
RESEARCH ARTICLE

Robust transmission of rate coding in the

inhibitory Purkinje cell to cerebellar nuclei

pathway in awake mice

Samira Abbasi1,2, Amber E. Hudson1, Selva K. Maran1, Ying Cao3, Ataollah Abbasi4, Detlef

H. Heck3, Dieter Jaeger1*

1 Department of Biology, Emory University, Atlanta, GA, United States of America, 2 Department of

Biomedical Engineering, Hamedan University of Technology, Hamedan, Iran, 3 Department of Anatomy and

Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of

America, 4 Computational Neuroscience Laboratory, Department of Biomedical Engineering, Faculty of

Electrical Engineering, Sahand University of Technology, Tabriz, Iran

* djaeger@emory.edu

Abstract

Neural coding through inhibitory projection pathways remains poorly understood. We ana-

lyze the transmission properties of the Purkinje cell (PC) to cerebellar nucleus (CN) pathway

in a modeling study using a data set recorded in awake mice containing respiratory rate

modulation. We find that inhibitory transmission from tonically active PCs can transmit a

behavioral rate code with high fidelity. We parameterized the required population code in

PC activity and determined that 20% of PC inputs to a full compartmental CN neuron model

need to be rate-comodulated for transmission of a rate code. Rate covariance in PC inputs

also accounts for the high coefficient of variation in CN spike trains, while the balance

between excitation and inhibition determines spike rate and local spike train variability.

Overall, our modeling study can fully account for observed spike train properties of cerebel-

lar output in awake mice, and strongly supports rate coding in the cerebellum.

Author summary

Detailed computer simulations of biological neurons can make an important contribution

to our understanding of how the brain works. In this paper we use such a model of a neu-

ron that represents the output from the cerebellum. We can show that the inhibition this

neuron type receives from Purkinje cells in the cerebellar cortex is well suited to pass a

detailed time course of movement control to the output of the cerebellum. Importantly we

find that this type of coding requires a population of Purkinje cells that pass the same tem-

poral coding of spike rate to the output neurons in the cerebellar nuclei.

Introduction

Transmission of information through firing rate changes in populations of connected neurons

is one of the most widely accepted principles of neural coding. In motor control, for example,
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cortical neurons showing firing rate changes as a function of movement direction can be said

to dynamically compute the current movement direction in a population vector [1]. This

representation also works well computationally in abstract neural networks, for example

when the motion of handwriting control is computed in the neural engineering framework

[2]. Little is known, however, about how biological neurons utilize rate codes transmitted by

their typically hundreds or thousands of input synapses to control their own output firing

rate, and how robust such a code is in the presence of noise, intrinsic non-linearities given

by voltage-gated channels, and a balance of excitatory and inhibitory inputs. Further, it is

unclear whether rate codes are equally present in inhibitory as in excitatory transmission. We

addressed these questions by studying the inhibitory transmission between cerebellar cortical

Purkinje cells (PCs) and their targets in the cerebellar nuclei (CN) through recordings from

awake mice and detailed biophysical simulations of synaptic integration in CN neurons. Linear

rate coding has been identified to represent excitatory input information from granule cell

input in PCs [3,4], but the correlation of coding at the population level and its transmission to

CN neurons in vivo remains unclear. We use rhythmic motor patterns and in particular the

rhythmic control of respiration as a model behavior to study the transmission of rate coding in

cerebellar circuits, as rhythmic respiratory rate modulation is well expressed in the spiking

activity of PCs in the cerebellar vermis [5] as well as in the synaptically connected medial (fasti-

gial) cerebellar nucleus [6], and this pathway plays a functional role in the neural control of

respiration [6].

In the present study we used an updated version of a full biophysical model of CN neurons

[7] to study how the population of Purkinje cell inputs expected to converge on a single CN [8]

may transmit a rate coded rhythmic behavior, and whether CN model generated spike trains

can account for spiking properties recorded from CN neurons in awake mice. We developed

a new algorithm that allows the flexible construction of sets of artificial PC spike trains that

match the statistical properties of recorded PCs while also allowing the insertion of correla-

tions observed between pairs of recorded PCs into a larger set of PC spike trains that converge

onto a single CN neuron as input. This new algorithm development was necessary because it is

at this time physiologically impossible to record from and identify all the PCs that converge

onto a single CN neuron. Therefore, in order to simulate a realistic range of rate-correlations

and respiratory coding correlations between the ~50 PC inputs received by a single CN neu-

ron, it is necessary to generate populations of artificial spike trains (ASTs) in which each AST

matches the statistics of PC recordings (which we obtained from awake mice) while flexibly

allowing the addition of specific rate co-variances between ASTs. We achieved this goal by cre-

ating an intermediate representation of spike trains as rate templates that could be manipu-

lated algebraically to show more or less rate co-variances both for respiratory related rate

changes and slow rate fluctuations. To create ASTs we could then draw gamma distributed

interspike intervals from the rate template to match the template’s rate fluctuations as well as

the recorded spike train statistics. To our knowledge this study presents the first such algo-

rithm, which we expect will be generally useful for similarly minded modeling studies of syn-

aptic integration in the awake brain.

Our CN modeling results for the first time give a full match of CN spiking properties seen

in awake recordings derived from the biophysical properties of CN neurons and the statistics

of their synaptic inputs. The results reveal an unexpected amplification of rate coding at the

CN output compared to the PC inputs received and show a highly robust transmission of rate

codes from the cerebellar cortex to the CN via inhibition in the waking condition. They also

provide evidence for an involvement of intrinsic cellular dynamics in providing gain control

in the transmission of rate codes.

Robust transmission of rate coding through inhibition in the cerebellum

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005578 June 15, 2017 2 / 25

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1005578


Results

The starting point of our analysis was a database of 21 PC, 11 mossy fiber (MF) and 16 CN

recordings. These data were obtained in awake head-fixed mice with multiwire recordings

while respiration was monitored using a thermistor placed in front of one nostril [5,9]. Out of

20 PCs that were analyzed for rate modulation linked to respiration, 15 (75%) showed signifi-

cant rhythmic rate modulation, as indicated by a deflection of the rate change in a peri-event

time histogram (PSTH) triggered on inspiratory event markers above 3 standard deviations

(S2 and S3 Figs). Standard deviations were calculated from a set of 100 control PSTHs from

each cell that were calculated from randomly shifted spike time series with respect to the respi-

ratory event markers. The same analysis showed significant respiratory modulation for 10 of

16 CN neurons (63%), and 6 of 9 (67%) MF recordings. This strong representation of respira-

tory activity supports previous evidence that the vermal cerebellar cortex through its output

connection in the medial cerebellar nucleus is involved in the adaptive control of respiration

[6]. The rate modulation for different cells showed different phase relationships to respiration,

and the averaged rate modulation in the PC, CN, and MF neuron population was not signifi-

cant (S3 Fig), suggesting that cerebellar respiratory modulation occurs at all phases of respira-

tion to a similar degree, though in different populations of neurons.

