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Abstract

Fractals are self-similar patterns that repeat at different scales, the complexity of which are 

expressed as a fractional Euclidean dimension D between 0 (a point) and 2 (a filled plane). The 

drip paintings of American painter Jackson Pollock (JP) are fractal in nature, and Pollock’s most 

illustrious works are of the high-D (~1.7) category. This would imply that people prefer more 

complex fractal patterns, but some research has instead suggested people prefer lower-D fractals. 

Furthermore, research has suggested that parietal and frontal brain activity tracks the complexity 

of fractal patterns, but previous research has artificially binned fractals depending on fractal 

dimension, rather than treating fractal dimension as a parametrically varying value. We used white 

layers extracted from JP artwork as stimuli, and constructed statistically matched 2-dimensional 

random Cantor sets as control stimuli. We recorded the electroencephalogram (EEG) while 

participants viewed the JP and matched random Cantor fractal patterns. Participants then rated 

their subjective preference for each pattern. We used a single-trial analysis to construct within-

subject models relating subjective preference to fractal dimension D, as well as relating D and 

subjective preference to single-trial EEG power spectra. Results indicated that participants 

preferred higher-D images for both JP and Cantor stimuli. Power spectral analysis showed that, for 

artistic fractal images, parietal alpha and beta power parametrically tracked complexity of fractal 

patterns, while for matched mathematical fractals, parietal power tracked complexity of patterns 

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
*Corresponding author. erawls89@gmail.com (E. Rawls).
Credit author contributions statement
ER: conceptualization, data curation, formal analysis, investigation, methodology, software, visualization, writing: original draft, 
writing: review and editing. RW: conceptualization, data curation, investigation, methodology, writing: original draft, writing: review 
and editing. SK: writing: review and editing. CES: software, writing: review and editing. DLZ: project administration, resources, 
supervision, writing: review and editing.

Data and code availability statement
Data are available from the corresponding author on reasonable request.

Declaration of competing interest
None

Supplementary materials
Supplementary material associated with this article can be found, in the online version, at doi: 10.1016/j.neuroimage.2021.118092.

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2021 August 01.

Published in final edited form as:
Neuroimage. 2021 August 01; 236: 118092. doi:10.1016/j.neuroimage.2021.118092.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://creativecommons.org/licenses/by/4.0/


over a range of frequencies, but most prominently in alpha band. Furthermore, parietal alpha 

power parametrically tracked aesthetic preference for both artistic and matched Cantor patterns. 

Overall, our results suggest that perception of complexity for artistic and computer-generated 

fractal images is reflected in parietal-occipital alpha and beta activity, and neural substrates of 

preference for complex stimuli are reflected in parietal alpha band activity.
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1. Introduction

Fractals are self-similar patterns that repeat at different scales (Falconer, 2014; Mandelbrot, 

1982). Mandelbrot, who was the first to characterize fractals, famously wrote: “Clouds are 

not spheres, mountains are not cones, coastlines are not circles, and bark is not smooth, nor 

does lightning travel in a straight line” (Mandelbrot, 1982). As alluded by this quote, fractals 

are prevalent in nature, ranging from sea anemones, to galaxies, to the structure of our DNA. 

Unlike conventional psychophysics and perception stimuli, fractals are non-Euclidian and 

structurally complex, with each of the parts being similar to the whole. This allows for 

insight into configural (as opposed to featural) processes such as natural scene perception 

(Zahedi & Zeil, 2018), spatial navigation (Juliani et al., 2016), Gestalt grouping principles 

(Farkas & Hajnal, 2013), and object recognition in computer vision and machine learning 

algorithms (Domenech et al., 2020; Tan & Yan, 1999, 2000; Wang et al., 2016) and in 

humans (Bies et al., 2016; Taylor et al., 2017). Fractals hold potential for such areas of 

research because their qualities (e.g. symmetry and proximity) yield the classic Gestalt 

principle of “figural goodness” (i.e. the degree to which a pattern can be organized into a 

coherent object). The geometric complexity of fractal patterns can be quantified by their 

dimension D, which falls between Euclidean dimensions. For images, the D parameter 

ranges between D = 1 (a line) and D = 2 (a filled plane). Dimensions closer to 2 indicate a 

higher degree of complexity, and generally cover a larger percentage of the plane (e.g., as 

pattern repetitions occur to a non-fractal line of D = 1, the D value moves closer to 2, and the 

line will occupy more space). However, it is possible for some 2D fractal images to have D < 

1, when the patterns are sparse enough to constitute a point rather than a line (non-

continuous or “dust” fractals) (Falconer, 2014). Given the controllability of complexity in 

fractal patterns and their relation to more general theories, fractals are particularly useful 

stimuli for research on human perception and aesthetic preference.

