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Background: Upper extremity dysfunction after stroke is an urgent clinical

problem that greatly a�ects patients’ daily life and reduces their quality of life.

As an emerging rehabilitation method, brain-machine interface (BMI)-based

training can extract brain signals and provide feedback to form a closed-loop

rehabilitation, which is currently being studied for functional restoration after

stroke. However, there is no reliable medical evidence to support the e�ect of

BMI-based training on upper extremity function after stroke. This review aimed

to evaluate the e�cacy and safety of BMI-based training for improving upper

extremity function after stroke, as well as potential di�erences in e�cacy of

di�erent external devices.

Methods: English-language literature published before April 1, 2022,

was searched in five electronic databases using search terms including

“brain-computer/machine interface”, “stroke” and “upper extremity.” The

identified articles were screened, data were extracted, and the methodological

quality of the included trials was assessed. Meta-analysis was performed using

RevMan 5.4.1 software. The GRADE method was used to assess the quality of

the evidence.

Results: A total of 17 studies with 410 post-stroke patients were included.

Meta-analysis showed that BMI-based training significantly improved upper

extremity motor function [standardized mean di�erence (SMD) = 0.62; 95%

confidence interval (CI) (0.34, 0.90); I2 = 38%; p < 0.0001; n = 385;

random-e�ects model; moderate-quality evidence]. Subgroup meta-analysis

indicated that BMI-based training significantly improves upper extremitymotor

function in both chronic [SMD= 0.68; 95% CI (0.32, 1.03), I2 = 46%; p= 0.0002,

random-e�ects model] and subacute [SMD = 1.11; 95%CI (0.22, 1.99); I2 =

76%; p = 0.01; random-e�ects model] stroke patients compared with control

interventions, and using functional electrical stimulation (FES) [SMD = 1.11;

95% CI (0.67, 1.54); I2 = 11%; p < 0.00001; random-e�ects model]or visual

feedback [SMD = 0.66; 95% CI (0.2, 1.12); I2 = 4%; p = 0.005; random-e�ects

model;] as the feedback devices in BMI training was more e�ective than using
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robot. In addition, BMI-based trainingwasmore e�ective in improving patients’

activities of daily living (ADL) than control interventions [SMD = 1.12; 95% CI

(0.65, 1.60); I2 = 0%; p < 0.00001; n = 80; random-e�ects model]. There was

no statistical di�erence in the dropout rate and adverse e�ects between the

BMI-based training group and the control group.

Conclusion: BMI-based training improved upper limbmotor function and ADL

in post-stroke patients. BMI combined with FES or visual feedback may be a

better combination for functional recovery than robot. BMI-based trainings are

well-tolerated and associated with mild adverse e�ects.

KEYWORDS

upper limb dysfunction, stroke, meta-analysis, systematic review, brain-machine

interface

Introduction

Stroke is the second cause of death and the leading cause

of disability worldwide (GBD Stroke Collaborators, 2021). Most

stroke survivors suffer varying degrees of disability, which can

greatly affect their functional independence, quality of life, and

increase the burden of nursing care (Bejot et al., 2016; Mutai

et al., 2016; Purton et al., 2021). Of these, nearly 80% of post-

stroke persons have upper extremity dysfunction that gravely

affects their ability to perform activities of daily living (ADL), as

well as social participation (Feigin, 2008). Various rehabilitation

approaches have been proposed to promote upper limb motor

recovery, such as constraint-induced motor therapy (CIMT),

and task-oriented training (Winstein et al., 2016). However,

these rehabilitation strategies are limited for individuals with

severe motor dysfunction (Corbetta et al., 2015). For such

patients, mirror therapy (Thieme et al., 2018), motor imagery

(Guerra et al., 2017), action observation therapy (Ertelt et al.,

2007; Tani et al., 2018), electrical/magnetic stimulation (Dawson

et al., 2016; Kang et al., 2016; Lu et al., 2022) (e.g., non-invasive

brain stimulation, or vagus nerve stimulation) are alternative

approaches and those may enhance the reorganization of

function in damaged neural networks to minimize motor

deficits. In recent years, novel rehabilitation technologies, such

as virtual reality (Ikbali Afsar et al., 2018), robot-assisted

therapy, and BMI-based training, have been proposed for post-

stroke rehabilitation, which can active engagement of patients as

well as their motivation compared to conventional rehabilitation

(Levin et al., 2010).