We also made a detailed analysis of the recorded PC, MF and CN baseline spike train statis-

tics, in particular firing rate as a function of time, interspike-interval (ISI) distribution, coeffi-

cient of variation (CV), and local variation (LV) [10], which indicates the variability of pairs of

successive ISIs (S1 Fig, Table 1 in S1 Text). Our goal was to determine whether the spike train

statistics and respiratory modulation of CN neurons can be explained from the dynamics of a

biophysically realistic CN neuron model [7] and the input patterns received.

To achieve our goal we first had had to design a bootstrapping method by which to extrapo-

late from 2 simultaneously recorded PCs to a population of ~50 PC spike trains with flexible

rate covariances that converge on a single CN neuron with strong synapes [8]. We determined

that our recorded PC spike trains had broad cross-correlations that were in part related to

behavior [9], but did not find any millisecond precision in simple spike cross-correlations here

or in previous studies [11,12]. Complex spikes were removed from the PC spike trains, and

not further considered in this study. We constructed a Matlab (MathWorks, Inc.) algorithm

by which we can assemble artificial spike trains (AST) closely matching properties of single

recorded PCs (Fig 1). The core of this algorithm consists of building and manipulating spike

rate templates (Fig 1A and 1B), which are constructed by convolving spikes recorded from a

single neuron with Gaussians [13,14] (see Methods). To construct ASTs we draw gamma dis-

tributed ISIs from a distribution with a mean rate tracking a rate template, and a shape param-

eter kappa (κ) that is mathematically derived from the LV of the recorded spike train, where

for gamma distributed events LV = 3 / (2 κ +1) [10]. To obtain an ISI distribution in an AST

that matches the original recording (Fig 1C) we further had to perform a refractory period cor-

rection, as gamma distributions do not model processes with refractory periods directly (see

Supplemental Methods for details). We validated our ASTs by comparing the spike train

power spectrum between recorded neurons and the built-to-match ASTs (Fig 1D), and by

ascertaining that the coefficient of variation (CV) and the LV of the AST also matched the

recording closely (Fig 1E). An important observation was that the LV could be modeled as a

static parameter as previously observed for cortical neurons [15], but the global variability of

the spike train over time represented by the CV is an outcome measure that is influenced by

the LV as well as the spike rate modulation over time. Using these methods we made popula-

tions of 50 PC ASTs with statistical properties and spike rate fluctuations matching our

recorded PCs while also being able to flexibly control rate covariances. All 50 PC ASTs used as

Robust transmission of rate coding through inhibition in the cerebellum
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Fig 1. Purkinje cell AST construction from rate templates. Matching AST properties with recorded PC spike trains. A. The slow rate

function calculated from a single recorded PC spike train (black) and of a sample AST sampled with a gamma distribution from the adaptive

Gaussian rate function of this PC (see Methods). The AST generally matches slow rate modulations of the recorded PC. To highlight this match

Robust transmission of rate coding through inhibition in the cerebellum
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input to the CN model were taken from the same master rate template of a single PC with spe-

cific different manipulations of rate-covariances for different simulation runs as described

below (also see Supplemental Methods for details). These AST populations were then used to

analyze how convergent input from 50 PCs would influence CN spiking, and what properties

of convergent input were needed to account for observed CN spike train statistics.

The biophysical CN model we used consists of 485 dendritic and one somatic compartments

incorporating 9 active conductances to replicate slice CN recordings [7]. We included the modi-

fications of ion channel voltage-dependence and density as well as synaptic kinetics described

in the supplemental materials of the original publication ([7], S3 & S4 Figs), which lead to a

more depolarized level of tonic depolarization (Fig 2A) and a more linear f-I curve (Fig 2B) as

well as faster synaptic kinetics to more closely replicate CN slice recordings in these qualities

[16,17,18,19]. In the present study we further modified the synaptic kinetics of PC->CN synap-

ses to incorporate the experimentally determined short term depression parameters [20,21]

leading to a steady state depression of around 60% for a Purkinje cell firing rate of 75 Hz (Fig

2C). The resulting spiking pattern with random excitatory and inhibitory input trains of the

modified model remain similar to the original publication (Fig 2D and 2E), and are based on a

balance of excitatory and inhibitory input currents with a fluctuating total synaptic current near

zero (Fig 2F), which modulates the spontaneous activity of these neurons [16,22].

Next we characterized the CN model spiking output statistics for input patterns aimed

to match the PC spike train statistics derived from our recorded data. We used 50 PC ASTs

(48 dendritic, 2 on the soma) to match the number of strong PC inputs to converge on a CN

neuron recently described [8]. We also applied 48 dendritic mossy fiber ASTs to create the

required balance between excitation and inhibition [16,22]. We scanned through an array of

input parameter settings that are not fully experimentally constrained, notably the size of uni-

tary excitatory and inhibitory conductances (Gin and Gex), and the amount of rate covariances

present between 50 synchronous PC inputs. The latter setting was manipulated by a shift frac-

tion (SF), that is the proportion of rate modulation that utilized a randomly time shifted ver-

sion of the master rate template. For the first set of simulations we used the PC firing rate of

the template neuron (64.9 Hz) for all 50 ASTs. MF inputs to the model were also taken from a

typical single recorded MF rate template, but as this study focused on the effect of rate covari-

ances present in the PC pathway to influence CN spiking statistics we chose to use a SF of 1.0

for our baseline simulation (all MF inputs are temporally decorrelated) and an MF input rate

of 20.4 Hz, which is the recorded sample mean.

The results of this input parameter scan show that using different ratios of Gin and Gex

allowed us to achieve a wide range of CN output firing rates (Fig 3A), and revealed a systematic

relationship between firing rates, CV and LV (Fig 3B and 3C) such that faster CN spike trains

a representative time window of 10s out of the complete 115s spike train of the Purkinje cell recording was chosen. The mean difference

between the recorded PC and AST rate functions over the complete 115s was 6.9 Hz (calculated as root mean square error–RMSE) B. The

high frequency rate function was obtained by dividing the normalized adaptive rate function by the normalized slow rate function in order to

isolate fast rate fluctuations. The AST matches the recorded fast fluctuations qualitatively, but not their exact time course. This is due to the

random drawing of gamma ISIs in the creation of ASTs as fast fluctuations reflect this random process. To highlight this match for fast

frequencies a representative time window of 1s out of the complete 115s spike train of the Purkinje cell recording was chosen. The time window

shown corresponds to the 0-1s window in panel A. C. The ISI distribution of the 115s PC recording and of the refractory period corrected

gamma AST are shown. The small mean difference in the ISI density of 0.0059 per bin (RMSE) indicates a good match between the recorded

spike train and the AST derived from its rate function. D. The power spectrum of the same sample spike train shown in A-C (black) and of the

