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Abstract A number of N-alkyl indole or indazole-3-car-

bonyl analogs, with modified chemical structures, are dis-

tributed throughout the world as synthetic cannabinoids.

Like synthetic cannabinoids, cathinone analogs are also

abused and cause serious problems worldwide. Acute

deaths caused by overdoses of these drugs have been re-

ported. Various analytical methods that can cope with the

rapid changes in chemical structures are required for rou-

tine analysis and screening of these drugs in seized and

biological materials for forensic and clinical purposes.

Although many chromatographic methods to analyze each

drug have been published, there are only a few articles

summarizing these analytical methods. This review pre-

sents the various colorimetric detections, immunochemical

assays, gas chromatographic–mass spectrometric methods,

and liquid chromatographic–mass spectrometric methods

proposed for the analysis of synthetic cannabinoids and

cathinones.

Keywords Synthetic cannabinoids � Cannabimimetics �
Cathinones � GC–MS-MS � LC–MS-MS � Analytical

methods

Abbreviations

A-796260 [1-[2-(4-Morpholinyl)ethyl]-1H-

indol-3-yl](2,2,3,3-

tetramethylcyclopropyl)methanone

A-834735 [1-[(Tetrahydro-2H-pyran-4-

yl)methyl]-1H-indol-3-yl](2,2,3,3-

tetramethylcyclopropyl)-

methanone

AB-001 Adamantan-1-yl(1-pentyl-1H-indol-

3-yl)methanone

AB-005 [1-[(1-Methyl-2-piperidinyl)methyl]-

1H-indol-3-yl](2,2,3,3-

tetramethylcyclopropyl)methanone

AB-CHMINACA N-[(1S)-1-(Aminocarbonyl)-

2-methylpropyl]-1-

(cyclohexylmethyl)-1H-indazole-3-

carboxamide

AB-FUBINACA N-(1-Amino-3-methyl-1-oxobutan-2-

yl)-1-(4-fluorobenzyl)-1H-indazole-

3-carboxamide

AB-PINACA N-(1-Amino-3-methyl-1-oxobutan-2-

yl)-1-pentyl-1H-indazole-3-

carboxamide

ADB-FUBINACA N-(1-Amino-3,3-dimethyl-1-

oxobutan-2-yl)-1-(4-fluorobenzyl)-

1H-indazole-3-carboxamide

ADBICA N-(1-Amino-3,3-dimethyl-1-

oxobutan-2-yl)-1-pentyl-1H-indole-

3-carboxamine

ADB-PINACA N-(1-Amino-3,3-dimethyl-1-

oxobutan-2-yl)-1-pentyl-1H-

indazole-3-carboxamide

AM-1220 [1-[(1-Methylpiperidin-2-yl)methyl]-

1H-indol-3-yl]-(naphthalen-1-

yl)methanone
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AM-1248 Adamantan-1-yl[1-[(1-methyl-2-