BMI is a novel technique that captures brain activity while

performing or attempting to perform motor and/or cognitive

tasks, and processing it into useful feedback (Chamola et al.,

2020). This feedback can be expressed in many forms, including

feedback of a visual (Verbaarschot et al., 2021), auditory

(Hubner et al., 2018) or tactile nature (Fleury et al., 2020), or

even control signals for external devices (Vilela and Hochberg,

2020). BMI can be invasive or non-invasive and due to safety

and ethical issues, non-invasive may be more promising for

clinical applications. Among non-invasive systems, EEG is one

of the best candidates because of its low cost, portability, and

ability to extract many signal features that convey brain activity

(van Dokkum et al., 2015). Sensorimotor rhythm (SMR), an

oscillatory rhythm of synchronized brain activity of 8–30Hz

above the sensorimotor cortex that change with movement

and/or movement imagery (Lu et al., 2013), is a critical

EEG signal that correlates closely with motor area activation

during real and imagined movements (McFarland and Wolpaw,

2011). Pattern changes in SMR amplitude (asynchronous or

synchronous) can trigger external devices through the BMI

system to display real-time sensory feedback or perform

predetermined actions. In general, BMI can be divided into

two categories according to its role: being an effective tool

to replace or substitute for a lost function (Assistive BMI),

such as assistive communication tools for people with paralysis

(Chaudhary et al., 2021), and serving as a novel technology

to strengthen damaged neural pathways or induce cortical

plasticity (Rehabilitative BMI).

In post-stroke patients, we prefer to use BMI in training

to promote neuroplasticity and motor regeneration. Since the

first case report on the feasibility of combining BMI and

FES for post-stroke patients in 2009 (Daly et al., 2009), a

growing number of human BMI studies demonstrate the great

potential of this technology in restoring movement (Lyukmanov

et al., 2018; Chung et al., 2020; Li et al., 2021). Most post-

stroke upper limb rehabilitation programs use non-invasive

BMI systems combined with feedback devices, such as FES

(Li et al., 2014; Kim et al., 2016; Biasiucci et al., 2018; Lee

et al., 2020), robot (Ang et al., 2015; Cheng et al., 2020), or

visual display (Mihara et al., 2013; Pichiorri et al., 2015) to

facilitate motor recovery. However, the controversy surrounding

the effectiveness of BMI-based training for post-stroke upper

extremity dysfunction persists due to the different types of
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experimental clinical studies and the wide variation in the

quality of the literature. In recent years, although some meta-

analyses have investigated the effect of BMI-based training

on upper limb motor function after stroke (Cervera et al.,

2018; Bai et al., 2020; Yang W. et al., 2021; Mansour et al.,

2022; Nojima et al., 2022), there are limitations such as

the small sample size included in the study and the failure

to provide a level of evidence. In addition, we found data

extraction errors in a study analyzing the efficacy of BMI in

different stroke stages (Yang W. et al., 2021). The evidence

related to the immediate and/or long-term effects of BMI in

other aspects (e.g., spasticity, activities of daily living, etc.) is

also inconclusive.

In this review, we performed a more comprehensive

inclusion (17RCTs) covering RCTs from previously published

meta-analyses, in addition to two uncited studies Wang et al.

(2018)and Li et al. (2022). We aim to provide updated

and higher quality evidence on the effectiveness and safety

of BMI-based training in improving function in post-stroke

patients. We focus the meta-analysis on the following aspects:

(1) to investigate the immediate clinical effects of BMI-

based training on improving upper limb motor function

in hemiplegia; (2) to investigate the potential differences in

treatment effects caused by different external device of BMI

(e.g., BMI combined with FES and BMI combined with robot);

(3) to investigate the immediate clinical effects of BMI-based

training on improving activities of daily living in post-stroke

patients. In addition, we analyzed adverse effects and shedding

in RCTs to provide evidence for the safety and acceptance

of this novel technology, considering its widespread use in

clinical settings.

Materials and methods

The review process was confirmed using a checklist in the

PRISMA statement for reviews (Ardern et al., 2022).

Search strategies

The meta-analysis included RCTs that investigated the

effects of BMI-based training on upper limb function after

stroke which were published in peer-reviewed journals and

in English. Articles were retrieved from five databases until

April 1, 2022 (PubMed, Web of Science, Embase, Scopus, and

Cochrane Library) using the following keywords that included

“upper extremity,” “stroke,” and “brain-computer/machine

interface.” We also performed a manual search, including

screening reference lists of previous systematic reviews

and meta-analysis, to retrieve additional relevant articles

for analysis.

Inclusion and exclusion criteria

Two review authors independently assessed the

methodological quality of the included studies. We recorded

and resolved any disagreements through discussions with a

third reviewer.

The inclusion criteria for this study were as follows:

(1) Subjects of the study were adults with stroke diagnosed

by computed tomography (CT) or magnetic resonance

imaging (MRI).

(2) A randomized controlled trial.

(3) BMI training was performed in more than one session.

(4) the experimental group involving BMI intervention for

the upper limb and the control intervention could be sham

BMI training or conventional training without BMI

(5) used Fugl–Meyer Assessment Scale (FMA) or Modified

Brathel Index (MBI) as an outcome measure.

The exclusion criteria for this study were as follows:

(1) Studies in which both experimental and control groups

used BMI therapy.

(2) Neither pre-and post-intervention FMA nor MBI scores

were available.

(3) redundant report.