AST constructed from the adaptive rate template (red). The match between 0 and 20 Hz is primarily due to the shared slow rate function and for

faster frequencies is due to the fast rate function and to random gamma ISIs being matched to the shape parameter (LV) of the recorded spike

train. The mean difference in Log Power across all frequencies was 0.072 (RMSE). E. The CV of recorded PC spike trains always exceeded the

LV (dashed line marks unity) and exceeded the value of 1.0 for Poisson spike trains in some cases. ASTs (50 blue dots in a dense cluster)

generated from a particular PC spike train (cyan asterisk) show the LV of the recording and a slightly diminished CV. F. The histogram shows

the mean firing rate distribution of the 21 recorded PCs.

https://doi.org/10.1371/journal.pcbi.1005578.g001

Robust transmission of rate coding through inhibition in the cerebellum

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005578 June 15, 2017 5 / 25

https://doi.org/10.1371/journal.pcbi.1005578.g001
https://doi.org/10.1371/journal.pcbi.1005578


Fig 2. Properties of biophysical CN model. A. Spontaneous spiking in the absence of synaptic input. The original model is as

published on ModelDB (https://senselab.med.yale.edu/modeldb/ShowModel.cshtml?model=136175), while the updated model includes

the changes described in the Supplemental Materials of the original publication [7]. B. The model spike rate as a function of injected

Robust transmission of rate coding through inhibition in the cerebellum
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associated with a smaller Gin / Gex ratio showed a lower CV and LV despite using the same PC

input spike trains. Further, the CV and LV of CN spike trains were higher for larger absolute

values of Gin (Fig 3B and 3C, red traces). For a high Gin (20 nS per PC input) the PC input rate

covariance also had a strong effect on the CN output CV, such that a higher input rate covari-

ance (Fig 3B, red traces with x symbols) resulted in a higher CN spike train CV. In contrast,

the LV of CN spiking was much less affected by the input rate covariances (Fig 3C). A key

result of our study is given by the match of the dependencies between CV and LV of CN spike

trains between our simulations (Fig 4A and 4C) and our recorded CN data sample (Fig 4B and

4D) for the full range of physiological spike rates between 10 and 70 Hz. This simulation result

indicates that the statistics of the PC and MF input to the CN as derived from our PC and MF

recordings can fully account for the CN spike train statistics recorded in the same state. Inter-

estingly, the match between recordings and simulation was best for a simulated SF of 0.5, indi-

cating that the spike train statistics in the CN recordings are most compatible with PC input

that contains about 50% rate covariance. Further, the variability between our CN recordings

can be explained by a possible variability in total PC input conductance amplitudes received

by different CN neurons and different rate covariances between these inputs. These results for

the first time fully account for spike train statistics in the awake state in a biophysically based

neural simulation. While certainly other factors than the PC input statistics can influence CN

spike statistics in the animal, our results demonstrate that the PC input statistics alone are suf-

ficient to account for the full spectrum of recorded CN rates and LV as well as CV statistics

and their interdependence.

Next, we aimed to incorporate the respiration related rhythmic spike rate modulation in

the PC input to CN neurons in our simulations to determine whether the recorded PC respira-

tory modulation (Fig 5A and 5B) can explain the recorded CN modulation (Fig 5E and 5F).

An important question not addressed by our recordings concerns the required level of covari-

ance in respiratory modulation between PC inputs to a single CN to allow for the observed

amplitude of CN respiratory modulation if it was solely transmitted by PC inputs. In order to

create ASTs with respiratory modulation matching the recordings we again employed rate

template manipulations. We determined the average rate modulation triggered by respiration

in a given PC (Figs 5A, 5B, S2 and S3), and then we convolved the normalized rate modulation

waveform with our master rate template at the measured time of each inspiration. We find

that by drawing random gamma spike trains with refractory periods from this combined rate

template we are able to create PC ASTs with respiratory rate modulation closely matching the

experimental data (Fig 5C and 5D) while maintaining the spike train statistics of recorded PCs

including their rate, LV, CV and power spectrum. As a proof of concept simulation we picked

a specific CN recording with a peak of 36% spike rate increase during respiration (Fig 5E and

5F) and for our simulation input picked a Gin of 16 nS and Gex of 3.5 nS, which we knew from

our parameter scan to result in a matching mean baseline CN simulation spike rate of ~22 Hz.

current. The rate was calculated as the inverse of the mean ISI over 1 s of injected current following 1 s of spike rate equilibration with

the same current level. C. Synaptic depression levels in updated model during a sample period of 200 ms. The fraction of maximal

synaptic conductance that is present in the absence of depression is shown for a sample PC to CN synapse activated randomly at the

rates shown after steady state depression levels are reached. Each incremental change in depression is the result of the length of the

preceding ISI in the PC input. (compare to Fig 2B in [20]). D. Vm trace comparison of original and updated model when subjected to the

same mixed pattern of excitatory and inhibitory input (50 PC ASTs w/ Gin of 6 nS and 48 MF ASTs w/ Gex of 2 nS. The GABA reversal

potential of the original model is -80 mV, which is 10 mV more hyperpolarized than in the updated model). The spike times of both

models similarly tied to fluctuations in inhibition and excitation. E. The spike rate of both models for the same set of input ASTs is

similarly modulated. F. Synaptic currents in the model for the segment of activity shown in D). Note that the net (In) current, i.e. the sum

of inhibitory and excitatory current is inward. Spikes in the inhibitory current are due to large driving force shifts during an action potential

in the soma.

https://doi.org/10.1371/journal.pcbi.1005578.g002
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We then asked the question of how many of the 50 PC inputs need to show the respiratory

modulation shown in our ‘typical’ PC recording (Figs 5A, 5B, S2A–S2C and S3A–S3C) in

order to generate the behavioral modulation strength seen in our ‘typical’ CN recording (Figs

5E, 5F, S2D–S2F and S3D–S3F). The results showed that a respiratory modulation in 25 PC

inputs (i.e. 50% of inputs) resulted in a match with our recorded CN modulation (Fig 5E–5H).