piperidinyl)methyl]-1H-indol-3-

yl]methanone

AM-1241 (2-Iodo-5-nitrophenyl)-[1-(1-

methylpiperidin-2-ylmethyl)-1H-

indol-3-yl]methanone

AM-2201 [1-(5-Fluoropentyl)-1H-indol-3-yl]-

1-naphthalenylmethanone

AM-2233 (2-Iodophenyl)[1-[(1-methyl-2-

piperidinyl)methyl]-1H-indol-3-yl]-

methanone

AM-679 (2-Iodophenyl)(1-pentyl-1H-indol-3-

yl)methanone

AM-694 1-[(5-Fluoropentyl)-1H-indol-3-yl]-

(2-iodophenyl)methanone

AMB Methyl (1-pentyl-1H-indazole-3-

carbonyl)-L-valinate

APICA N-(1-Adamantyl)-1-pentyl-1H-

indole-3-carboxamide

APINACA N-(1-Adamantyl)-1-pentyl-1H-

indazole-3-carboxamide

Cathinone 2-Amino-1-phenylpropan-1-one

CI Chemical ionization

EI Electron ionization

ELISA Enzyme-linked immunosorbent

assay

ESI Electrospray ionization

FDU-PB-22 Naphthalen-1-yl 1-(4-fluorobenzyl)-

1H-indole-3-carboxylate

5F-PB-22 1-(5-Fluoropentyl)-8-quinolinyl

ester-1H-indole-3-carboxylic acid

FUB-PB-22 Quinolin-8-yl-1-(4-fluorobenzyl)-1H-

indole-3-carboxylate

GC Gas chromatography

GC–MS Gas chromatography–mass

spectrometry

GC–MS-MS Gas chromatography–tandem mass

spectrometry

HU-210 3-(1,10-Dimethylheptyl)-

6aR,7,10,10aR-tetrahydro-1-

hydroxy-6,6-dimethyl-6H-

dibenzo[b,d]pyran-9-methanol

JWH-015 1-Naphthalenyl(2-methyl-1-propyl-

1H-indol-3-yl)methanone

JWH-018 1-Naphthalenyl(1-pentyl-1H-indol-3-

yl)methanone

JWH-019 1-Naphthalenyl(1-hexyl-1H-indol-3-

yl)methanone

JWH-030 1-Naphthalenyl(1-pentyl-1H-pyrrol-

3-yl)methanone

JWH-073 1-Naphthalenyl(1-butyl-1H-indol-3-

yl)methanone

JWH-200 1-Naphthalenyl[1-[2-(4-

morpholinyl)ethyl]-1H-indol-3-

yl]methanone

JWH-203 2-(2-Chlorophenyl)-1-(1-pentyl-1H-

indol-3-yl)ethanone

JWH-250 2-(2-Methoxyphenyl)-1-(1-pentyl-

1H-indol-3-yl)ethanone

JWH-251 2-(2-Methylphenyl)-1-(1-pentyl-1H-

indol-3-yl)ethanone

JWH-307 [5-(2-Fluorophenyl)-1-pentyl-1H-

pyrrol-3-yl](naphthalene-1-

yl)methanone

LC Liquid chromatography

LC–MS Liquid chromatography–mass

spectrometry

LC–MS-MS Liquid chromatography–tandem mass

spectrometry

LLE Liquid–liquid extraction

LOD Limit of detection

LOQ Limit of quantification

MAM-2201 [1-(5-Fluoropentyl)-1H-indol-3-

yl](4-methyl-1-

naphthalenyl)methanone

MDPBP 30,40-Methylenedioxy-a-

pyrrolidinobutiophenone

MDPPP 30,40-Methylenedioxy-a-

pyrrolidinopropiophenone

MDPV 3,4-Methylenedioxypyrovalerone

MN-18 N-1-Naphthalenyl-1-pentyl-1H-

indazole-3-carboxamide

MOPPP 40-Methoxy-a-

pyrrolidinopropiophenone

NM-2201 Naphthalen-1-yl 1-(5-fluoropentyl)-

1H-indole-3-carboxylate

NMR Nuclear magnetic resonance

NNEI N-1-Naphthalenyl-1-pentyl-1H-

indole-3-carboxamide

MPBP 40-Methyl-a-pyrrolidinobutiophenone

MPHP 40-Methyl-a-

pyrrolidinohexanophenone

MPPP 40-Methyl-a-

pyrrolidinopropiophenone

MRM Multiple reaction monitoring

MS Mass spectrometry

MS-MS Tandem mass spectrometry

NPB-22 8-Quinolinyl 1-pentyl-1H-indazole-

3-carboxylate

a-PBP a-Pyrrolidinobutiophenone

a-PHP a-Pyrrolidinohexanophenone

PP Protein precipitation

a-PPP a-Pyrrolidinopropiophenone

PTFE Polytetrafluoroethylene
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PV8 1-Phenyl-2-(pyrrolidin-1-yl)heptan-

1-one

PV9 1-Phenyl-2-(pyrrolidin-1-yl)octan-1-

one

a-PVP 1-Phenyl-2-(pyrrolidin-1-yl)pentan-

1-one, a-pyrrolidinovalerophenone

PX1 (S)-N-(1-Amino-1-oxo-3-

phenylpropan-2-yl)-1-(5-

fluoropentyl)-1H-indole-3-

carboxamide

QUPIC Quinolin-8-yl 1-pentyl-1H-indole-3-

carboxylate

QUCHIC Quinolin-8-yl 1-(cyclohexylmethyl)-

1H-indole-3-carboxylate

RCS-4 (4-Methoxyphenyl)(1-pentyl-1H-

indol-3-yl)methanone

SDB-005 Naphthalen-1-yl 1-pentyl-1H-

indazole-3-carboxylate

SIM Selected ion monitoring

SPE Solid-phase extraction

SPME Solid-phase microextraction

SRM Selected reaction monitoring

THJ-018 1-Naphthalenyl(1-pentyl-1H-indazol-

3-yl)methanone

THJ-2201 [1-(5-Fluoropentyl)-1H-indazol-3-

yl](naphthalen-1-yl)methanone

TLC Thin-layer chromatography

TOFMS Time-of-flight mass spectrometry

UV Ultraviolet

UR-144 (1-Pentyl-1H-indol-3-yl)(2,2,3,3-

tetramethylcyclopropyl)methanone

XLR-11 [1-(5-Fluoropentyl)-1H-indol-3-

yl](2,2,3,3-

tetramethylcyclopropyl)methanone

XLR-12 (2,2,3,3-Tetramethylcyclopropyl)[1-

(4,4,4-trifluorobutyl)-1H-indol-3-

yl]methanone

Introduction

Currently, many illegal drugs are abused worldwide, with

serious social problems arising as a consequence. Although

various stimulants and narcotics have been in use to date,

new drugs targeting cannabinoid receptors have been

abused since their existence in herbal mixtures was dis-

closed in 2008 [1]. HU-210, a synthetic classical

cannabinoid, and cyclohexylphenols were commonly used

as recreational drugs, but mainstream use has since chan-

ged to N-alkyl indole-3-carbonyl derivatives, such as drugs

of the JWH and AM series (Fig. 1), because their activities

are stronger than those of the conventional cannabinoids.