Data extraction

Duplicates were first eliminated and the remaining

retrieved articles were independently screened by two

researchers using the same inclusion and exclusion criteria

by reviewing titles and abstracts, and eligible articles

were screened in full for final inclusion. Articles for

which the abstract did not provide sufficient information

were selected for full-text analysis. Discrepancies were

resolved through discussion or consultation with a

third investigator.

The following information was extracted from each study.

(1) publication information (study authors, year of publication);

(2) participant characteristics (age, duration of onset, and

sample size) (3) intervention information (type of BMI-

based intervention, intervention in the control group, and

intervention parameters); and (4) outcome measures [Fugl–

Meyer Assessment Scale of Upper Extremity (FMA-UE), MBI,

adverse effects and dropout rate].

Due to differences in the duration of intervention and

follow-up assessments among studies, we extracted the pre-

and post-intervention assessments as parameters for analysis

of immediate clinical effects. Similarly, only adverse effects and

shedding that occurred during the intervention were counted.
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Risk of bias and quality of outcomes
assessment

Two investigators independently reviewed the included

studies and assessed the methodological quality, a third

reviewer recorded and resolved any discrepancies in the results.

Because all the studies were RCTs, the Cochrane Handbook

for Systematic Reviews of Interventions was used to assess

the risk of bias, consisting of random sequence generation,

allocation concealment, blinding of participants and personnel,

blinding of outcome assessment, incomplete outcome data,

selective reporting, and other sources of bias (Higgins et al.,

2011; Corbett et al., 2014). The Grading of Recommendations

Assessment, Development and Evaluation (GRADE) guidelines

for systematic reviews were used to evaluate the quality of

outcomes (Guyatt et al., 2008).

Outcome measures

Outcome measures for the efficacy of therapy were as

follows: (1) FMA-UE; (2) MBI; (3) adverse effects; (4)

dropout rate.

The FMA-UE, with a sum of 66 points, is a well-designed,

valid, and feasible assessment scale that is now widely used

in the clinical assessment of upper extremity motor function

(Gladstone et al., 2002; Platz et al., 2005). MBI is a five-level

rating scale and evaluates the functional independence and

FIGURE 1

PRISMA flowchart of the study selection process. RCT, randomized controlled trials; BMI, brain-machine interface.
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TABLE 1 Characteristics of the randomized controlled studies.

References N Age [mean± sd or

mean (25%, 75%

quartiles)]

Time from stroke Type of interventions Intervention

time (total

session h)

Outcome

Measures

T C T C T C T C

Ang et al. (2014) 6 7 54.0± 8.9 58.0± 19.3 285.7±

64.0(d)

455.4± 109.6(d) MI-BCI (EEG)

-Haptic Knob

Std Arm Th 1.5 h/d, 3 d/wk, 6

wk (27 h)

FMA-UE

Ang et al. (2015) 11 14 48.5± 13.5 53.6± 9.5 383.0±

290.8(d)

234.7± 183.8(d) MI-BCI

(EEG)-Robotic

Feedback

Robot 1.5 h/d, 3 d/wk, 4

wk (18 h)

FMA-UE

Biasiucci et al.

(2018)

14 13 56.4± 9.9 59.0± 12.4 39.8±

45.9(m)

33.5± 30.5(m) BCI(EEG)-FES Sham-FES 1 h/d, 2 d/wk, 5 wk

(10 h)

FMA-UE, MRC,

MAS, ESS

Chen et al. (2020) 7 7 41.6± 12.0 52.0± 11.1 3.1± 1.7(m) 3.9± 1.5(m) MI-BCI

(EEG)-Exoskeleton

MI 3 d/wk, 4 wk FMA-UE

Cheng et al. (2020) 5 5 62.4± 4.7 61.4± 4.5 476.8±

302.0(d)

890.2± 257.23(d) MI-BCI(EEG)—

Soft

Robotic

Soft robotic 1.5 h/d, 3 d/wk, 6

wk (27 h)

FMA-UE, ARAT

Frolov et al. (2017) 55 19 58.0 (48.0;

65.0)

58.0 (52.0;

67.0)

8.0 (4.0;

13.0)(m)

8.0 (1.0; 13.0)(m) MI-BCI

(EEG)-Exoskeleton

Sham-

BCI-Exoskeleton

0.5 h/d, 5 d/wk, 2

wk (5 h)

ARAT, FMMA

Kim et al. (2016) 15 15 59.1± 8.1 59.9± 9.8 8.27±

1.98(m)

7.80± 1.78(m) AOT-BCI(EEG)-

FES

Conventional

Treatment

0.5 h/d, 5 d/wk, 4

wk (10 h)

FMA-UA, MAL,

ROM, MBI

Lee et al. (2020) 13 13 55.15±

11.57

58.30±

9.19

7.46±

1.61(m)

8.30± 1.97(m) AOT-BCI(EEG)-

FES

FES 0.5 h/d, 5 d/wk, 4

wk (10 h)

