarker indicative for a good prognosis.

Abstract: Background and Aims: Perihilar cholangiocarcinoma (pCCA) is a hepatobiliary malignancy,
with a dismal prognosis. Nerve fiber density (NFD)—a novel prognostic biomarker—describes the
density of small nerve fibers without cancer invasion and is categorized into high numbers and
low numbers of small nerve fibers (high vs low NFD). NFD is different than perineural invasion
(PNI), defined as nerve fiber trunks invaded by cancer cells. Here, we aim to explore differences in
immune cell populations and survival between high and low NFD patients. Approach and Results:
We applied multiplex immunofluorescence (mIF) on 47 pCCA patients and investigated immune
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cell composition in the tumor microenvironment (TME) of high and low NFD. Group comparison
and oncological outcome analysis was performed. CD8+PD-1 expression was higher in the high
NFD than in the low NFD group (12.24 × 10−6 vs. 1.38 × 10−6 positive cells by overall cell count,
p = 0.017). High CD8+PD-1 expression was further identified as an independent predictor of overall
(OS; Hazard ratio (HR) = 0.41; p = 0.031) and recurrence-free survival (RFS; HR = 0.40; p = 0.039).
Correspondingly, the median OS was 83 months (95% confidence interval (CI): 18–48) in patients with
high CD8+PD-1+ expression compared to 19 months (95% CI: 5–93) in patients with low CD8+PD-
1+ expression (p = 0.018 log rank). Furthermore, RFS was significantly lower in patients with low
CD8+PD-1+ expression (14 months (95% CI: 6–22)) compared to patients with high CD8+PD-1+
expression (83 months (95% CI: 17–149), p = 0.018 log rank). Conclusions: PD-1+ T-cells correlate
with high NFD as a prognostic biomarker and predict good survival; the biological pathway needs to
be investigated.

Keywords: cholangiocarcinoma; liver cancer; tumor microenvironment; nerve fiber density; immune
checkpoint; immune cells

1. Introduction

Cholangiocarcinoma (CCA) is a rare and aggressive hepatobiliary malignancy arising
from the biliary tract. Based on the cancer location within the biliary tree, CCA is classified
into three subtypes: intrahepatic cholangiocarcinoma (iCCA), perihilar cholangiocarcinoma
(pCCA) and distal cholangiocarcinoma (dCCA). CCA usually has a five-year overall sur-
vival (OS) of less than 10% [1]. Surgical resection remains the only curative treatment for
these patients, however, only a minority of patients is eligible for surgery as CCA is often
diagnosed at an advanced stage and resection is no longer an option. For almost all CCA
patients, conventional cytotoxic chemotherapy is the mainstay treatment option [2], result-
ing in a survival benefit of only months in comparison to best supportive care and causing
toxic side-effects. The upcoming treatment options within personalized medicine have not
brought much for the group of patients with pCCA [3]. Recent trials have opened the field
of immunotherapy as a treatment option displaying the possibility of long-term survival
in some patients [4]. For CCA patients this is a developing field and results from phase 3
trials are expected [5–7]. Based on phase 1 clinical trials there is hope that immunotherapy
in combination with chemotherapy regimens might improve outcomes in CCA patients as
well [8].

The low success rate of CCA treatment is caused by many factors, and limited knowl-
edge of its tumor microenvironment (TME) contributes to this problem. CCA has a high
heterogeneity at the genomic, epigenetic and molecular level, hence, primary CCA contains
a diverse range of cell types [9–14]. Furthermore, the TME is a host for many different
immune cells and stimulatory and inhibitory effects take place. PCCA shows abundant
desmoplastic stroma, which contains many immune cells, providing either a host protective
immune environment or facilitating tumor progression [15]. Immune cell compositions
play an important role in the immune response to the cancer and different phenotypes have
been suggested in combined hepatocellular-cholangiocarcinoma patients (cHCC-CCA) [16]
and in iCCA [17].