Next, we determined the robustness and relative expression strength in the transmission of

respiratory rate modulation in the PC -> CN pathway by systematically varying the number of

modulated PC inputs and the strength of modulation in each input for a slow and a fast spiking

CN simulation resulting from 2 different levels of excitation (Fig 6). We find that a change in

the PC respiratory modulation strength is transmitted faithfully to the CN, and that respiratory

modulation is well transmitted by slow or fast firing CN neurons (Fig 6A). Both the fraction of

Fig 3. Model spike train statistics with PC and MF AST input matching recordings. A. Model spike rates for different gain factors

in the unitary inhibitory input conductance (Gin) as a function of unitary excitatory input conductance (Gex). There is little effect of 100%

(SF = 0), and 0% (SF = 1) rate covariance between PC inputs on spike rate (symbols are superposed in many cases). B. The model

spike train CV as a function of spike rate (SR) for different values of Gin and SF. Note that the CV for a given SR increases with

increasing Gin and with decreasing SF. C. The LV also decreases with SR and decreasing Gin. It is much less dependent on SF than

CV because it is not sensitive to slow rate changes that result from rate covariance in the inputs. D. LV and CV are highly correlated, but

the LV of model spiking is always lower than CV (dashed black line denotes unity).

https://doi.org/10.1371/journal.pcbi.1005578.g003

Robust transmission of rate coding through inhibition in the cerebellum
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modulated PC inputs (BMF) and the strength of PC respiratory modulation (BMS) had strong

effects on CN modulation (Fig 6B). At the strength of PC modulation present in our experi-

mental sample PC (Fig 5A), a modulation of 10 of 50 PC inputs (BMF = 0.2) to the CN neuron

was sufficient to result in a significant output modulation. If all PC inputs to the CN simulation

were modulated using the 11.4% mean rate decrease in the PSTH trough observed in the sam-

ple PC, the CN mean PSTH peak rate increase was 25.9% at a firing frequency of 60 Hz, and

48.3% at a firing rate of 20 Hz, indicating that the respiratory modulation depth is amplified in

the transmission from the PC to the CN in an inhibitory transmission. Strong respiratory

modulation in the CN lead to a moderate increase in the CV of the CN spike trains (Fig 6C),

while the LV was less affected (Fig 6D, Gex = L. red solid lines). We further examined the effect

of global rate covariances between PC inputs on respiratory modulation (SF 1.0 vs. 0.5), and

Fig 4. The CN model neuron spike statistics using different Gin and Gex combinations fit the

distribution of recorded spike train statistics. A. Model CV significantly decreases with SR (p-value for

linear regression is given). Variability at any given SR is introduced by different values of Gin / Gex such that

higher total conductances result in a higher CV. B. The recorded CN neurons show a similar CV vs SR

relationship but the CV variability at any given SR is higher. Each cross presents the mean SR of one

recorded neuron. C,D. Model and data show a strong linear correlation between LV and CV. The recorded

population is best matched by models employing inputs with a SF of 0.5 (subset of Fig 3D).

https://doi.org/10.1371/journal.pcbi.1005578.g004
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Fig 5. Recorded and simulated peri-stimulus time histograms (PSTH) for respiration. The median respiratory interval in our data set

was 242 ms (respiratory frequency of 3.9 Hz), therefore approximately one full respiratory cycle is shown to each side of the event trigger. A,

Robust transmission of rate coding through inhibition in the cerebellum
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B. Spike raster plot for sample PC recording (top) and average PSTH (bottom). C,D. Spike raster plot for PC AST made from the shown

sample average PSTH (A) convolved into the rate template from a different recorded PC without respiratory modulation at the time of each

respiratory event. E,F. Raster plot (top) and average PSTH (bottom) of a sample CN neuron aligned to respiration. Note that this CN neuron

is not recorded at the same time and its phase of modulation is not driven by the PC neuron shown in panel A,B. G,H. Simulated CN neuron

respiratory PSTH resulting from simulation with 50% of PC inputs incorporating respiratory modulation as depicted in C,D). The dot sizes in

the raster plots were adapted to the mean rate of each spike train to best depict modulation. Note that the phase of the modulation in the CN

simulation is not targeted to match the phase of the CN recording, but is the inverse of the phase of respiratory modulation in the PC ASTs

(Fig 5D) due to the inhibitory nature of PC inputs onto CN neurons.

https://doi.org/10.1371/journal.pcbi.1005578.g005

Fig 6. Model PSTH as a function of input AST properties. A. The average respiratory modulation in the spike output smoothly varies

with the amplitude of respiratory modulation in the inputs (behavioral modulation strength (BMS): gain factor between 0 and 2 applied to

the respiratory rate modulation of the sample recording from which ASTs were generated (Fig 5A and 5B)). The Gin was 16 nS, and the

model was tested for 2 spike rates achieved with a high level of 6 nS and a low level of 3.5 nS for Gex. B. The amplitude of respiratory

spike train modulation was scored as the mean frequency increase during the peak. The output spike frequency increase is nearly linear

with increasing BMS of the inputs. The slope of this line is a function of the fraction of modulated inputs (BMF). The SF in the background

rate covariance has little effect on the PSTH, but the frequency increases are higher when the baseline spike rate is 60 Hz than when it is

20 Hz. C,D. The CV and LV as a function of BMS for two values of BMF and 2 levels of excitation Gex: H(igh) resulting in a 60 Hz

baseline, and Gex: L(ow) resulting in a 20 Hz baseline (see A). The CV is moderately affected by increasing BMS when the baseline

spike rate is low.

https://doi.org/10.1371/journal.pcbi.1005578.g006
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found that this manipulation of background rate covariance only had a small effect on the

transmission of respiratory modulation (Fig 6B, circle vs asterisk symbols), while it had a

strong effect on the overall CV of the spike train (Fig 6C). As detailed in the Supplemental

Information we found that the transmission of respiratory modulation was also robust against

different PC input firing rates, the presence of absence of short term depression in the PC->

CN synapses, using rate templates from a different PC, and changing the gain on template rate

fluctuations (S2–S7 Figs). The key outcome of these sets of simulations was that the inhibitory

PC inputs on tonically active CN neurons provide a sensitive and accurate means of transmit-

ting a rate code related to controlling behavior, and that the strength of this rate transmission

is highly dependent on the fraction of inputs modulated with the same time course. Further,

the transmission of rate modulation is robust in the face of common background rate modula-

tion in the input and operates well for the full range of observed CN firing rates (10–70 Hz).

Importantly our simulations demonstrate that the observed respiratory modulation in CN

neurons can be fully explained by the measured rate modulation in PCs if at least 20% conver-

gence of similarly modulated PCs onto single CNs is present.