FMA-UE, WMFT,

MBI, MAL

Li et al. (2014) 7 7 66.3± 4.53 67.1± 5.51 2.21±

1.69(m)

2.79± 1.85(m) MI-BCI (EEG)-FES FES 1 h/d, 3 d/wk, 8 wk

(24 h)

FMA-UE, ARAT,

Li et al. (2022) 12 12 43.8± 14.7 55.0± 12.2 4.0 (2.0,

11.3)(m)

4.3± 2.6(m) MI-BCI

(EEG)-Robotic,

Auditory, Visual

Feedback

Conventional

Treatment

1 h/d, 5 d/wk, 2 wk

(5 h)

FMA-UE, WMFT,

MBI

Lin et al. (2018) 5 5 45.0± 11.2 52.2± 7.7 17.8±

15.3(m)

10.8± 5.1(m) BCI(EEG)-

MTD-VR

Conventional

Treatment

35 min/d, 3 d/wk, 4

wk (7 h)

FMA-UE

Miao et al. (2020) 8 8 48.8± 16.7 50.3± 17.1 18.3±10.9(m) 11.1± 5.0(m) MI-BCI (EEG)-FES Conventional

Treatment

3 d/wk, 4 wk FMA-UE

(Continued)
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TABLE 1 Continued

References N Age [mean± sd or

mean (25%, 75%

quartiles)]

Time from stroke Type of interventions Intervention

time (total

session h)

Outcome

Measures

T C T C T C T C

Mihara et al. (2013) 10 10 56.1± 7.9 60.1± 8.5 146.6±

36.2(d)

123.4± 38.3(d) MI-BCI (NIRS)

-Visual Feedback

Sham- BCI 20 min/d, 3 d/wk, 2

wk (2 h)

FMA-UE, ARAT,

MAL, KVIQ-10

Pichiorri et al.

(2015)

14 14 64.1± 8.4 59.6± 12.7 2.7±

1.7(m)

2.5± 1.2(m) MI-BCI (EEG)

-Visual Feedback

MI 30 min/d, 3 d/wk, 4

wk (6 h)

FMA-UE, MAS,

MRC, NIHSS

Ramos-

Murguialday et al.

(2013)

16 14 49.3± 12.5 50.3± 12.2 66± 45(m) 71± 72(m) MI-BCI (EEG)

-Orthosis

Sham- BCI 40 min/d, 5 d/wk, 4

wk (13.4 h)

FMA-UE, MAS,

GAS

Wu et al. (2019) 14 11 62.93±

10.56

64.82±

7.22

2.11±

0.30(m)

2.00 (1.50, 3.00)(m) MI-BCI

(EEG)-Exoskeleton

Conventional

Treatment

1 h/d, 5 d/wk, 4 wk

(20 h)

FMA-UE, ARAT,

WMFT

Wang et al. (2018) 13 11 54± 9 54± 9 3.73±

3.81(y)

3.55± 2.02(y) AOT-BCI

(EEG)-Robot

Robot 3–5 sessions/wk,

5–7 wk, 20 sessions

FMA-UE

T, experimental group; C, control group; min, minutes; d, days; wk, weeks; m, months; y, years; MI, Motor Imagery; AOT, Action Observational Training; EEG, Electroencephalography; NIRS, Near-Infrared Spectroscopy; BCI, Brain Computer Interface;

MTD-VR, Motion Tracking Device-Virtual Reality; FES, Functional Electrical Stimulation; Std Arm Th, Standard Arm Therapy; FMA-UE, Fugl–Meyer Assessment Scale of Upper Extremity; MRC, Medical Research Council Scale; MAS, Modified

Ashworth Scale; MBI, Modified Barthel Index; ROM, range of motion; GAS, Goal Attainment Scale; ARAT, Action Research Arm Test; WMFT, Wolf Motor Function Test. NIHSS, National Institute of Health Stroke Scale; MAL, Motor Activity Log;

KVIQ-10, Kinesthetic and Visual Imagery Questionnaire.
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autonomy of the subjects in 10 activities, including (1) bathing

(2) personal grooming (3) feeding (4) dressing and undressing

(5) bowel, and (6) bladder continence (7) getting on/off the

toilet (8) stair climbing (9) moving from wheelchair to bed and

return (10) walking. With high reliability and stability in people

of different sexes and ages (Yang H. et al., 2021).

Statistical analyses

All statistical analysis used the RevMan 5.4.1 statistical

software (The Nordic Cochrane Center, The Cochrane

Collaboration, Copenhagen, Denmark). For the continuous

variable, FMA-UE and MBI were expressed as standardized

mean differences (SMD) and 95% confidence intervals (CIs).

If the mean change score and standardized differences (SD)

were not available, but the assessment results regarding pre-and

post-intervention were available, we transformed the pre/post-

intervention scores to a mean change score and SD following

the recommendation in the Cochrane Handbook for Systematic

Reviews of Interventions. For dichotomous variables (adverse

events and shedding), risk ratios (RR) or odds ratio (OR) and

95% CIs were used as statistical tools for efficacy analysis and

effect sizes, respectively. The effect size was quantified as large

(SMD > 0.8), medium (SMD 0.5–0.8), or small (SMD 0.2–0.5).