From a histopathological point of view, pCCA characteristically has an extensive stro-
mal component, in which complex microenvironment interactions take place [15]. In the
past decade, great efforts have been made to explore the complexity of the TME and to
develop novel therapies that might help to improve oncological outcomes. However, more
needs to be discovered about the spatial relationship among cells within the complex TME
and their expression patterns of co-stimulatory and inhibitory signals to understand the
response to immune checkpoint blockades in clinical trials. However, not every patient
responds equally and response rates differ from <5% to >40% depending on the cancer
type. There is an urgent need for biomarkers to better predict responses to immunother-
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apy [18]. Predictors for an anti-tumor response to ICIs currently are: high PD-L1 expression;
microsatellite instable cancers or microsatellite high (MSI-H) cancers; tumor infiltrating
lymphocytes (TILs) at the edge of the tumor and high mutational burden (TMB). Unfortu-
nately, even in the presence of one of these markers, not all patients seem to respond to
ICIs [14,19–22]. Furthermore, we are in urgent need of new biomarkers to predict responses
to checkpoint inhibitors to facilitate patient selection.

We have recently shown that nerve fiber density (NFD) in the TME functions is an
important prognostic biomarker in CCA patients. NFD is associated with clinical outcomes
in pCCA and iCCA patients [23] and patients with the presence of small nerve fibers in
the TME display a better survival. The underlying mechanisms of this clinical observation
are not discovered yet. Of vital importance is the difference of a well-known aggressive
feature known as perineural invasion (PNI), which shows the invasion of cancer cells into
the nerve fibers (Figure 1). This histological feature is detectable on a routine H&E staining
and it is thought that the perineurium of the nerve fiber is a barrier for the chemotherapy to
reach the cancer. Moreover, the nerve fiber environment provides a way of least resistance
for the tumor to spread and progress. NFD has an opposite effect on outcome and consists
of nerve fibers growing in the TME. In case of high NFD, small nerve fibers grow into the
TME. These nerve fibers are only visualized by a special staining and the nerve fibers are
smaller in diameter and usually do not show any tumor invasion.

Figure 1. The difference between Perineural Invasion (PNI) and Nerve Fiber Density (NFD). (A) PNI
is defined as tumor cells invading the perineurium of the nerve. In the neuronal marker (PGP9.5)
staining, the nerve fiber in red (red arrow) surrounded and invaded by tumor cells and glandular
structures. (B) NFD shows the presence of small nerve fibers in the tumor microenvironment (TME).
These nerve fibers are small in diameter (<100 µm) and do not show any invasion of tumor cells.
The red arrow points to the tumor cells and the yellow circles mark the presence of small nerve
fibers stained with the neuronal marker (PGP9.5). (C) Corresponding H&E staining of PNI. PNI is
recognizable for the pathologist. (D) On the H&E, the cancer is recognizable, however the small
nerve fibers are not detectable on this routine staining. H&E, hematoxylin and eosin; NDF, nerve
fiber density; PNI, perineural invasion; TME, tumor microenvironment.
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Given this prognostic value of NFD in pCCA, we hypothesized NFD might also be
associated with different immunophenotypes and therefore used multiplex immunofluores-
cence (mIF) to reveal the differences in immune cell composition and distribution combined
with the expression of co-stimulatory and co-inhibitory checkpoint markers.

2. Materials and Methods
2.1. Patient Cohort

In total, 47 pCCA formalin fixed paraffin embedded (FFPE) tissue blocks were selected
from the archive of the University Hospital RWTH Aachen. All patients were treated and
operated on in our hospital between 2010 and 2019. Of the 47 patients, two individuals were
excluded due to poor quality of the slide after staining, resulting in 45 patients being eligible
for this analysis. The study was conducted in accordance with the requirements of the
Institutional Review Board of the RWTH-Aachen University (EK 106/18), the Declaration
of Helsinki, and good clinical practice guidelines (ICH-GCP).

2.2. Surgical Techniques, Adjuvant Treatment and Follow-Up

All patients who were referred for surgical treatment of CCA to our institution un-
derwent a detailed clinical work-up, which included an oncological staging in accordance
with common standards and radical surgery with lymphadenectomy as previously de-
scribed [23–25] Patients treated between 2010–2017 were recommended for adjuvant ther-
apy in case of positive lymph nodes or an R1 resection. After 2017 every patient was
recommended for adjuvant therapy in line with the BILCAP trial [26]. The postoperative
follow up consisted of clinical follow up at the local hospital or with an oncologist with
laboratory testing (CA19-9) and imaging. Confirmation of recurrence was performed by
histology or radiology.