In the early 1940s, the abstract artist Jackson Pollock began creating his infamous splatter 

paintings by using a paintbrush to drip and fling paint onto long rectangles of yachting 

canvas. An analysis of Pollock’s splatter paintings confirmed that they have fractal 

characteristics (Taylor et al., 1999). Pollock’s technique evolved over time, consisting of a 

“preliminary phase” that yielded low-D fractal images (e.g. Untitled, 1945. D = 1.10), a 

“transitional phase” wherein resulting dimensions increased (e.g. Number 14, 1948, D = 

1.45), and a “classic” period, where he mastered the technique and the D values of his works 

lingered around 1.7 (Taylor et al., 2002). During the classic period, he also painted Untitled 
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(1950), where the complexity of his works peaked at D = 1.89. However, he quickly erased 

this design (which was painted on glass) and his following paintings scaled back again to D 

= 1.7. This suggests that he desired to generate fractal patterns with D ~ 1.7, spending nearly 

10 years approaching, passing, then returning to this dimension (Taylor et al., 2007). There 

is some evidence that people aesthetically prefer fractals within the D range of 1.3 – 1.5 (as 

opposed to outside of this range) (Taylor et al., 2011; Viengkham & Spehar, 2018) [although 

see (Bies, Blanc-Goldhammer, et al., 2016)]. This would suggest that earlier works by 

Pollock, prior to his classic period, should have greater visual appeal. However, the paintings 

from his classic period remain as the most illustrious, suggesting that higher-D fractals 

might capture attention more efficiently than lower-D fractals. Taylor and colleagues (2011) 

speculate that Pollock found the “visually restful” mid-D range to be too simple and bland, 

and that he desired to keep his audience engaged with visually complex pieces.

Noninvasive neuroscience methods are a promising avenue to understand human perceptual 

and aesthetic responses to fractal patterns such as Pollock’s art. In particular, 

electroencephalography (EEG) is a powerful technique that yields precise timing of rhythms 

underlying cognitive processing. EEG is composed of activity that can be divided into delta 

(~1–3 Hz), theta (~4–8 Hz), alpha (~9–14 Hz), beta (~15–30 Hz) and gamma (~31 + Hz). 

Activity in different frequency bands supports stimulus coding, attention, and 

communication across neural ensembles (Lopes da Silva, 2013). Delta oscillations are 

related to motor demands in cognitive tasks (Harmony, 2013; Huster et al., 2013; Rawls et 

al., 2020; Stefanics et al., 2010) and to delivery of reinforcement-related outcomes (Bernat et 

al., 2015; Cavanagh, 2015; Rawls & Lamm, 2021), while theta oscillations are more 

generally related to the need for cognitive control (Cavanagh & Frank, 2014; Cohen & 

Cavanagh, 2011; Cooper et al., 2015; Nigbur et al., 2011). Alpha-frequency EEG broadly 

relates to internally-focused attention (Benedek et al., 2014; Knyazev et al., 2011; Ray & 

Cole, 1985), and has a role in creative experience (Stevens & Zabelina, 2019). Beta-

frequency EEG is associated with sensorimotor brain activity including vision (Aissani et 

al., 2014; Battaglini et al., 2020; Gola et al., 2013; Piantoni et al., 2010) and motor output 

(Fischer et al., 2018; Schaller et al., 2017; Zaepffel et al., 2013). Finally, gamma oscillations 

are a marker of local neural ensemble synchronization, and might serve to bind together the 

features of a stimulus (Fries, 2009; Fries et al., 2007) – unfortunately, gamma and higher 

frequencies have low signal-to-noise ratio in noninvasive human EEG and are difficult to 

detect without optimized equipment (Cohen, 2014; Muthukumaraswamy & Singh, 2013).

Based on the aforementioned results, we might expect a role for beta frequencies in visual 

perception of fractal complexity and we might expect a role of alpha band activity in 

attention, evaluation, and aesthetic responses to fractal imagery. Only a few previous studies 

have used EEG to examine human brain activity during appraisal of fractal stimuli. 