Heterogeneity in the intervention effect was inevitable

because of the different study designs and the I2 statistic was

used as a measure of heterogeneity indicating the percentage

of total variability in a set of effect sizes caused by true

heterogeneity (i.e., variation between studies) (Huedo-Medina

et al., 2006).Values of I2 were used at 25, 50, and 75%

to represent low, moderate, and considerable heterogeneity,

respectively. A fixed-effects model for data pooling was used

if the I2 statistic was below 50%, which meant that there was

acceptable heterogeneity across the included studies. In contrast,

the random-effects model was used if the I2 statistic was above

50% and then subgroup analysis or sensitivity analysis was

performed to determine the source of heterogeneity.

Results

Literature search and study
characteristics

A flowchart depicting the selected studies is shown in

Figure 1. We obtained 1,155 articles from the database search

and additional records, and after adjusting for duplicated

articles, the titles and abstracts of 594 publications were

screened. Of these, 54 articles were assessed for eligibility by

full-text screening, and 37 articles were excluded based on the

inclusion criteria. The remaining 17 articles were retained for

qualitative synthesis.

Table 1 shows the characteristics of the 17 studies included in

this meta-analysis with a total of 410 participants (study sample

sizes ranging from 10 to 74). Subjects included in this review

were patients with first ischemic or hemorrhagic stroke (cortical

and subcortical) confirmed by CT or MRI with a moderate-to-

severe disability. The mean age ranged from 41.6 ± 12.0 to 66.3

± 4.53. With 6 months as the cut-off point between the subacute

and chronic phases of the stroke, 11 studies were conducted on

chronic stroke patients (Mihara et al., 2013; Ramos-Murguialday

et al., 2013; Ang et al., 2014, 2015; Kim et al., 2016; Biasiucci

et al., 2018; Lin et al., 2018; Wang et al., 2018; Cheng et al.,

2020; Lee et al., 2020; Miao et al., 2020), four studies were

conducted on subacute stroke patients (Li et al., 2014; Pichiorri

et al., 2015; Wu et al., 2019; Chen et al., 2020), and 2 studies

included both chronic and subacute stroke patients (Frolov et al.,

2017; Li et al., 2022). In 16 of the 17 studies, the BMI system

relied on electroencephalography (EEG) to detect task-related

changes in SMR. Another study used near-infrared spectroscopy

FIGURE 2

Performance of each type of bias in all studies.
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FIGURE 3

Summary plot of bias in all studies.

(NIRS) to measure task-related changes in oxygen production

and deoxygenated hemoglobin levels from the sensorimotor

cortex (Mihara et al., 2013). Signals of detected motor intention

were used to trigger sensory feedback provided by external

devices [orthotics, robotics, functional electrical stimulation,

tactile knobs, auditory, visual feedback, or Motion Tracking

Device-Virtual Reality (MTD-VR)]. The duration of treatment

ranged from 2 to 8 weeks, with most studies intervening for 4

weeks and total BMI-based treatment time ranging from 2 to

27 h.

The quality assessment of the included RCTs is shown in

Figures 2, 3.

Meta-analysis of treatment e�ect

The default study event in Revman 5.4.1 software is “adverse

event”, and the default forest plot is “Favours experimental”

on the left side of the horizontal coordinate and “Favours

control” on the right side of the horizontal coordinate.“

However, our study is actually a ”favorable event“, so in

the forest plot that appears below, we changed Revman’s

default to ”Favours control“ on the left side of the horizontal

coordinate and ”Favours experimental“ on the right side of the

horizontal coordinate.

E�cacy of BMI on upper limb motor function

All included studies used FMA-UE as an outcome measure

of upper limb motor function. Seventeen studies involving

a total of 410 patients with upper limb motor impairment

after stroke evaluated the effect of BMI on FMA-UE. The

number of groups that showed improvements above minimal

clinically important difference (MCID = 5.25) was eight

and five for BMI-based training groups and control groups,

respectively. The SMD favors BMI-based training vs. control

interventions in 15 out of 17 studies. The combined intervention

effect showed that BMI-based training significantly improved

upper limb motor function [SMD = 0.75; 95% CI (0.39,

1.10); I² = 62%; p < 0.0001; random-effects model]. We

observed considerable heterogeneity (I² = 62%). The sensitivity

analysis (removing the single-study method) revealed that the

main source of heterogeneity was the study by Wu et al.

(2019) with an SMD of 3.48. After excluding this study, the

heterogeneity was reduced significantly (I2 = 38%). The results

also showed that BMI-based training significantly improved

upper limb motor function [SMD = 0.62, 95% CI (0.34,

0.90); p < 0.0001; random-effects mode; Figure 4], and the

funnel plot became symmetrical (Figure 5). According to the

GRADE, the overall level of evidence for the effect of BMI-

based training on upper limb motor function is “Moderate”

(Table 2).
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FIGURE 4

Forest plot for upper lime motor function (Exclude Wu et al.).