2.3. Whole Slide Immunohistochemistry (IHC) and Nerve Fiber Counts

All samples were checked for the presence of tumor region by hematoxylin and eosin-
stained sections. Slides were cut in tissue sections (2.5 µm thick) from formalin-fixed blocks,
deparaffinized in xylene and rehydrated in graded alcohols. Slides were boiled in citrate
buffer (pH 6.0) at 95–100 ◦C for 5 min and were cooled for 20 min at room temperature with
endogenous peroxide in methanol for 10 min. Then, these slides were incubated with rabbit
anti-human PGP 9.5 (DAKO 1:100) overnight at 4 ◦C to mark the nerve fibers. Histological
Slides were scanned using the whole-slide scanners Aperio AT2 with ×40 objective (Leica
Biosystems, Wetzlar, Germany), corresponding to a pixel-edge-length of = 0.252. A single
digital image per case was uploaded in Qupath 0.1.6.

NFD nerve fiber counts from our previous study were used for immune cell phe-
notyping [24]. The NFD method was evaluated by manually counting the number of
nerve fascicles with diameters of <100 µm in 20 continuous visual fields at ×200 mag-
nification [27]. Based on NFD results, patients were categorized into a low NFD group
(<10 nerve fibers) and a high NFD group (≥10 nerve fibers) as previously described (24).

2.4. Whole Slide Multiplex Immunofluorescence (mIF)

All FFPE samples were subjected to multiplex immunofluorescence (mIF) in serial
5.0 µm histological tumor sections obtained from representative FFPE tumor blocks. The
FFPE blocks were carefully selected within the presence of the tumor region. The sections
were labeled by using the Opal 7-Color fIHC Kit (PerkinElmer, Waltham, MA, USA). The
antibody fluorophores were grouped into a panel of five antibodies. The order of antibodies
staining was always kept constant on all sections and sections were firstly counterstained
with DAPI (Vector Laboratories, Eching, Germany). The multiplex immunofluorescence
panel consisted of CD8, CD68, PD-1, PD-L1, and PD-L2 (Table 1). All antibodies were
diluted with Antibody Diluent (with Background Reducing Components, Dako, Germany).
Secondary antibodies were applied with ImmPRESS™ HRP (Peroxidase) Polymer Detection
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Kit (Vector Laboratories, Burlingame, CA, USA). TSA reagents were diluted with 1× Plus
Amplification Diluent (PerkinElmer/Akoya Biosciences, Marlborough, MA 01752, USA).

Table 1. Monoclonal antibodies in the multiplex immunofluorescence panel.

Antibody Marker Dilution Incubation Theme Manufacturer

CD8 Cytotoxic T 1:500 30 min CySO Dako
CD68 Macrophage 1:6000 30 min Cy7E Dako

PD-1/CD279 Checkpoint 1:250 Over night Cy47 Abcam
PD-L1/CD274 Checkpoint 1:200 Over night 46HE Dako
PD-L2/CD273 Checkpoint 1:400 Over night 43HE Abcam

The manual for mIF is described as Edwin R. Parra’s protocol [28]: in short, the first
marker was incubated after the FFPE sections were deparaffinized in xylene and rehydrated
in graded alcohols. The second marker was applied on the following day, and the third
marker was applied on the third day. After all five sequential reactions, sections were
finally cover-slipped with VECTRASHIELD® HardSet™ Antifade Mounting Medium.

The slides were then digitally scanned with the TissueFAXS PLUS system (TissueG-
nostics, Vienna, Austria). Image analysis was performed in two regions of interest (ROI) in
each image (only if present in the slide: tumor region and tumor free region). The size of
the ROI varied per slide. Immune cell expression was calculated in percentages throughout
the whole project.

Strataquest software was used to analyze the antibody staining and cell counts. The
library information was used to associate each fluorochrome component with a mIF marker.
All immune cell populations were quantified as positive cells divided by the overall cell
count using the cell segmentation, and thresholds were set manually under supervision of
two pathologists (LH/MC). Positive cell count was categorized based on thresholds, and
a value above the threshold was considered as positive. Checks were performed by the
pathologists (LH/MC). See Figure 2 for an overview of workflow.