Earlier anatomical estimates of the number of PC inputs on CN neurons [23] were much

higher than given by the recent physiological assessment [8]. While the recent work can

account for the larger number of boutons anatomically observed by positing multiple boutons

per PC input to a CN neuron, we were interested to know what the consequence of using 500

instead of 50 inputs would be for matching our recorded CN data from awake mice. We cre-

ated 500 ASTs using the same rate template as previously for 50, but we divided the unitary

synaptic conductance by 10 to arrive at a similar average conductance waveform (Fig 7A). A

notable difference in the total conductance of 500 inputs was that high frequency fluctuations

were much diminished due to averaging over 500 instead of 50 random processes. Notably,

this had a large effect on the output spike rate from the CN simulation (Fig 7B and 7C), which

was diminished for 500 inputs from 63 Hz to 20 Hz for a high level of excitation, and from

20 Hz to near zero for a low level of excitation. This dramatic difference illustrates the high

importance for fast input conductance fluctuations in triggering individual sodium action

potentials, a property not seen in integrate and fire neurons. We have previously also observed

this finding in dynamic clamp experiments of CN neurons in brain slices [16]. Despite the

large decrease in CN spike rate for 500 PC inputs, the respiratory modulation remained strong

(Fig 7D–7F), and the absolute values of respiratory spike rate increases were nearly the same

for a 20 Hz spike rate with 500 PC inputs than they were with a 60 Hz spike rate with 50 PC

inputs with the same spike train properties (Fig 7E and 7F Gex: high, dashed lines). These find-

ings again show that inhibitory synaptic transmission is a highly robust carrier for a behavioral

event related rate code. The main computational outcome of using 500 instead of 50 PC inputs

was that much more excitatory input is needed in order to match the spike rates in the model

with those recorded in awake mice.

Finally, we asked the question whether the intrinsic active currents of CN neurons make an

important contribution to the spiking statistics and respiratory modulation in our simulations.

While a full treatment of this question falls outside the scope of this study, we used manipula-

tions of the density of the calcium dependent potassium current (SK) to see what contributions

this modulatory current makes to CN coding properties in awake mice. In previous work we

and others have shown that this current is present in CN neurons and that blocking it with

apamin causes bursting, bistability and pronounced spike rate increases with depolarization

[18,24,25]. Further, stochastic excitatory and inhibitory input patterns in the CN model lead to

strong fluctuations in SK current [26]. The involvement of this important modulatory current

in synaptic integration in the awake animal remains unknown, however. Our default simula-

tion made to match typical CN slice recordings from 14-21d old rats had a somatic SK density
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Fig 7. Comparison of CN simulations with 500 vs. 50 PC AST inputs. A. The unitary conductance was divided by 10 for 500 inputs

to result in a matching mean inhibitory input conductance. B,D,E. Conventions as in Fig 6. C. The 500 PC inputs lead to a much

reduced spike rate. F. Difference between (E) and Fig 6B. PSTH mean peak frequency changes are generally similar, but higher by up

to 14 Hz for Gex: L with 50 PC inputs.

https://doi.org/10.1371/journal.pcbi.1005578.g007
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of 2 S / m2 and a dendritic density of 0.6 S / m2. We varied these densities for SK densities

between 0 and 8 S / m2 in the soma and proportionally 0 to 2.4 S / m2 in the dendrites (Fig 8).

When SK was absent, comparing simulation Vm traces for 0 vs 8 nS SK density with the same

synaptic input, we find a much reduced spike-afterhyperpolarization (example indicated by

blue arrow in Fig 8A) and much stronger spike rate modulation for a given input rate modula-

tion (Fig 8A, see 0.7 to 0.9s for a period of decreased inhibitory conductance), as should be

expected from the biophysical properties of this potassium current that is activated via the cal-

cium inflow with each action potential. Not surprisingly, there is also a systematic decrease in

overall spike rate with increasing SK density (Fig 8B) and a decrease in CV (Fig 8C). The LV

on the other hand shows a non-monotonic dependency on gSK, with a maximum near 4 nS

(Fig 8D). While SK is known to regularize spike trains [27],this usually refers to the CV. The

low LV when SK is absent is probably due to the high local regularity during periods of high

frequency firing, but we did not further examine this effect. The effect of SK density on respira-

tory rate change transmission was also strong (Fig 8E and 8F). With increasing gSK the CN

output PSTH rate modulation with the same input was much diminished. This result indicates

that SK is well suited to dampen the transmission of behaviorally related rate changes. Interest-

ingly SK appears to be downregulated in adult rodents [25], suggesting that as the cerebellum

matures the gain of rate change transmission may be increased. Overall the strong effect of SK

on spiking statistics and synaptic transmission of rate changes shows the high importance of

intrinsic neuronal properties on the transmission of behaviorally related rate codes.

Discussion

Our study posed the general question on how rate codes can be transmitted by inhibitory syn-

aptic inputs using the cerebellar cortex to cerebellar nuclei projection as a paradigmatic exam-

ple. This inhibitory connection is particularly interesting in that it conveys the entire output

from the cerebellar cortex, and the cerebellar cortex is commonly thought to be involved in

coding detailed temporal aspects of motor behavior [28,29,30]. Therefore, detailed temporal

information has to be transmitted through the inhibitory cerebellar cortico-nuclear pathway.

However, cerebellar research has generated conflicting ideas on whether this information is

transmitted by a rate code [3,4] or by a temporal code triggered by input synchronicity [8,31].

While the distinction between rate and temporal codes can be blurry at intermediate values of

temporal precision, one would generally take neural algorithms depending on coincidence

detection [32], synfire chains [33] or input synchrony to detect patterns [34] as examples of a

temporal code, while spike rate modulation at the time scale of the behavior controlled (which

could be quite fast for saccades for example) represents a rate code. Our findings with respect

to the coding of respiration in mice in this study are fully supportive of the rate coding model

in the control of cerebellar output, as rate was smoothly varying on the time scale of the behav-

ior observed. Our findings substantiate the concept that inhibitory synaptic transmission can

convey such information with high accuracy in tonically active neurons. Nevertheless, it is

entirely possible that a temporal code is multiplexed with this rate code, and would be trig-

gered by specific events, such as motor errors. In the cerebellum such an event in particular is

likely to be coded by highly synchronous climbing fiber firing [3,4], which could result in

rebound activity in the CN [7,35,36,37]. This pathway should be analyzed carefully in future

modeling work, but an experimental database of simultaneous cerebellar cortical and nuclei

recordings in behaving animals while assessing climbing fiber synchrony is not yet available.

For simple spike activity in cerebellar cortex in our mouse preparation we previously described

an absence of synchronized spiking or synchronized pauses with respect to respiration and

licking [5], or sensory activation in anesthetized rats [12]. Our modeling results in the present
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Fig 8. Effect of SK conductance density on model output. A. Sample period of spiking for zero (red trace) and 8 nS (blue trace) somatic

gSk. Red arrows point to respiratory event times. Blue arrow points to a sample spike afterhyperpolarization (AHP), showing increased AHP
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study show that indeed such coincident PC simple spike inputs to a CN neuron are not

required to explain the observed rate, regularity or respiratory modulation of our CN record-

ings. Instead, we found that rate coding of PCs is fully sufficient to account for observed CN

spiking properties, but that a substantial correlation in the rate modulation between PCs pro-

jecting to the same CN neuron is required.