FIGURE 5

Funnel plot for the publication bias of upper lime motor function.

Subgroup analysis of di�erent post-stroke
times

We analyzed the effect of BMI-based training on upper

extremity function in patients at different post-stroke times

(chronic or subacute). Sixteen studies involving a total of 386

patients after stroke were included in the subgroup analysis.

For the subgroup analysis (As shown in Figure 6), the results

indicated that BMI-based training had a better effect on upper

extremity motor function in both chronic [SMD = 0.68; 95%

CI (0.32, 1.03), I2 = 46%; p = 0.0002, random-effects model]
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and subacute [SMD = 1.11; 95%CI (0.22, 1.99); I2 = 76%;

p = 0.01; random-effects model] stroke patients compared

with control interventions. In subacute stroke patients, BMI-

based training showed greater efficacy differences than control

interventions, although the difference between the two phases

was not significant (p= 0.38).

Subgroup analysis of di�erent external devices

We analyzed the effect of BMI combined with the different

external devices on upper extremity function in post-stroke

patients. We divided external devices into three categories:

robot, FES, and visual feedback (As shown in Figure 7),

the results indicated that the smallest difference between

experimental and control groups can be found for the BMI-

robot with an SMD of 0.59, whereas the major difference

between the study arms is obtained for BMI-FES subgroup with

an SMD of 1.11. Compared with control interventions, BMI

combined with FES [SMD= 1.11; 95% CI (0.67, 1.54); I2 = 11%;

p < 0.00001; random-effects model]or visual feedback [SMD =

0.66; 95% CI (0.2, 1.12); I2 = 4%; p = 0.005; random-effects

model] had a larger effect on up limb motor function recovery.

Whereas, BMI-robot did not show greater efficacy in improving

upper extremity function compared to control interventions

[SMD= 0.59; 95% CI (−0.03, 1.21); I2 = 75%; p= 0.06; random

effects model).

E�cacy of BMI on modified barthel index

Three studies involving a total of 80 post-stroke patients

evaluated the effect of BMI-based training on MBI. The results

are presented in a forest plot (Figure 8). In two of the three

studies, the improvement in MBI scores in the experimental

group exceeded the minimal clinically important difference

(MCID = 4.26). The combined intervention effect showed that

BMI-based training significantly improved ADL [SMD = 1.12;

95% CI (0.65, 1.60); I2 = 0%; p < 0.00001; random-effects

model] compared to control interventions. According to the

GRADE, the overall level of evidence for the effect of BMI-based

training on MBI is “Moderate” (Table 2).

Meta-analysis of adverse e�ects

No serious adverse effects were reported in any of the

included studies. Of the remaining four studies, three reported

slight discomforts such as mild transient seizures (Ang et al.,

2014), headache (Frolov et al., 2017), elevated blood pressure

(Frolov et al., 2017), and hypersensitivity to electrode pads (Li

et al., 2014) in subjects receiving BMI-based training, and two

studies reported slight discomforts such as hemiplegic shoulder

pain (Ang et al., 2015) and headache (Frolov et al., 2017)
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FIGURE 6

Forest plot for subgroup analysis for upper lime motor function: subacute vs. chronic phase.

in subjects receiving the control intervention. There was no

heterogeneity between studies (I2 = 0%). The results showed no

differences in adverse effects between the BMI-based approaches

group and the control group [OR = 1.41; 95% CI (0.35, 5.64); p

= 0.63; fixed-effects model. Figure 9]. According to the GRADE,

the overall level of evidence for the effect of BMI-based training

on adverse effects is “High” (Table 2).

Dropout rate

Eight studies involving a total of 220 patients with post-

stroke upper limb dysfunction evaluated the effect of BMI-

based approaches on the dropout rate. Heterogeneity of included

studies was low (I2 = 0%), and therefore a fixed-effect model

was used for meta-analysis. The results showed no statistically

significant difference between the dropout rates of the BMI-

based intervention group and the control group [RR = 1.15;

95% CI (0.59, 2.24); p = 0.68; fixed-effects model. Figure 10].

According to the GRADE, the overall level of evidence for the

effect of BMI-based training on dropout rates is “High” (Table 2).

Discussion

Various rehabilitation approaches have been proposed due

to the heterogeneity of stroke (Szelenberger et al., 2020). Here,

we conducted an updated meta-analysis of 17 studies including

410 patients to investigate the efficacy and safety of BMI-based

training on upper extremity function in stroke patients. Overall,

the results of our meta-analysis showed that BMI-based training

significantly promotes recovery of upper extremity motor

function (moderate-quality evidence) and ADL (moderate-

quality evidence) after stroke. BMI combined with FES or

visual feedback may be a better combination for functional

recovery than robots. BMI-based training was considered safe

and well-tolerated, with no serious adverse effects reported

(high-quality evidence).