Figure 2. Overview of study workflow. (A) The formalin-fixed paraffin-embedded (FFPE) blocks were
collected from the pathology archives. The slides were cut and stained with DAPI and five antibodies.
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The immunofluorescence-stained slides were scanned. (B) The digital scans were annotated for
different regions: Tumor and Tumor-free. Cells were subsequently counted in these separate regions.
For the NFD patients, the slides were selected based on the small nerve fiber count from previous work
and the cell counting was conducted in the tumor region. (C) In total, we included 47 patients in this
study. From 45 patients we were able to analyze the digital scans. DAPI, diamidino-2-phenylindole,
FFPE; formalin-fixed paraffin-embedded.

2.5. Statistical Analysis

Clinical variables and immune cell data and the difference between patients with high
and low NFD were investigated by Mann–Whitney U test for continuous variables and the
χ2 test or Fisher’s exact test in accordance with scale and number count. Furthermore, the
overall survival (OS) and the recurrence-free survival (RFS) of the cohort were determined
by the Kaplan–Meier method. The OS was defined as the date of surgery to the date of death
based on any cause, while the RFS was defined as the date of surgery to the date of first
tumor recurrence. Associations between the OS or RFS and clinical or multiplex variables
were determined by univariate and multivariate Cox Regression analyses. Survival curves
were generated by the Kaplan–Meier method and compared with the log-rank test. The
cut-off level for group categorization for survival analysis was determined by the receiver
operating characteristic (ROC)-analysis of the OS with respect to the analyzed continued
variable as previously described [24]. The level of significance was set to α = 0.05, and
p values were calculated using two-sided testing.

3. Results
3.1. Patients’ Characteristics

The study cohort comprised of 45 individuals with 15 patients in the high NFD and
30 patients in the low NFD group. Demographical features, e.g., gender (p = 0.664), age
(p = 0.563) and American College of Anesthesiologists (ASA) status (p = 0.850) displayed
no difference between the groups. Furthermore, no statistical differences were observed
with respect to basic pathological features as T category (p = 0.324), N category (p = 0.832),
vascular invasion (p = 0.225), lymphatic invasion (p = 0.611), perineural invasion (p = 0.773)
and tumor grading (p = 0.085). More details on clinicopathological features are displayed
in Table 2.

3.2. Multiplex Data

The 45 slides all included whole slide analysis for the combined for immune cell
markers (CD8 and CD68) and immune checkpoint markers (PD-1, PD-L1 and PD-L2). The
corresponding H&E slide of the same block was used to annotate the tumor region and
positive cells were counted. DAPI nuclei staining was used to generate a total cell count. We
assessed differences in immune cell counts (CD8 and CD68) and expressions of checkpoint
markers (PD-1, PD-L1 and PD-L2). Interestingly, the CD8+ and CD68+ numbers were not
significantly different, although the PD-1 expressions were. We note that PD-L1 was not
significantly expressed and this marker is used for patient selection for pembroluzimab.

While the expression of CD8+ and CD68+, as well as the expression of co-stimulatory
signals, appear to be tangentially higher in the high NFD cohort, a pronounced statistical
effect was overserved for CD8+PD-1+ and CD8+PD-1+PD-L2+ cells. CD8+PD-1 expression
was higher in the high NFD than in the low NFD group (12.24 × 10−6 vs. 1.38 × 10−6,
p = 0.017) as was CD8+PD-1+PD-L2+ (0.34 × 10−6 vs. 0.04 × 10−6, p = 0.044; Table 2). See
Figure 3 for the CD8 cell comparison between low vs high NFD.
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Table 2. Comparative analysis of surgically treated patients with respect to nerve fiber density.