We used a detailed biophysical CN neuron model to perform our investigation, which

allows us to address the question of how much intrinsic active properties of CN neurons are

important in decoding synaptic input. Interestingly, in the present input scenario of a time-

varying balance of excitatory and inhibitory input the strong rebound firing capabilities of the

model, which match experimental findings [7], did not come into play as significant de-inacti-

vation of the rebound currents (T-type Calcium and persistent Na conductances) through

strong hyperpolarization did not occur. Nevertheless, our investigation of the role of the SK

conductance in the present study shows that the neurons’ active properties are highly signifi-

cant in decoding synaptic input. Specifically, the SK conductance in CN neurons is known to

cause prolonged spike-afterhyperpolarizations and regularize spontaneous spiking [17,24],

which after block of SK current with apamin becomes highly bursty [17,24]. In a previous

dynamic clamp study we showed that bursting is suppressed with a baseline of inhibitory and

excitatory input conductance, but that the gain of responses to input modulation was increased

when SK was low [25]. This role of SK controlling the gain of the synaptic response function

was confirmed in our present modeling study for input conditions of respiratory spike rate

modulation in the awake mouse. Recordings from slices of rodents at different ages suggest

that SK is downregulated as animals become adult [25], thus perhaps allowing a greater CN

output modulation by input fluctuations as the cerebellum learns to code for specific behav-

iors. However, even in the adult mouse the amount of SK current observed in single CN

neurons may be highly variable as is typically observed for voltage-gated currents [38], and

possibly serve as a gain control mechanism on the synaptic coding function of behavioral spike

rate modulation that could be regulated through intrinsic plasticity. Such SK plasticity has not

been studied in the CN, but is known to occur in other cell types [39].

While our results support the notion that modulated PC input on CN neurons is sufficient

to explain observed CN spike train statistics and respiratory modulation, we do not wish to

imply that mossy fiber inputs to the CN are irrelevant or ineffective in this regard. In our previ-

ous dynamic clamp studies in CN brain slice recordings we have shown that PC input alone

can control CN spike rate and regularity in the presence of tonic excitation, which is required

to achieve a necessary balance between excitation and inhibition [16]. However, when the MF

input is also modulated in the dynamic clamp input to mimic in vivo input conductances [22],

the MF activity can also control CN spiking, and that MF and PC triggered modulation of CN

spiking is roughly additive. Nevertheless, we found that due to the high proportion of slow

NMDA conductance in MF input to CN neurons [40,41] that CN spike train irregularity is

predominantly caused by PC input transients [22]. Our current results lead to the prediction

that the contribution of MF input to respiratory rate modulation would critically depend on

the amount of respiratory rate-covariance in the MF inputs to a CN neuron. MF respiratory

modulation, similar to PC modulation, shows a variety of phase relationships to respiration

(S2 and S3 Figs), and therefore a mechanism to strengthen MF convergence with similar mod-

ulation on single CNs would be required. A detailed exploration of the required MF input

depth for high gSK. B. Spike rate for identical AST inputs diminishes with increasing gSK. The behavioral modulation strength (BMS) has a

minor effect on SR. C. The CV diminishes for increasing gSK. D. The LV shows a maximum for a gSKs around 4 nS. For a high gSKs the BMS

has a noticeable effect on LV. E, F. The PSTH peak is diminished for higher values of gSKs.

https://doi.org/10.1371/journal.pcbi.1005578.g008
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parameters in order to be effective is outside of the scope of the present study, but will be

undertaken in the future. Another implication that we do not wish to be taken from our

modeling study is that the respiratory modulation transmitted from the PC to the CN does in

fact control respiration. In fact, our working hypothesis is that baseline respiration is not con-

trolled by the cerebellum, but that the observed coordination of different orofacial rhythms

such as licking, swallowing, whisking with respiration [9] is effected through the connection of

the medial cerebellar nucleus to the respective rhythm generators [42]. Establishing the func-

tional role of cerebellar output on the coordination of these rhythm generators and the ability

of the cerebellum to delay or advance the respiratory cycle when needed will require new

experimental studies where these rhythms are challenged and the output of the cerebellum is

optogenetically manipulated.

Any given neuron in the brain typically receives synaptic input from hundreds of other

neurons. For the synaptic transmission of a rate code it is therefore critically important to

understand what number of these inputs need to be rate co-varying, in order for a robust

transmission of behaviorally related information. This point is closely related to the question

of how population coding is instantiated in the brain, as enough neurons need to be participat-

ing in the same coding process so that their convergent connections on a target population

would transmit a rate code accurately. To our knowledge this study is the first that quantifies

the answers to these questions in the framework of a biophysically accurate model to match a

data set recorded in awake animals. We find that in the cerebellum where 50 PCs converge

onto a single CN neuron, transmission of significant rate modulation required about ~10

(20%) rate covarying PC inputs, while ~25 (50%) PC inputs resulted in an outcome matching

one of the stronger CN rate modulation amplitudes found in our experimental data. This code

was found to be robust against interference from both correlated and uncorrelated background

noise. These modeling results make a strong experimental prediction that populations of PC

neurons converging to single CN neurons need to show a larger shared behavioral rate modu-

lation than is present in a random sample of single recorded PCs. While such data are not yet

available, advances in calcium imaging at single cell resolution in combination with transsy-

naptic retrograde labeling may allow verification of this prediction in the near future.

We undertook a careful effort to characterize the global and local spike train statistics

through assessing CV, LV, and power spectra. A considerable theoretical literature has been

devoted to the significance of neuronal variability and its use to determine the statistical prop-

erties of spike trains and their functional relevance [10,43,44,45,46]. In particular, the presence

of CV values greater than 1.0 that is characteristic of random Poisson processes has piqued the

interest of theorists, and such values were present in some of our recordings. Previous work

has related such high variability to spike initiation non-linearities [46,47] or dendritic coinci-

dence detection [46,48], because an integrator over many random inputs would result in a

very high degree of regularity in the output. However, our study suggests an alternative mecha-

nism, by which high CV values result from rate covariances in the population of PC inputs to

the model neuron. These input rate-covariances lead to constantly changing firing rates in the

output as well, which increases the CV. A hallmark of this effect is that local spike train vari-

ability of 2 successive ISIs (LV) is much less affected and the outcome values of LV are smaller

than the CV, unlike in random processes. Therefore, our data and simulations indicate that

the assumption of a stationary statistical process underlying neuronal spike trains should be

abandoned for the awake condition. Our method of using firing rate templates with specific

proportions of co-variance to drive output spiking indeed capture the observed spiking irregu-

larity of data from awake animals well. Parameterizing the degree of these covariances needed

to match recorded spike train statistics allowed us to estimate of the required population rate

covariance in the behaving animal, and such modeling can therefore shed some light on
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potential population coding properties in the brain. Another extensive line of theoretical and

modeling work has focused on ‘balanced state’ networks, where inhibition and excitation are

matched [44,49,50,51]. These recurrent networks of integrate and fire neurons can show Pois-

son irregularity in firing [50], and a CV > 1 when co-varying sensory rate fluctuations are

transmitted [51]. The required balance between excitation and inhibition in this network state

is similar to the balance of excitation and inhibition needed in synaptic input applied to CN

neurons with dynamic clamping in order to result in irregular firing patterns with random

input spike trains [16,22], a property well replicated in our model [26]. The present study

extends this work to the awake state and demonstrates that these concepts fully suffice to

explain the spike train statistics recorded in awake alert mice when rate covariance between

inputs is added.