Improvement of motor function through
BMI-based training

Fugl–Meyer Assessment Scale is a neurological test with

good psychometric properties, and a systematic literature review

shows that it is the most commonly used measure (Santisteban

et al., 2016). Our meta-analysis found that the immediate effect

of upper limb motor function (FMA-UE) induced by BMI-

based training showed a favorable moderate effect (SMD =

0.75), which was similar to the meta-analysis published in 2018

(SMD = 0.79) and higher than the meta-analysis published

in 2020 (SMD = 0.42) (Bai et al., 2020) AND 2022 (SMD =

0.48). Our findings clearly demonstrate that BMI-based training
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FIGURE 7

Forest plot for subgroup analysis for upper lime motor function: di�erent external devices: Robot vs. FES (functional electrical stimulation) vs.

visual feedback.

FIGURE 8

Forest plot for Modified Brathel Index.

shows greater SMD compared to widely used treatments such

as CIMT [SMD = 0.557; 95% CI (0.301, 0.813); p < 0.001]

(Etoom et al., 2016), mirror therapy [SMD = 0.51; 95% CI

(0.29, 0.73); p < 0.00001] (Zeng et al., 2018), motor imagery

[SMD = 0.36; 95% CI (0.16, 0.55); p = 0.0004] (Guerra et al.,

2017), supporting its clinical application. Furthermore, it has

comparable or significant efficacy compared to other novel

rehabilitation techniques such as robot-assisted therapy [SMD

= 0.25; 95% CI (0.11, 0.38); p = 0.000] (Wu et al., 2021), and

virtual reality-based therapy [SMD = 0.42; 95% CI (0.17, 0.67);

p = 0.00] (Jin et al., 2022). The main source of heterogeneity in

this meta-analysis was Wu et al. (2019), which investigated the

clinical efficacy of BMI-baesd training and changes in functional

brain networks.When this study was removed, the heterogeneity

was reduced to 38%, which is within an acceptable range of

heterogeneity, and the lower heterogeneity provided a higher

quality of evidence. A possible reason for the heterogeneity is

Wu et al. included in majority patients with subcortical strokes,

which leaves the cortical networks preserved which help the

interface between brain and the machine through EEG. Also,

the high frequency of the intervention in this study (5 times a

week, once a day, for 4 weeks, for a total intervention time of
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FIGURE 9

Forest plot for adverse e�ects.

FIGURE 10

Forest plot for dropout rate.

20 h), while other studies with a total of 20 h of intervention time

typically take 6 or 8 weeks to complete (Ang et al., 2014; Li et al.,

2014; Cheng et al., 2020).

The first subgroup analysis explored the impact of BMI-

based training on upper limb motor function at different stages

of stroke. Considering the impact of spontaneous recovery,

”subacute" is defined as within 1–6 months after onset (Cortes

et al., 2017), and duration longer than 6 months is considered

a chronic phase. Both chronic and subacute strokes have been

extensively investigated previously. All studies were included

in the subgroup analysis except Li et al. (2022) that did

not discuss the efficacy of the subacute and chronic phases

separately. The subgroup analyses showed that BMI-based

training significantly improved upper limb motor function in

both chronic and subacute patients, and demonstrated modest

(0.68) and large (1.11) effect sizes, respectively. This suggests

that BMI-based training can be used in different stages of stroke,

which extends the meaning of BMI in stroke rehabilitation.

In chronic and subacute patients, neuroplasticity provides

the basis for recovery of motor function after stroke. Plastic

reorganization occurs immediately after stroke and provides the

basis for recovery of motor function. By providing feedback

on the intended movement and thereby restoring the “action-

perception coupling”, BMI has already been shown to induce

neural plasticity (Ushiba, 2019). Neuroplasticity changes are

mainly reflected in changes in functional connectivity and

structure of the brain. In the included studies, most of them used

EEG and/or MRI to explore the possible neural mechanisms.

The mechanisms were divided into the following categories:

cortical activation (M1, contralateral cingulate motor areas,

supplementary motor areas, premotor cortex, sensorimotor

cortex, parietal lobe, frontal lobe, ipsilateral cerebellum) (Mihara

et al., 2013; Ramos-Murguialday et al., 2013; Li et al., 2014;

Biasiucci et al., 2018; Wang et al., 2018; Chen et al., 2020; Cheng

et al., 2020; Lee et al., 2020), enhanced functional connectivity

(Biasiucci et al., 2018) (ipsilesional motor areas) (Biasiucci

et al., 2018; Wu et al., 2019), and enhanced structural plasticity

(corticospinal tract projections, motor pathways) (Biasiucci

et al., 2018). A study using near-infrared functional brain

imaging also demonstrated that feedback training can alter the

excitability of M1 areas (Mihara et al., 2013). In addition, some

electrophysiological changes may reflect possible mechanisms

of BMI-based training: enhanced SMR desynchronization in

sensorimotor cortex and motor areas, enhanced activity in EEG
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α, β, and µ bands, and movement of event-related potentials

toward sensorimotor cortex.