Variables
NFD Group

High (n = 15) Low (n = 30) p Value

Demographics

Gender, m/f (%) 10 (66.7)/5 (33.3) 18 (60)/12 (40) 0.664
Age (years) 70 (58–72) 64 (55–73) 0.563
ASA, n (%) 0.850
I 1 (6.7) 1 (3.3)
II 8 (53.3) 15 (50.0)
III 6 (40.0) 13 (43.3)
IV 0 1 (3.3)
Pathological examination
T category, n (%) 0.324
T1 0 0
T2 8 (53.4) 20 (66.6)
T3 6 (40.0) 6 (20.0)
T4 1 (6.7) 4 (13.3)
N category 0.832
N0 7 (46.7) 13 (43.6)
N1 8 (53.3) 17 (56.7)
Vascular invasion, n (%) 2 (13.3) 10 (33.3) 0.225
Lymphatic invasion, n (%) 5 (33.3) 7 (23.3) 0.611
Perineural invasion, n (%) 10 (66.7) 21 (87.5) 0.733
Tumor grading, n (%) 0.085
G1 0 0
G2 14 (93.3) 20 (71.4)
G3 0 7 (25.0)
G4 0 1 (3.6)
Multiplex Imaging Data
CD8-Panel (×10−6)
CD8+ 319.04 (131.37–448.66) 182.51 (118.95–347.54) 0.195
CD8+PD-1+ 12.24 (1.04–23.06) 1.38 (0.73–8.02) 0.017
CD8+PD-1+PD-L1+ 0.90 (0.03–1.97) 0.27 (0.04–0.66) 0.228
CD8+PD-1+PD-L1+PD-L2+ 0.14 (0.00–0.52) 0.02 (0.00–0.08) 0.150
CD8+PD-1+PD-L2+ 0.34 (0.03–0.79) 0.04 (0.00–0.16) 0.044
CD8+PD-L1+ 6.53 (1.92–15.76) 2.83 (1.16–10.42) 0.306
CD8+PD-L1+PD-L2+ 0.58 (0.16–5.41) 0.13 (0.05–0.80) 0.091
CD8+PD-L2+ 3.30 (0.81–17.37) 2.36 (0.37–4.93) 0.097
CD68-Panel (×10−6)
CD68+ 709.33 (348.70–1475.20) 505.81 (282.94–692.45) 0.087
CD68+PD-1+ 5.82 (1.22–15.16) 2.52 (0.85–5.53) 0.140
CD68+PD-1+PD-L1+ 1.01 (0.06–1.90) 0.37 (0.05–1.09) 0.363
CD68+PD-1+PD-L1+PLD2+ 0.01 (0.00–0.47) 0.02 (0.00–0.14) 0.946
CD68+PD-1+PD-L2+ 0.11 (0.02–1.39) 0.04 (0.00–0.53) 0.513
CD68+PD-L1+ 15.31 (1.58–42.57) 6.64 (3.41–13.88) 0.195
CD68+PD-L1+PD-L2+ 1.18 (0.08–4.36) 0.06 (0.34–0.97) 0.120
CD68+PD-L2+ 10.24 (4.03–24.87) 4.93 (2.56–8.84) 0.070
Follow-up Data
Recurrence-free survival (months) 70 (48–93) 15 (3–27) 0.014
Overall survival (months) 90 (0–196) 19 (12–27) 0.037

Data presented as median and interquartile range if not noted otherwise. Multiplex data is presented as positive
cells per overall cell count of the tumor ROI. Follow-up data is presented as median and 95% CI. Categorical
data were compared using the chi-squared test, fisher’s exact test or linear-by-linear association according to
scale and number of cases. Data derived from continuous variables of different groups were compared by
Mann–Whitney-U-Test. Follow-up data was calculated by the Kaplan–Meier-Method and compared by log rank
tests. ASA, American society of anesthesiologists’ classification; CI, confidence interval. ROI, region of interest.

3.3. Survival Analysis

As high expression of CD8+PD-1+ and CD8+PD-1+PD-L2+ were associated with high
NFD, these two variables were further included into a survival analysis for the whole
cohort. For this purpose, a ROC analysis evaluating CD8+PD-1+ and CD8+PD-1+PD-
L2+ expression with respect to OS was carried out and cut-off values for these variables
determined with respect to the optimized accuracy and equal weight for sensitivity and
specificity errors. By this approach, the cut-off values were determined to be <1.4 × 10−6
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(= low expression) vs. ≥1.4 × 10−6 (= high expression) for CD8+PD-1+ and <0.1 × 10−6

(= low expression) vs. ≥0.1 × 10−6 (= high expression) for CD8+PD-1+PD-L2+.