These compounds are called cannabimimetics or synthetic

cannabinoids and can be purchased as ‘‘spice’’ or ‘‘K2’’ in

the drug market or via the Internet. Cathinones, also known

as ‘‘bath salts’’ or ‘‘plant food,’’ are psychoactive drugs and

are also abused as recreational drugs. The parent com-

pound, cathinone, is a well-known stimulant, and can be

isolated from the khat plant or produced by synthetic

means. Cathinone analogs with high selectivity and strong

activity for serotonin receptors and monoamine trans-

porters have been distributed in the drug market (Fig. 2).

The prevalence of cannabinoid and cathinone abuse in

many countries has been reviewed elsewhere [2–7].

Although the same substances are distributed throughout

the world, the times at which they are abused tend to vary

depending on whether the substances are controlled by local

laws. As shown in the reviews [2–7], new analogs appear in

the drug market just after the preceding drug comes under

regulation. Although many such substances are controlled in

countries throughout the world, the regulations are usually

limited by the structures of the drugs. Therefore, when the

structure of a side chain or substitution is slightly different

from that of the regulated drug, the analog is regarded as

being beyond the scope of the regulation. These emerging

drugs always show psychoactive actions because their che-

mical structures are similar to those of the drugs being con-

trolled. However, the detailed pharmacological activities of

these analogs are not known, which makes access easy and

use of these drugs very dangerous to human health.

Although many researchers have focused on the devel-

opment of detection methods, only a few analytical reviews

that summarize the systematic identification and quantifi-

cation techniques for these drugs have appeared [8–10]. In

this review, we summarize the various techniques for the

detection of synthetic cannabinoids and cathinones that

have been published up to 2014, including colorimetric,

immunochemical, and chromatographic methods.

Synthetic cannabinoids

Colorimetric detection

The Duquenois–Levine color test, which is used to identify

classical cannabinoids such as D9-tetrahydrocannabinol, is

negative for the synthetic cannabimimetics. The van Urk

color test, which is used to identify indole-containing drugs

of abuse, is also negative for these compounds. The use of

2,4-dinitrophenylhydrazine, which reacts with a keto moi-

ety, is capable of reacting with synthetic cannabimimetics,

such as the naphthoylindole, phenylacetylindole, ben-

zoylindole, and cyclopropylindole classes, either in powder

form or adsorbed onto plant material, and a positive test

solution turns from yellow to orange. Although the LOD

concentration was not detailed in the article, the solution
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tested contained at least 10 mg of cannabimimetic powder

suspended in methanol (1 ml) [11]. The Marquis reagent,

which reacts with all nitrogen-containing drugs, is positive

for cyclohexylphenols and the JWH series. Although Dra-

gendorff reagent is also positive for the JWH series, its LOD

concentration is higher than that of Marquis reagent. Fast

blue BB reacts with cyclohexylphenols, and the LOD con-

centration is not lower than that of Marquis reagent [12].

Iodoplatinate is also used as a detection reagent after TLC

[13]. Although it is possible to detect synthetic cannabinoids

with each reagent in these screening tests, it is difficult to

detect small amounts or mixtures of synthetic cannabinoids.

Immunochemical detection

ELISAs developed in-house could be calibrated at 5 ng/ml

with the 5-OH and 4-OH metabolites of JWH-018 and

JWH-250, respectively, and evaluated for the detection of

synthetic cannabinoids in urine [14]. Recently, some

commercially available immunoassay kits, such as Drug-

Check K2/Spice Test, DrugSmart Cassette, and RapiCard

InstaTest, have been developed for the detection of these

drugs in urine. These devices are more useful than the

colorimetric methods, because they do not require special

reagents or tools, and the results are obtained easily and

Indole 3-carbonyl derivatives

R1 R2 R3

JWH-015 n-Propyl Methyl 1-Naphthyl
JWH-018 n-Pentyl H 1-Naphthyl
AM-1220 (1-Methyl-2-piperidinyl)methyl H 1-Naphthyl
JWH-200 2-(4-Morpholinyl)ethyl H 1-Naphthyl
JWH-203 n-Pentyl H 2-Chloro-benzyl
JWH-250 n-Pentyl H 2-Methoxy-benzyl
JWH-251 n-Pentyl H 2-Methoxy-benzyl
RCS-4 n-Pentyl H 4-Methoxy-phenyl
AB-001 n-Pentyl H Adamantyl
AM-1248 (1-Methyl-2-piperidinyl)methyl H Adamantyl
AM-679 n-Pentyl H 2-Iodo-phenyl
AM-694 5-Fluoro-n-pentyl H 2-Iodo-phenyl
AM-2233 (1-Methyl-2-piperidinyl)methyl H 2-Iodo-phenyl
AM-1241 (1-Methyl-2-piperidinyl)methyl H 2-Iodo-5-nitro-phenyl