Hagerhall and colleagues (Hagerhall et al., 2015) found that viewing mid-D statistical 

fractals (as opposed to exact fractals of the same dimension) produced the most alpha EEG 

activity. Hagerhall and colleagues (Hagerhall et al., 2008) found that fractal patterns of D = 

1.3 produced the highest alpha and delta response in the frontal region, while con-currently 

producing the highest beta response in the parietal region. Several other studies have 

examined neural responses to fractal stimuli using fMRI (Isherwood et al., 2017; Rieger et 
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al., 2013); however, fMRI techniques are unable to capture the fine temporal scale of 

perceptual brain processing due to the sluggish nature of the BOLD response.

In the present study, we recorded EEG while participants viewed and provided subjective 

ratings to statistically controlled artistic fractals (binarized Jackson Pollock images) and 

computer-generated fractals (random Cantor sets) with fractal dimension ranging 

parametrically from D = 1.10 to 1.89. We used a whole-scalp, single-trial modeling 

approach to examine brain activity that tracked the complexity of, and preference for, 

patterns within single subjects. Based on the illustriousness of Jackson Pollock’s high-D 

paintings, we hypothesized that participants would prefer artistic fractals with higher D to 

those with lower D. We predicted that alpha and beta activity over occipital and parietal 

cortex would track the complexity of fractal patterns, and that preference for fractal patterns 

would be reflected in alpha activity in frontal and parietal areas.

2. Methods

2.1. Participants

Fifty-one students at the University of Arkansas completed the pattern viewing study after 

providing informed consent (IRB #1902179495). Students were compensated for study 

completion with course credit in introductory psychology classes. Six participants were 

excluded due to data acquisition issues, and one additional participant was excluded for 

noncompliance (they gave the same subjective rating to every image), leaving forty-four 

participants for all analyses. See Table 1 for self-reported gender, age, and race 

demographics of the sample; included and excluded samples did not differ in gender, age, or 

race (all p >.2).

2.2. Stimuli and task

Participants completed a pattern viewing and subjective rating task while scalp EEG was 

recorded. During the viewing task, 90 binary JP images were presented, interspersed with 90 

random Cantor fractals. All fractal stimuli subtended approximately 11° × 11° of visual 

angle. Subjects viewed each of 180 patterns for 4 seconds each, then rated each image based 

on personal preference for the pattern using keyboard keys 1 (dislike) to 9 (like). A fixation 

cross lasting between 2 and 3 seconds (jittered) was presented between each stimulus 

(patterns and rating screens). The fractal viewing and rating task required approximately 45 

minutes to complete.

Each pattern was a two-dimensional fractal pattern stimulus that was either derived from a 

binarized layer of a Jackson Pollock (JP) drip painting or developed algorithmically as a 

two-dimensional random Cantor set. White layers of drip paintings were provided by Taylor, 

R.P. as used in (Taylor et al., 2007, 2011). The full process of extracting these fractal layers 

from scans of the artwork is beyond the scope of the article, as it is not our own original 

work; we refer the reader to (Taylor et al., 2007, 2011) for an in-depth description of the 

layer extraction process. Briefly, each art piece consists of multiple different colored layers. 

Separation of each differently colored layer was performed by identifying the RGB range for 

that layer and filtering the scanned artwork accordingly, then binarizing the resulting filtered 
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image. This procedure resulted in several layers from each piece of art, each with their own 

respective fractal dimension. As described in (Taylor et al., 2007), these layers together span 

a wide range of fractal dimensions between 1 and 2, and as such are well-suited for use as 

stimuli in a parametric design as employed here. Random Cantor sets were generated as a 

set of 1s that were divided into subsets, and each subset multiplied by 0 with probability p. 

Thus, this produces a binary “dust” pattern with white features and black “holes” in the dust. 

The fractal dimension of the resulting pattern can be controlled by changing the probability 

value p. Fractal dimensions of the images were calculated using the drip dimension (DD) 

statistic as described in Taylor and colleagues (2011), therefore accurately characterizing 

low-dimensional fractality resulting from drip layers in Jackson Pollock paintings. This 

method computes the common box-counting dimension across a range of box sizes for each 

image, and determines a local minimum of the log-log slope of the resulting box size × 

dimension function, with calculated DD ranging from 1.10 – 1.89. See Fig. 1 for a diagram 

of the pattern viewing task, fractal image statistics, and examples of the stimuli used for the 

current study.

2.3. EEG recording and processing

Continuous EEG data were recorded using a Biosemi ActiveTwo system (Biosemi B.V., 

Amsterdam, The Netherlands). Sixty-four sensors were mounted in an elastic cap, 

positioned according to the International 10/20 system. Vertical eye movements were 

recorded from two channels placed immediately beneath each eye (VEOG), and horizontal 

eye movements were recorded from two channels placed at the outer canthi of the eyes 

(HEOG). Unlike most other EEG systems, the Biosemi system measures the reference-free 

voltage between each sensor and a common sense mode (CMS) sensor, and all referencing is 

accomplished offline.