Methods

Experimental data set

Animals. Experiments were performed on male and female adult C57BL/6J (B6) mice (18–25

g; The Jackson Laboratory). All mice used in this study were raised and all experiments were

performed in accordance with procedural guidelines approved by the University of Tennessee

Health Science Center Animal Care and Use Committee under protocol # 13–077. Details

about surgical procedures to implant a head post and a recording chamber over the cerebellum

were previously published [5,52]. During recording mice were head-fixed to a metal holder

and the body was loosely covered with a plastic tube to limit body movements. Respiratory

behavior was monitored with a thermistor (Measurement Specialties) placed in front of one

nostril. Breathing cycles were measured as increasing and decreasing temperature changes

caused by exhale and inhale movements, respectively. Peaks and troughs in the respiratory sig-

nals corresponded to the ends of expiration and inspiration cycles, respectively. Trough times

were detected from the analog thermistor output sampled at 1 KHz and used throughout this

study as respiratory event markers for respiratory spike train modulation and as alignment for

respiratory peri-event histograms.

Up to seven recording electrodes (glass-insulated tungsten/platinum; 80 μm O.D.; imped-

ance, 3–7 MO) were inserted acutely into the cerebellum during each recording session using

a computer-controlled microdrive (System Eckhorn; Thomas Recording). Vermal Purkinje

cells were identified by recording depth, a high spontaneous activity rate, and the presence of

complex spikes [53]. Mossy fibers were identified using previously described criteria based on

granular layer identification and spiking characteristics [54]. Single unit recordings from CN

neurons were identified by electrode depth, the electrode passing through an area without

spiking activity (i.e. the white matter embedding the CNs) before reaching the nucleus, and

finally by the presence of sustained spiking (~10–70 Hz) without the occurrence of complex

spikes. Recording locations were verified by placing small electrolytic lesions during the last 2

recording days and anatomical reconstruction from 50 μm coronal sections with a cresyl violet

staining to align lesion sites with stereotaxic atlas coordinates [55]. Spikes were sorted off-line

using Spike2 software (Cambridge Electronic Design) and only neurons with a clear refractory

period in the ISI histogram and stable spike size over at least 45 s were used for further analysis.

This resulted in a data set of 21 PCs, 11 MF, and 16 CN neurons.

Determination of respiratory rate modulation

Spike trains were aligned on respiratory event markers (end of inspiration) to create a respira-

tory PSTH. A confidence interval (z-score) to determine significant modulation was con-

structed by shuffling the respiratory event times 100 times and creating a shuffled PSTH for
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each instance. Respiratory modulation exceeding the 95% confidence percentile for multiple

data points in sequence was deemed significant. The amplitude of modulation was scored by

the area under the largest peak or trough of the modulation after baseline subtraction and was

scaled to units in spikes, thus yielding a measure of the number of spikes adding or missing in

the PSTH peak or trough compared to the shuffle predictor.

Construction of PC and MF artificial spike trains matching awake

recordings

Using Matlab (MathWorks, Inc.) we designed an algorithm to create artificial spike trains

(AST) that could replicate the observed spike trains statistics and respiratory modulation. We

could not directly use experimentally recorded spike trains to drive our CN simulation input

because we had at most triple simultaneous PC recordings whereas 50 simultaneous spike

trains are needed as input to the model. We used cross correlation and spike covariance analy-

sis [5] to determine the types of cross-correlation and rate covariance present between pairs

of simultaneous spike trains and designed an algorithm that could extrapolate these properties

to larger spike train populations. Our algorithm uses as core concept the method of rate tem-

plates, which are constructed from recorded spike trains by convolving each spike with a

Gaussian (see Supplemental Methods, the full Matlab algorithm is available on ModelDB). In

the next step of the algorithm we drew gamma distributed spike trains using a mean ISI track-

ing our rate template and using the shape parameter κ (kappa) experimentally determined by

the LV from our recordings (see Results). This method allowed us to add respiratory rhythmic

modulation in spike trains in a flexible way, by convolving rate templates with a gain-scaled

version of the mean peri-stimulus time histogram (PSTH) triggered by each cycle of respira-

tion. In order to convolve rate templates and respiratory PSTH functions independent of abso-

lute firing rates, both rate functions were normalized to 1.0 before combining them, and the

resulting combined rate function was scaled back to the desired mean firing rate of the output

AST. Our new method of creating ASTs is quite general and could be used to incorporate any

other known rate changes related to behavior. We expect that this method will be of general

use in the neural simulation community.

CN neuron model specifications

In this study we utilized our existing 486 compartment model including the updates to the

voltage dependent conductances and synapses described in the Supplemental Information of

the original publication and previously shown to replicate CN firing with stochastic synaptic

input patterns applied by dynamic clamping [26]. This model has a set of 6 voltage gated and 1

calcium dependent conductance to match the spike shape, spontaneous firing, and responses

to depolarization/hyperpolarization of slice CN recordings closely. It also includes 2 inactivat-

ing inward conductances that control rebound bursting after strong hyperpolarization [7].

These rebound conductances were present in the model used here, but due to the lack of

strong hyperpolarizations with the input patterns constructed to match the waking condition

they remained largely inactivated and rebound firing was not observed. In the present study,

we included one further model update by incorporating a detailed version of the short term

plasticity rules in the PC synapses on CN neurons experimentally determined [20,21]. The

model depression rule is based upon the rate dependent release probabilities at multiple release

sites as estimated by Telgkamp and Raman, 2004. These STD rules required a re-write of the

Genesis 2.3 synchan object base code as they could not be achieved with existing synaptic

mechanisms in Genesis. The new C base code as well as the updated model definition are avail-

able in ModelDB, https://senselab.med.yale.edu/modeldb/ShowModel.cshtml?model=229279.
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Synaptic inputs were modeled as a dual exponential alpha function with rise and decay time

constants matching voltage clamp recordings in slices (see detailed explanation in supplemen-

tal materials, [7]). Each spike from our PC ASTs triggered a unitary IPSC with a peak ampli-

tude controlled by the Gin parameter. The range of Gin used was between 2 and 20 nS for

parameter scans, and values of 4 or 16 nS were used in most simulation runs exploring respira-

tory rate modulations. This compares to an average IPSC size of 9.4 nS with minimal (single

axon) stimulation in slices and an observed experimental range of 1–25 nS. Our excitatory MF

inputs triggered both an NMDA and an AMPA EPSC, as mixed currents have been found in

experiments [40,41,56]. 48 inhibitory and 48 excitatory synapses were distributed randomly

across the 485 dendritic compartments, and 2 inhibitory synapses were placed on the soma.