- a 5-Fluoro-n-pentyl H 3-Pyridinoyl

N

R3

O

R1

R2

R1

UR-144 n-Pentyl
XLR-11 5-Fluoro-n-pentyl
XLR-12 4,4,4-Trifluoro-butyl
AB-005 (1-Methyl-2-piperidinyl)methyl
A-834735 (Tetrahydro-2H-pyran-4-yl)methyl
A-796260 2-(4-Morpholinyl)ethyl

N

O

R1

R2 N

O

R1 R1 R2

JWH-030 n-Pentyl H
JWH-307 n-Pentyl 2-Fluoro-phenyl

Indazole 3-carbonyl derivativePyrrole 3-carbonyl derivatives

N
N

R2

O

R1

R1 R2

THJ-2201 5-Fluoro-n-pentyl 1-Naphthyl

a No abbreviated name available

Fig. 1 Structures of synthetic cannabinoids
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quickly. The devices also can detect older types of syn-

thetic cannabinoids, such as JWH-018 or JWH-073, but,

unfortunately, new designer drugs such as QUPIC and AB-

CHMINACA cannot be detected.

GC–MS detection

Typical mass spectra of synthetic cannabinoids are shown

in Fig. 3. Molecular (M?) and/or fragment ions observed

by full scan data acquisition of GC–MS reflect the struc-

tures of the synthetic cannabinoids [13, 15, 16]. As shown

in Fig. 4, the fragmentation pathways of naphthoylindoles

have been well studied for the identification of synthetic

cannabinoids by GC–MS [12, 15]. Therefore, the identifi-

cation of synthetic cannabinoids is facilitated by compar-

ison of the spectra with commercial and open databases.

In naphthoylindoles, the carbonyl group fragment ions,

which are caused by a-cleavage of the alkylamino group of

R1 R2

APICA n-Pentyl Adamantyl
5F-APICA 5-Fluoro-n-pentyl Adamantyl
NNEI(MN-24) n-Pentyl 1-Naphthyl
5F-NNEI 5-Fluoro-n-pentyl 1-Naphthyl

R1 R2 R3

AB-PINACA n-Pentyl i-Propyl NH2 

5F-AB-PINACA 5-Fluoro-n-pentyl i-Propyl NH2

ADB-PINACA n-Pentyl t-Butyl NH2

AB-FUBINACA 4-Fluoro-benzyl i-Propyl NH2

ADB-FUBINACA 4-Fluoro-benzyl t-Butyl NH2

AB-CHMINACA Cyclohexylmethyl i-Propyl NH2

AMB n-Pentyl i-Propyl Methoxy
5F-AMB 5-Fluoro-n-pentyl i-Propyl Methoxy

N
N

N
H

O

R1

R2

R3O

N

N
H

O

R1

R2

R3O

R1 R2 R3

ADBICA n-Pentyl t-Butyl NH2 

PX1 5-Fluoro-n-pentyl Benzyl NH2 

R1 R2

NM-2201 5-Fluoro-n-pentyl 1-Naphthyl
FDU-PB-22 4-Fluoro-benzyl 1-Naphthyl
QUPIC(PB-22) n-Pentyl 8-Quinolinyl
5F-PB-22 5-Fluoro-n-pentyl 8-Quinolinyl
QUCHIC(BB-22) Cyclohexylmethyl 8-Quinolinyl
FUB-PB-22 4-Fluoro-benzyl 8-Quinolinyl

N

N
H

O

R1

R2

N
N

N
H

O

R1

R2

N

O
R2

O

R1

N
N

O
R2

O

R1

R1 R2

5F-SDB-005 5-Fluoro-n-pentyl 1-Naphthyl
5F-NPB-22 5-Fluoro-n-pentyl 8-Quinolinyl

Indole 3-carbonylamide derivatives Indazole 3-carbonylamide derivatives

Indole 3-carbonylester derivatives

Indazole 3-carbonylester derivatives

R1 R2

APINACA n-Pentyl Adamantyl
5F-APINACA 5-Fluoro-n-pentyl Adamantyl
MN-18 n-Pentyl 1-Naphthyl
5F-MN-18 5-Fluoro-n-pentyl 1-Naphthyl

Fig. 1 continued
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the indole, are typically observed. In addition, [M-17]? is

certainly observed in naphthoylindoles. For example,

fragment ions at m/z 284 and 214 are observed in JWH-

018, corresponding to those of the indole moiety caused by

a-cleavage of the N-pentyl of indole and naphthoyl.