The second subgroup analysis showed that BMI combined

with FES or visual feedback was effective in improving

hemiplegic upper limb motor function, with FES being more

effective. FES is based on the principle that one can artificially

compensate for the loss of voluntary motor control by

stimulating the paralyzed muscles of the affected limb. The

possible mechanism could be explained by the specific role of

FES in somatosensory stimulation. Previous studies in healthy

individuals support the idea that neural activation in primary

sensorimotor areas during motor tasks increases after receiving

somatosensory stimuli (Wu et al., 2005). A second possible

explanation is that the FES is applied in a bottom-up manner:

inducing plasticity in the brain by association with peripheral

stimuli. By connecting the FES to the BMI system, muscle

contractions become a direct result of the user’s intention,

turning it into a coupled top-down/bottom-up cycle that can

induce brain plasticity more effectively. However, there was

no significant difference in the improvement of upper limb

motor function between the BMI combined robot and control

interventions. The possible reason for this is that there are large

differences between studies, for example, although studies have

used robots as feedback devices, there are differences between

robots, with Ang et al. using the Manus robot, Cheng et al. using

the soft robot, and Wu et al. using the exoskeleton. In addition,

differences in intervention protocols between studies may also

be a reason, with daily intervention time ranging from 0.5 to

1.5 h and total intervention time ranging from 5 to 27 h.

Improvement of activities of daily living
through BMI-based training

MBI is a five-level scale capable of detecting subtle changes

in ADL in stroke patients, with excellent test-retest reliability

and relatively low random measurement error (Wang et al.,

2022; Yang et al., 2022). We reviewed the characteristics of

the subjects included in the meta-analysis, who were in the

subacute and chronic phases of stroke with moderate-to-severe

levels of dysfunction, for which the MBI scale was appropriate.

The findings support that BMI-based interventions can be more

effective in improving ADL in stroke patients. However, there

are still limitations in the number of studies and the small

sample size. It is worth noting that the motor tasks used in most

studies were only distal upper extremity grasping and rotation,

etc. Using ADL as a motor task in the BMI paradigm may

be a good therapeutic option for improving ADL ability (Kim

et al., 2016; Cheng et al., 2020; Lee et al., 2020). In conclusion,

more research is needed to provide evidence for the effects of

BMI-based training on ADL.

Adverse e�ects and shedding

In terms of treatment safety, all studies supported that the

BMI-based intervention was relatively safe, with no serious

adverse effects. Only three studies reportedminor adverse effects

that were reversed after treatment. Fatigue is one of the most

common symptoms of post-stroke (Alghamdi et al., 2021). Most

of the studies included in themeta-analysis had 30-min or longer

interventions, and patients needed to maintain their attention

during training, which tended to induce fatigue. Frolov et al.

(2017) found that a proportion of subjects reported attention-

related fatigue after about 20–30min of training. Therefore,

future studies should consider adding sufficient rest Periods

(∼15min after the start of training) to alleviate fatigue and

potentially improve the effectiveness of the intervention.

In terms of treatment acceptability, the results of this

study suggest that BMI-based training was well-tolerated. In

all studies, no one declined the BMI intervention due to

dissatisfaction. Of the six studies (Ang et al., 2014; Li et al., 2014;

Pichiorri et al., 2015; Kim et al., 2016; Frolov et al., 2017; Lee

et al., 2020) that reported dropout events, the reasons can be

summarized in the following categories: occurrence of adverse

events, early discharge or transfer, and refusal of intervention

(personal reasons).

In summary, BMI-based interventions are safe and well-

tolerated. (Ang et al., 2014, 2015; Biasiucci et al., 2018; Chen

et al., 2020; Cheng et al., 2020).

Limitations

Several limitations should be considered when interpreting

the results of the current study. First, the small sample sizes

of most of the included studies may limit the statistical

power to detect the effects of BMI-based training on upper

extremity function in patients with post-stroke upper extremity

dysfunction. Second, fewer studies were available to analyze the

effect of BMI-based training on patients performing activities

of daily living, and a larger sample and higher quality evidence

of BMI-based training is still needed. Third, our paper only

performed subgroup analyses of different stages of stroke and

combined with external devices, but there was heterogeneity in

the results of some subgroup analyses. The efficacy of BMI-based

training may also be influenced by other parameters, such as the

protocol of the intervention and the severity of the stroke.

Conclusion

Our analysis showed that BMI-based training improved

upper limb motor function and ADL in post-stroke patients,

where the combination of BMI and FES or visual feedback

showed better efficacy in improving upper limb motor function.

Existing studies suggest that the mechanism of BMI is mainly
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related to activation of the cerebral cortex, improvement of

functional connectivity, and structural integrity of the brain.

Future studies with larger samples are still needed to provide

evidence for the efficacy of BMI-based training in ADL and

other areas.
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