Figure 3. Multiplex immunofluorescence (mIF) digitized images. (A) Zoomed-in image of a slide
with perihilar cholangiocarcinoma, with perihilar presence of many big nerve fibers and large vessels.
(B) The red box visualizes PNI with the tumor glands highlighted with red and the nerve fiber marked
in yellow. For PNI the tumor glands need to be orientated really close to the nerve and invade the
perineurium. (C) The yellow box visualizes a large nerve fiber without tumor invasion. The increase
in small nerve fibers, which are counted to assess NFD are not detectable without a neuronal marker.
The positive cell counting was conducted in the tumor annotation in a patient with high NFD. (D) For
high and low NFD, positive cell counts for CD8 were not significantly different the tumor region.
(E) Cell subset comparison. CD8+PD-1+ (p = 0.044) and CD8+PD-1PD-L2 cell counts (p = 0.017) were
significantly higher in patients with high NFD. NFD, nerve fiber density; PNI, perineural invasion.

After a median follow-up of 70 months, the median OS of the cohort was 28 months
(95% Confidence interval (CI): 12–43) and the RFS 24 months (95% CI: 0–49; Figure 4A,B).
A Kaplan–Meier analysis with respect to NFD showed a median OS of 90 months (95% CI:
0–196) in patients with high NFD compared to 19 months (95% CI: 12–27) in patients with
low NFD (p = 0.037 log rank, Figure 4C). Furthermore, the RFS was significantly lower in
patients with low NFD (15 months (95% CI: 3–37)) compared to patients with high NFD
(70 months (95% CI: 48 –93), p = 0.014 log rank, Figure 4D).

A similar survival analysis was conducted for CD8+PD-1+ expression. Here, a Kaplan–
Meier analysis showed a median OS of 83 months (95% CI: 18–48) in patients with high
CD8+PD-1+ expression compared to 19 months (95% CI: 5–93) in patients with low
CD8+PD-1+ expression (p = 0.018 log rank, Figure 4E). Furthermore, RFS was significantly
lower in patients with low CD8+PD-1+ expression (14 months (95% CI: 6–22)) compared to
patients with high CD8+PD-1+ expression (83 months (95% CI: 17–149), p = 0.018 log rank,
Figure 4F).
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Figure 4. Oncological survival in CCA with respect to CD8+PD1+ count and nerve fiber density:
(A) Overall survival. The median OS of the cohort was 28 months; (B) Recurrence-free survival. The
median RFS of the cohort was 24 months; (C) Overall survival stratified by nerve fiber density. The
median OS of the cohort was 19 months in patients with low NFD and 90 months in patients with high
NFD; (D) Recurrence-free survival stratified by nerve fiber density. The median RFS of the cohort was
15 months in patients with low NFD and 83 months in patients with high NFD; (E) Overall survival
stratified by CD8+PD1+ count. The median OS of the cohort was 19 months in patients with low
CD8+PD1+ expression and 83 months in patients with high CD8+PD1+ ≥expression; (F) Recurrence-
free survival stratified by CD8+PD1+ count. The median RFS of the cohort was 14 months in patients
with low CD8+PD1+ expression and 83 months in patients with high CD8+PD1+ expression. NFD,
nerve fiber density; OS, overall survival; RFS, recurrence-free survival.

3.4. Cox Regression Analysis

To further explore independent prognostic markers of survival in our cohort, Cox
regression analyses were conducted. Here, in univariate analysis, tumor grading (Hazard
ratio (HR) = 3.22; p = 0.010) and high CD8+PD-1+ expression (HR = 0.44; p = 0.029) were
significantly associated with OS. All variables showing p value <0.10 were included in a
multivariable Cox regression model. Here, tumor grading (HR = 3.67; p = 0.010) and high
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CD8+PD-1+ expression (HR = 0.42; p = 0.031) were identified as independent predictors for
improved OS (Table 3).

Table 3. Uni- and multivariate analysis of overall survival.