Fragment ions at m/z 127 and 155 are observed in JWH-

018, corresponding to the naphthalene group caused by the

a-cleavage of the carbonyl group. Moreover, ions at

m/z 324 are observed as [M-17]? (Fig. 3a). Like naph-

thoylindoles, fragment ions caused by a-cleavage of the

alkylamino group of the indole and carbonyl groups are

shown, although [M-17]? is not observed for benzoylin-

doles. For example, fragment ions at m/z 264 and 214 are

observed for RCS-4, caused by a-cleavage of N-pentyl of

the indole and 4-methoxybenzoyl. The ions at m/z 127 and

155, which are caused by naphthyl and naphthoyl moieties

of naphthoylindoles (Fig. 3a), and the ion at m/z 135

caused by the 4-methoxybenzoyl moiety (Fig. 3b) are

useful as precursor ions for identification of these drugs by

GC–MS-MS. On the other hand, the methylpiperidine

moiety is bound to the nitrogen of the indole, and the ion at

m/z 98 is observed as the base peak (Fig. 3d). Unlike

naphthoyl and benzoyl indoles, the base peak of the

fragment ion caused by the N-alkylindole 3-carbonyl

moiety for phenylacetyl (Fig. 3c), cyclopropyl, or ada-

mantyl (Fig. 3f) indoles, is only shown in each full scan

spectrum. Analogs, in which the indole skeleton is changed

to an indazole, such as THJ-018, have also appeared on the

market. In these analogs, molecular and N-dealkylated ions

are typically observed in the spectrum (Fig. 3e).

Recently, amide- or ester-type analogs bonded with an N-

alkylindole or N-alkylindazole 3-carbonyl moiety have ap-

peared on the market [17, 18]. In these analogs, the abun-

dance of the molecular ion is low, and the fragment ion

caused by the indoyl (or indazoyl) moiety is observed as a

base peak (Fig. 3f–k). Although the fragment ion caused by

elimination of the terminal CO–NH2 is lower than that of the

cleavage of the amide moiety in indole analogs, such as

ADBICA (Fig. 3h) [19], the fragment ion caused by

elimination of terminal CO–NH2 is as intense as that of the

cleavage of the amide moiety in indazole analogs, such as

ADB-PINACA and AB-CHMINACA (Fig. 3j, k) [20]. The

substitution of the indole skeleton with the indazole moiety,

such as in THJ-018 and THJ-2201 [21], has also been ob-

served in these analogs. In these analogs, molecular and N-

dealkylated ions are typically observed in the spectrum.

Name R1 R2 R3 R4 R5

Cathinone Methyl H H H H

Methcathinone Methyl Methyl H H H

N,N-Dimethylcathinone Methyl Methyl Methyl H H

Mephedrone Methyl Methyl H Methyl H

3,4-Dimethylmethcathinone Methyl Methyl H Methyl Methyl

4-Ethylmethcathinone Methyl Methyl H Ethyl H

Methylone Methyl Methyl H Methylenedioxy

Ethcathinone Methyl Ethyl H H H

Ethylone Methyl Ethyl H Methylenedioxy

Amfepramone Methyl Ethyl Ethyl H H

Buphedrone Ethyl Methyl H H H

4-Methylbuphedrone Ethyl Methyl H Methyl H

Butylone Ethyl Methyl H Methylenedioxy

N-Ethylbuphedrone Ethyl Ethyl H H H

Eutylone Ethyl Ethyl H Methylenedioxy

Pentedrone Propyl Methyl H H H

α-Ethylaminopentiophenone Propyl Ethyl H H H

Name R1 R2 R3

α-PPP Methyl H H

α-PBP Ethyl H H

α-PVP Propyl H H

α-PHP Butyl H H

PV8 Pentyl H H

PV9 Hexyl H H

MPPP Methyl Methyl H

MOPPP Methyl Methoxy H

MPBP Ethyl Methyl H

Pyrovalerone Propyl Methyl H

Naphyrone Propyl Phenyl

MPHP Butyl Methyl H

MDPPP Methyl Methylenedioxy

MDPBP Ethyl Methylenedioxy

MDPV Propyl Methylenedioxy

R1

R5

R4

R2

N

R3O

R1

R3

R2

N

O

Fig. 2 Structures of cathinones
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For example, in the simultaneous analysis of synthetic

cannabinoid species, 10 mg of ground powder of the dried

leaves was extracted with 10 ml of methanol under ultra-

sonication for 10 min. The extracts were centrifuged for

5 min at 3,000 rpm, and the supernatants were filtered and

used for GC–MS analysis. The LODs were 0.5–1.0 mg/l, and

linearity was obtained at concentrations up to 100 mg/l [16].