There was no somatic excitation as excitatory synapses are not observed on the soma of CN

neurons [57,58]. Each synapse was connected to one AST input spike train.

Simulation runs and analysis

Simulations were run in batches on a Linux cluster, where each batch completed a matrix of

parameter settings. All simulations were run to produce 115s of output data. Binary and spike

event output files from simulation batches were put into a Pandora database format and ana-

lyzed with custom made Matlab scripts. Power spectra were determined using functions from

the Chronux Matlab toolbox (http://chronux.org/).
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plemental Results, Supplemental Tables, and Supplemental References.

(PDF)

S1 Fig. Spike train statistics of recorded neurons. A. Histogram of mean spike rates for all 21

recorded PCs. The recording durations per neuron ranged from 45.8–256.8s, with a mean of

116.9 s. B. The CV as a function of spike rate for all 21 recorded PCs. C. The LV as a function

of spike rate for all 21 recorded PCs. D-F) Plots for 16 CN neuron recordings. Recording dura-

tions were between 600 and 256.8s with a mean of 118.2 s. G-I) Plots for all 11 MF recordings.

Recording durations were between 40.1 and 120.0s with a mean of 71.1s.

(PDF)

S2 Fig. Respiratory modulation of recorded neurons. A. Spike raster histogram centered on

respiratory event times (end of inhalation as denoted by coldest thermistor reading) for a sin-

gle PC. B. Spike rate of the same PC plotted for each row of the raster histogram and shows an

average of 450 ms spiking. C. Peri-respiratory spike rate modulation for the spike data shown

in A. The black trace shows the average spike rate modulation centered on the inhalation

event times (PSTH). The blue trace shows an average of 100 control PSTHs, in which the spike

time matrix was shifted to varying random degrees with respect to the inhalation event times.

Shifted PSTHs were used in order to preserve the temporal statistics of spike rate changes as

well as the temporal statistics of the respiratory event times. This method allows for the best

estimate of the spike rate noise contribution to PSTH waveforms. The cyan traces show ± 2

standard deviations derived from the 100 shifted PSTHs. The red trace shows a single shuffled

PSTH, in which a set of uniformly random event times of the same number as respiratory

event makers throughout the recording period were used. This shuffled PSTH was deemed the

best method to decorrelate event alignment times from spike rate changes related to respira-

tion. Note that due to the regular nature of respiration, a time shifted version of the inhalation

event markers or spike trains as used in our control PSTHs to estimate standard deviations
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may result in significant peaks of the shifted PSTH due to long periods of spurious alignments.

All raw calculated PSTHs were binned with 1ms precision, and smoothed with a 100ms

running average filter in order to dampen high frequency noise peaks. D-F) Respiratory

modulation of a sample CN neuron. G-I). Respiratory modulation of a sample MF. While the

selection of sample PSTHs in this figure used examples with similar phase relationships to res-

piration, this was not a constant property across recorded cells (see S3 Fig).

(PDF)

S3 Fig. PSTH population properties. A. The PSTH of 5 PCs with significant respiratory mod-

ulation is shown. PSTHs here are normalized to their mean rate to indicate the proportional

rate increases and decreases during respiration. The dark blue PSTH corresponds to the PC

also shown in S1A–S1C Fig. All PSTHs here are smoothed with a 30ms running average. B.

The PSTH peaks and troughs for all 21 analyzed PCs are shown. Each cell is represented with

the maximal firing rate increase and decrease shown within a 225ms time window before and

after the inspiration event time. Note the large spread of peak times. C. The average of all 21

PC normalized PSTHs is shown. D-F) Same analysis for CN neurons (N = 16). The cyan col-

ored PSTH corresponds to the recording highlighted in S1D–S1F Fig. CNs also show a wide

distribution of phases in rate changes locked to respiration, and a flat summed PSTH. G-I)

Same analysis for MF recordings (N = 9).

(PDF)

S4 Fig. The influence of short term depression (STD) in the PC to CN pathway. Conven-

tions as in Fig 6. Differences in panel (B,D) are between STD-off v. on. Negative values denote

that the values for STD on simulations were smaller. The panels matching (A,C) for STN-on

are shown in Fig 6.

(PDF)

S5 Fig. The influence of halving the PC AST spike frequency. The Gin was adjusted from 16

to 27.52 nS to result in the same level of total inhibition as for the default PC spike rate (64.86

Hz = population mean of recordings). The adjustment was less than double because the steady

state depression level at half the firing rate was reduced. Panel annotation and methods used

are as in Figs 6–8. For panels showing differences (D,F) the outcome is compared to the default

simulation (Fig 6). Negative numbers denote an increase over the default.

(PDF)

S6 Fig. The influence of doubling the PC spike rate. The Gin was adjusted from 16 to 9.84 nS

to result in the same level of total inhibition as for the default PC spike rate. The adjustment

was less than half because the steady state depression level at double the firing rate was

increased. Panel annotation and methods used are as in Figs 6–8 and S5.

(PDF)

S7 Fig. The influence of using a natural distribution of PC input spike rates. The Gin was

set to 12.37nS for this set, as this resulted in a good match for the total inhibitory input con-

ductance. Different PC spike rates for ASTs were obtained from the same rate template by scal-

ing the normalized template to a distribution of rates across ASTs matching the recorded rate

distribution. This gives a higher weight to faster spiking inputs than lower spiking ones, which

is partly offset by the different levels of steady state depression, however. Panel annotation and

methods used are as in Figs 6–8 and S5.

(PDF)

S8 Fig. The influence of using PC inputs with a different rate template. The PC with the

new rate template had a spike rate of 59.9 Hz, a lower CV of 0.43 (compared to CV = 0.67 for
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the default), and a lower LV of 0.18 compared to LV = 0.31 for default). Panel annotation and

methods used are as in Figs 6–8, S4 and S5.

(PDF)

S9 Fig. Simulation outcomes for different amplitudes of slow and fast rate modulations in

the PC master rate template. Gex = 3.5 nS, Gin = 16 nS, BMS = 0.8, BMF = 0.8 for all panels.

(PDF)
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