Variables
Univariate Analysis Multivariate Analysis

HR (95% CI) p Value HR (95% CI) p Value

NFD (low = 1) 0.47 (0.21–1.06) 0.070 excluded 0.595
Gender (male = 1) 1.22 (0.60–2.49) 0.576
Age (<65 years = 1) 1.22 (0.61–2.46) 0.572
ASA (I/II = 1) 1.14 (0.57–2.30) 0.707
T category (T1/T2 = 1) 1.53 (0.76–3.09) 0.233
N category (N0 = 1) 1.70 (0.83–3.49) 0.149
Vascular invasion (No = 1) 1.75 (0.81–3.78) 0.154
Lymphatic invasion (No = 1) 1.43 (0.65–3.15) 0.377
Perineural invasion (No = 1) 1.50 (0.44–5.08) 0.515
Tumor grading (G1/G2 = 1) 3.22 (1.33–7.82) 0.010 3.67 (1.37–9.82) 0.010
CD8+PD-1+ (low = 1) 0.44 (0.21–0.92) 0.029 0.42 (0.19–0.92) 0.031
CD8+PD-1+PD-L2+ (low = 1) 0.57 (0.26–1.22) 0.145

Variables displaying a p value < 0.1 in the univariate Cox Regression were transferred into a multivariable Cox
regression model.

In an analog univariate analysis, high NFD (HR = 0.31; p = 0.021), tumor grading
(HR = 4.79; p = 0.001) and high CD8+PD-1+ expression (HR = 0.54; p = 0.024) showed
significant associations with RFS. In the corresponding multivariable Cox regression model,
tumor grading (HR = 5.51; p = 0.001) and high CD8+PD-1+ expression (HR = 0.40; p = 0.039)
were identified as independent predictors of RFS (Table 4).

Table 4. Uni- and multivariate analysis of recurrence-free survival.

Variables
Univariate Analysis Multivariate Analysis

HR (95% CI) p Value HR (95% CI) p Value

NFD (low = 1) 0.31 (0.12–0.84) 0.021 excluded 0.307
Gender (male = 1) 1.16 (0.54–2.49) 0.714
Age (<65 years = 1) 1.03 (0.48–2.20) 0.941
ASA (I/II = 1) 1.08 (0.51–2.31) 0.841
T category (T1/T2 = 1) 1.24 (.57–2.73) 0.589
N category (N0 = 1) 1.53 (0.71–3.31) 0.277
Vascular invasion (No = 1) 2.24 (0.97–5.16) 0.059 excluded 0.085
Lymphatic invasion (No = 1) 1.46 (0.63–3.40) 0.377
Perineural invasion (No = 1) 1.68 (0.39–7.28) 0.486
Tumor grading (G1/G2 = 1) 4.79 (1.90–12.04) 0.001 5.51 (1.98–15.33) 0.001
CD8+PD-1+ (low = 1) 0.40 (0.18–0.89) 0.024 0.40 (0.17–0.96) 0.039
CD8+PD-1+PD-L2+ (low = 1) 0.54 (0.23–1.26) 0.156

Variables displaying a p value < 0.1 in the univariate Cox Regression were transferred into a multivariable Cox
regression model.

4. Discussion

PCCA is considered a rare primary biliary tract cancer and therefore it remains under-
studied. While the literature is short of large cohorts of patients, reported outcomes are
entirely poor compared to other solid malignancies, especially for those individuals who
are not eligible for a surgical resection.

Immunotherapy remains experimental in the clinical treatment of pCCA and patient
stratification for systemic treatment, especially in the context of immunotherapy, is the
subject of ongoing investigation. For HCC, as the most common primary liver cancer,
immunotherapy in combination with Bevacizumab is already a first line treatment in the
palliative setting [29]. First clinical trial results report that pCCA is an immune responsive
malignancy indicating a potential role of immunotherapy in improving patients’ survival.
However, only a subset of patients might respond to immunotherapy and biomarkers to
identify these individuals for immunotherapy are needed urgently [30].



Cancers 2022, 14, 2190 11 of 15

The histology of pCCA usually shows characteristic growth pattern of nerves invaded
by cancer cells. Even though most patients have this feature somewhere present in the
tumor, not all patients display poor outcomes. In this study, we have shown that patients
with high NFD is associated with a higher PD-1 expression. These patients do further
display significant better oncological outcome survival. The underlying mechanism for
this still needs to be further investigated.