In another article [22], herbal samples (approximately

50 mg) were put into 10-ml headspace vials, and the vials

were capped with 20-mm magnetic crimp seal caps with

PTFE/silicone septa. The samples were incubated at 200 �C

with pulse-agitation at 250 rpm. A StableFlex carboxen/

polydimethylsiloxane fiber was inserted into the headspace

for 5 min for extraction. The fiber was then injected into the

GC inlet for 15 min to desorb the analytes. The LOD of

synthetic cannabinoid in the samples was at least 20 lg.

The tentative identification of synthetic cannabinoids

appears easy, but similar mass spectra are sometimes ob-

tained by GC–MS because regio- and ring-substituted ana-

logs are still distributed on the market. The misidentification

of these analogs arises when using only the information from

the mass spectra. When tandem and high-resolution MS are

321
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used to identify the conformational isomers or regioisomers,

such misidentification does not occur [23–28]. Moreover,

identification of cyclopropyl or ester analogs, such as UR-

144 or QUPIC, is usually not possible because cyclopropyl

analogs are heat-unstable and are easily degraded in the in-

jection port of the GC instrument [29, 30].

LC–MS-MS detection

Many research groups have used LC–MS-MS for deter-

mination of synthetic cannabinoids in herbs and biological

samples, and some have studied the fragmentation of

synthetic cannabinoids in detail [15, 31]. The probable

fragmentation pathways are shown in Fig. 4. Because the

protonated molecular ion is only observed by LC–MS, and

the information acquired by LC–MS is lesser than that for

GC–MS, it is necessary to obtain other data that reflect the

chemical structures by LC–MS-MS or TOFMS. Fragment

ions are observed by product ion scanning when the pro-

tonated molecular ion is used as the precursor ion. In

naphthoylindole, ions at m/z 127 and 155 are generated by

naphthyl and naphthoyl moieties. However, information

about the indole moiety tends to be not revealed by LC–

MS-MS. On the other hand, the N-alkyl moiety of a
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synthetic cannabinoid is mainly modified for excretion into

urine as a metabolite. Therefore, LC–MS-MS is a useful

methodology to search for metabolites of synthetic

cannabinoids in urine.

Recently, packages containing mixtures of multiple

synthetic cannabinoids have been sold commercially, even

though the package ingredients have been largely unknown

to both sellers and buyers. In this aspect, the LC–MS-MS

screening method is helpful in some estimation of the in-

gredients. Kneisel and Auwärter [32] demonstrated the si-

multaneous detection of 30 synthetic cannabinoids in

serum; the LODs and LOQs were 0.01–2.0 and 0.1–2.0 ng/

ml, respectively. There are many applications for analysis

of synthetic cannabinoids in urine, hair, and oral fluids [33–

37]. The typical published methods for analysis of syn-

thetic cannabinoids in biological materials are summarized

in Table 1 [38–54]. Simple LLE is usually used for the

extraction of synthetic cannabinoids from biological ma-

terials because of the high hydrophobicity of the drugs. The

chromatographic conditions are generally simple and do

not require a special technique; octadecyl-type columns

were used as analytical columns and analyses were per-

formed in gradient mode.

The identification of an unknown drug in a biological

material without information is almost always difficult,

even if analysis is carried out with LC–MS-MS. To

overcome this situation, high-resolution MS or TOFMS

become helpful tools for tentative estimation of parent

drugs and their metabolites of synthetic cannabinoids.

To clarify the chemical structure of an unknown drug in

a herbal blend product that contains more than several

milligrams of the drug, GC–MS, LC–MS-MS, and high-

resolution MS (or TOFMS) can be used to estimate the

structure. The target compound is then purified by pre-

parative LC or preparative TLC to obtain more than several

milligrams of the compound of high purity, which is then

analyzed by NMR spectroscopy [17–21]. The detailed

chemical structure can be elucidated by the above laborious

instrumental analyses.

Cathinones

Colorimetric detection

The Marquis reagent, which reacts with all nitrogen-con-

taining drugs, is negative for cathinones, such as cathinone

and mephedrone, but is positive for cathinone analogs that

have a methylenedioxy moiety in each molecule. The

cathinone analogs with a methylenedioxy moiety also react

with the Chen reagent, which changes to orange in positive

tests. Although the LOD concentration is not reported, the
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described test solution contained cathinone powder (at

least 10 mg) suspended in methanol (1 ml) [55–57]. The

combination of Marquis, Ehrlich, Simon, Lieberman–

Burehand, and Mandelin reagents is useful for the detec-

tion of cathinones in samples. Like synthetic cannabinoids,

the identification of these compounds, of course, cannot be

performed using these methods; moreover, the detection of

small amounts or mixtures of cathinones is difficult.

Immunochemical detection

Some researchers have tried to detect cathinones in urine

using immunoassay technology [58, 59]. Some articles

revealed false-positive results by immunoassays; for ex-

ample, MDPV was cross-reactive with phencyclidine [60].

Therefore, specific detection of cathinones by a commer-

cial immunoassay is not yet possible.

GC–MS-MS detection

Mass spectral profiles of cathinones are very simple in the

positive mode of GC–MS, because only the base peak

originating from the immonium ion in each molecule is

observed. The probable fragmentation pathways of cathi-

nones are described in previous articles [61–64] and are

shown in Fig. 5. However, this phenomenon makes the

identification of cathinones difficult. To help identify

cathinones, other information, such as tandem mass spec-

trometric data, are usually used because more structural

information about the molecule is obtained.

Zuba [61] introduced the systematic identification of

cathinones using the mass spectra obtained. First, it should

be checked whether the molecular ion is observed. The

immonium ion (m/z = 16 ? 14 n, n = 1, 2, 3,…) is then

checked in the EI spectrum. If the immonium ion is found

in the spectrum, the substance could be a straight-chained

cathinone. If not, it is checked whether the ion for a

pyrrolidine ring is observed (m/z = 70 ? 14 n, n = 1, 2,

3,…). If this ion is found in the spectrum, the substance

could be a cathinone with a pyrrolidine ring in the mole-

cule [61]. There are various regioisomers in cathinones. To

identify the cathinones, it is necessary to assign both the

location and length of the bonded alkyl chain. Moreover,

the ring-substituted moiety is also needed to be assigned.

Zuba [61] demonstrated the following rules: the fragment

ions reflecting the ring-substituted moiety are observed at

m/z 77 and 105 for a nonsubstituted phenyl ring, at m/z 91

and 119 for a methylphenyl ring, and at m/z 121 and 149

for a methylenedioxyphenyl ring. Matsuta et al. [62]

demonstrated the detailed analysis of MS data obtained by

GC–EI-MS for identification of cathinones and specified

indexing information. However, the ionization rate of the

fragments in ring-substituted cathinones is remarkablyT
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weaker than that of the immonium ion. Other information

obtained by TOFMS or CI-MS is helpful to delineate the

molecular structure [63–66]. The identification of the re-

gioisomer of the fluorinated cathinones was demonstrated

using CI-MS [67]. However, this phenomenon was sug-

gested to be limited to these analogs.

The published methods for analysis of cathinones in

biological materials are summarized in Table 2 [68–79].

Simple LLE is usually used for extraction of cathinones from

biological materials. The chromatographic conditions are

also simple and do not usually require a special technique.

LC–MS-MS detection

The strategy for the detection of cathinones by LC–MS-MS

is almost same as that for synthetic cannabinoids; almost

all methods use MRM or SRM mode for sensitive deter-

mination. The probable fragmentation pathways are shown

in Fig. 5. The [M?H]? ion is selected as a precursor ion,

and three product ions that reflect the chemical structures

of the cathinones are selected. Using this method, 30–50

drugs are monitored simultaneously in samples [80–82].

The published methods for analysis of cathinones in bio-

logical materials are summarized in Table 3 [68, 69, 74,

75, 77, 79, 82–98]. Simple LLE is usually used for the

extraction of cathinones from biological materials. The

chromatographic conditions are also simple and do not

require a special technique.

In the same way as identification by GC–MS, other in-

formation obtained by TOFMS or tandem MS is needed to

clarify the molecular structure. An authentic drug or library

database is needed to identify the drugs. Moreover, the

probable fragmentation pathways of cathinones are de-

scribed in the previous articles [61, 65, 66, 99]. These data

are helpful in identifying the drugs.

As described in the section on synthetic cannabinoids, we

occasionally encounter a dubious product that contains more

than several milligrams of an unknown cathinone-like

compound. In such a case, GC–MS, LC–MS, high-resolution

MS (or TOFMS), and finally NMR spectroscopy are used to

clarify the detailed chemical structure of the compound.

Concentrations in the cases of abuse

Synthetic cannabinoids

The common method of consumption of synthetic

cannabinoids is smoking, which is the same as for con-

ventional cannabis. The maximum concentrations of syn-

thetic cannabinoids in serum are reached in less than

10 min after smoking [38]. The drugs absorbed in the body

are metabolized smoothly, and the concentrations decrease

rapidly. Moreover, there is also a report that cannabinoids

accumulate in the adipose tissue because of their high

lipophilicity [52]. Therefore, detection of the drug from

serum is usually difficult. Synthetic cannabinoids absorbed

in the human body are metabolized to hydroxyl or carboxyl

derivatives of the aromatic ring or N-alkyl side chain [100].