NFD is defined as large numbers of small nerve fibers in the TME, these nerve fibers
are not invaded by cancer cells. A recent study has demonstrated that CD8+ infiltration
was associated with better survival in patients with iCCA [31]. Hence, we evaluated the
clinical significance of the main immune cells (T cells and macrophages) in pCCA patients.
In our previous publication [24], we investigated the role of NFD in a large pCCA cohort
and demonstrated high NFD being independently associated with improved survival
after surgical resection. We subsequently hypothesized that the small nerve fibers attract
immune cells providing a better immune response to the cancer. Patients with a high NFD
have abundant CD8+PD-1+ T-cells.

This finding identifies a subgroup of pCCA patients with a better survival. Further,
these might suggest this subgroup for immunotherapy-based adjuvant treatment.

PD-1 checkpoint therapy unleashes the immune cells blocked by PD-1 expanding the
T cell population at the interface and in the tumor. Potentially the high NFD subgroup
of patients could benefit from immunotherapy, when the CD8+ T-cells blocked with PD-
1 are reactivated. Our data are in line with previous findings on HCC patients, where
patients with high levels of PD-1 expression showed an improved survival [32] and low
counts of CD8 T-cells were indicative of a poorer outcome [33]. Previous work on the
immune landscape in intrahepatic cholangiocarcinoma showed an immunosuppressive
environment with low numbers of CD3 and CD4 to be correlated with reduced long-term
outcomes [34] and low expression of PD-1 to be associated with an improved oncological
survival [35–37]. For extrahepatic cholangiocarcinoma, high numbers of CD3+ T-cells
combined with expression of PD-L1 on the tumor cells correlated with a more invasive
growth [38]. The prognostic relevance of the PD-1 marker is therefore diverse, however
expression of this checkpoint receptor usually indicates patients are likely to benefit from
immunotherapy [39–41]. Previous work has shown that cholangiocarcinoma patients with
high densities of tumor infiltrating lymphocytes also have high expression levels of PD-
L1 [42]. Besides using the expression of PD-1 and PD-L1 to predict outcome, different
immune responses in biliary tract cancer are indicative for a better or worse outcome. The
presence of tumor infiltrating lymphocytes are also an important prognostic factor [43].
The different prognostic values of the PD-1 and PD-L1 expression in cholangiocarcinoma
patients suggest that expression of this marker by itself is not enough to function as a
good biomarker.

The TME is host to many different cell types and nerve fibers seem to play a dual role.
The large nerve fiber trunks with tumor invasion are usually a sign of a bad outcome [44]
and the small nerve fibers are indicative of a good outcome [23]. The same phenomenon
exists for immune cells (Tregs are usually bad for prognosis and CD8 cytoxic T cells are
protective to the host [45]) and fibroblasts [46]. In light of this perspective, we hypothesized
that nerve fibers have a dual role as well and they potentially can be used to stratify patients
for response to immunotherapy.

In the future our findings need to be validated by external cohorts and underlying
pathways should be identified. Once the pathways behind high NFD are known, the next
step would be to see if high NFD can be influenced by therapeutics. First this needs to be
conducted in 3D models and hopefully later, potentially, a nerve fiber targeted therapy
could be included in a clinical trial and maybe nerve fiber targeted therapy can be part of a
combination (chemo)therapy.

We have started a functional study to validate our findings in 3D models and hopefully
this will be the next step to a clinical implementation.
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Our study has limitations. Unfortunately, our cohort of only 50 surgically resected
perihilar patients makes the sample size limited. The study could be validated in a larger
sample size, using an external validation cohort, and this would strengthen the study.
To collect larger cohorts, international collaboration is needed. Furthermore, our method
could be improved by using a multiplex imaging device with the accessibility of a 40-
antibody panel, like CODEX or Hyperion. Of course, these methods are expensive.

5. Conclusions

To our knowledge, this is the first study in pCCA using a wide multiplex antibody
panel focusing on immune cells in the TME in combination with checkpoint markers in
relation to NFD. PD-1 expression correlates with high NFD patients suggesting NFD can be
used as a simple prognostic biomarker. NFD can be easily integrated in the routine workup
of the pathology report, since only one neuronal antibody is needed to achieve a nerve
fiber count.
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