It is difficult to identify the parent drug and its metabolites
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Fig. 5 Probable fragmentation pathways of cathinones by electrospray ionization and electron ionization (modified from references [61, 62, 65,

66])
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in blood by GC–MS alone because the fragmentation of the

metabolites is similar to that of the parent drug and ana-

logs. Moreover, the concentration of the unchanged syn-

thetic cannabinoids in blood is very low, and the number of

metabolites that are commercially available is small. Low

sensitivity is a limitation for the determination of synthetic

cannabinoids in blood by GC–MS.

Although the concentration is influenced by the sam-

pling time after drug intake and by the intake amount,

concentrations of these drugs in serum were reported in the

range of 0.1–190 ng/ml in poisoning cases [46]. In fatal

cases, the concentrations of the drugs in blood were

0.1–199 ng/ml for JWH-018 and 0.1–68.3 ng/ml for JWH-

073 [50], 12 ng/ml for AM-2201 [100], 1.1–1.5 ng/ml for

5F-PB-22 [53], and 12.4 ng/ml for MAM-2201 [52].

Cathinones

Unlike synthetic cannabinoids, the most common method

of consumption of cathinones are insufflation (snorting) or

ingestion. Inhalation, sublingual and rectal administration,

and intramuscular or intravenous injection have also been

reported. Unlike synthetic cannabinoids, the concentration

of cathinones in blood is thought to vary because of the

many modes of administration used by abusers. Only the

blood concentration at one point and at several points have

been quantified, and there is no report on continuous

monitoring of the profile of the drug concentration in

blood. The fatal concentration of the drug in blood was

reported to be around 400 ng/ml [75]. The stability of

cathinones in blood samples is clearly influenced by pH, as

well as in the final extracts. In blood samples preserved

with NaF/potassium oxalate, the measured concentrations

of cathinone, methcathinone, ethcathinone, mephedrone,

and flephedrone declined by ca. 30 % after 2 days of

storage at 20 �C [82].

Some groups have studied the metabolic pathways of

cathinones [68, 94, 101–103]. Unlike synthetic cannabi-

noids, the parent cathinones are detected easily in biolo-

gical materials and are selected as the target because the

unchanged parent drugs are rapidly excreted in urine.

Cathinones are ionized in the body, and the reabsorption

rate is low in the kidney because of low hydrophobicity.

The excretion profile of a-PBP and a-PVP in human urine

was determined after an intravenous injection, and the

elimination half-life in urine was approximately 12 h.

Moreover, the excreted amount in urine was influenced by

urinary pH, like a psycho-stimulant [104]. To analyze these

drugs in biological materials, it is necessary to remove

endogenous substances from each sample and enrich the

content of the drug. As shown in Table 3, LLE is usually

used for extraction of the drugs from biological materials.

The quantification of the metabolites is important to predict

the hazardous properties of the metabolites. However, be-

cause there are few metabolites marketed, no detailed study

about their pharmacological activity or toxicity has been

conducted.

In fatal cases, the concentrations of the drugs in blood

were: 560–3,300 [72], 272 [105], and 60–1,120 ng/ml

[106] for methylone; 1.2–22 [107], 5.1 [108], and 5.5 lg/

ml [88] for mephedrone; 55.2 ng/ml for a-PBP [95]; 486

[73] and 654 ng/ml [109] for a-PVP; 180 ng/ml [98] for

PV9; 170 [70], 82 [110], 1,200 [74], 440 [75], 17–38 [92],

and 700 ng/ml [111] for MDPV.

Conclusions

The number of abusers of synthetic cannabinoids and

cathinones has increased remarkably worldwide. The che-

mical structures of the distributed drugs are skillfully

changed so that the drugs may pass through screenings for

detection. Simple screening methods are required for de-

tection of these drugs in seized and biological materials.

There are currently no commercial kits or devices for the

routine screening of these drugs. Colorimetric, immuno-

chemical, and chromatographic methods have been intro-

duced in this review; a suitable method must be chosen for

each laboratory. Although various human sample matrices

are available for testing, urine and blood are of the first

choices. However, many of these drugs, especially un-

changed synthetic cannabinoids, exist in urine and blood

for only a short period. Therefore, other matrices that can

prove the consumption of these drugs, such as hair and

saliva, are likely to receive more attention in the future.

Acknowledgments The authors are thankful to Professors Akira

Ishii, Chief Editor, and Osamu Suzuki, Emeritus Chief Editor,

Forensic Toxicology, for providing us an opportunity to write this

review.

Conflict of Interest There are no financial or other relations that

could lead to a conflict of interest.

References

1. Auwärter V, Dresen S, Weinmann W, Müller M, Pütz M, Fer-
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