Continuous data were imported into Matlab and processed using EEGLAB 14 (Delorme & 

Makeig, 2004). Data were rereferenced to linked mastoids, low-pass filtered at 35 Hz 

(transition band: 30.625 – 39.375 Hz; chosen to avoid filtering out any activity below 30 Hz) 

using a zero-phase FIR filter, downsampled to 125 Hz with anti-aliasing, and high-pass 

filtered at .6 Hz (transition band: .3 − .9 Hz; chosen to avoid filtering out any activity above 

1 Hz) using a zero-phase FIR filter. Bad channels were detected and removed using 

EEGLAB functions; channels were removed if the joint probability of the channel given the 

observed data was more than 3 standard deviations from the expected probability. Bad 

channels were not interpolated before running Independent Component Analysis (ICA). 

Data were epoched into 5 second trials surrounding pattern presentation (−1 second before 

to 4 seconds after). Infomax ICA (Makeig et al., 1996) was computed on the epoched data.

As our study included a long stimulus viewing time, and participants were encouraged to 

thoroughly inspect each stimulus, we used strict criteria to ensure cleaning of ocular artifacts 

from our data. This was accomplished using several procedures, including the use of 

ADJUST to detect ocular artifacts with four different measures: 1) spatial average distances, 

2) spatial variance differences, 3) maximum epoch variances, and 4) spatial eye differences, 

measures which were found in Mognon et al. (2011) to have high levels of effectiveness for 

removal of ocular artifacts from the EEG. We applied additional criteria in SASICA to 
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optimize detection of ocular artifact, via correlation of component timecourse with H/VEOG 

channel timecourses. As our recording setup used two vertical and two horizontal EOG 

sensors, SASICA automatically used the differences of H/VEOG channels to increase the 

signal-to-noise ratio for detection of saccade components in the EEG. The application of 

SASICA and ADJUST together was shown in (Chaumon et al., 2015) to detect nearly 100% 

of saccades in each training dataset, and as such is currently considered state-of-the-art in 

detection and rejection of eye movement components in the EEG. Additionally, since 

muscular artifact can appear as higher-frequency EEG activity (Muthukumaraswamy, 2013), 

we detected ICA components with low temporal autocorrelation and removed them, as this 

has been shown to be particularly sensitive for detection of muscular artifact in the EEG. 

Detected artifactual components were removed. Data were then epoched into 4-second non-

overlapping windows surrounding presentation of each pattern (0 seconds before to 4 

seconds after). The epoch mean was removed from individual epochs, and remaining 

artifacts were detected as epochs containing voltage values +− 125 microvolts. Finally, 

channels that were previously removed were spherically interpolated.

2.4. EEG power spectral analysis

EEG were analyzed using power spectral analysis. One-sided single-trial power spectra were 

calculated using Welch’s method (MATLAB pwelch() function). We used default window 

and overlap parameters (8 segments with 50% overlap), and a 250-point discrete Fourier 

transform (providing frequency resolution of 0.5 Hz). Data were converted to power spectral 

density (PSD) using a decibel transform (10log10(data)), and frequencies from 1 to 30 Hz 

(in 0.5 Hz steps) were returned for further analysis. All PSD analyses were conducted on the 

resulting within-subject channel × frequency × trial matrix of PSD values.

2.5. Single-trial analysis of behavior and brain responses to fractal patterns

As EEG data frequently exhibit departures from normality, in particular at the single-trial 

level (Cohen, 2014), and since our rating data were rank-ordered, we used non-parametric 

Spearman correlations for our single-trial analyses of ratings and EEG-PSD. While previous 

single-trial analyses have generally used Spearman correlations, it is possible that the 

relationship between fractal dimension and preference might be nonmonotonic, and thus not 

adequately captured by Spearman correlations. However, in all cases we found that 

Spearman correlations provided a better description of the data than a quadratic regression 

(S1). Group-level significance of within-subject single-trial Spearman correlations was 

analyzed by applying t-tests (with multiple comparison correction, in the case of PSD data).

Behavioral analysis was conducted within single subjects to assess whether individual 

preferences were related to pattern fractal dimension. Within each subject, we calculated 

Spearman correlations between the fractal dimension of the image and the rating of 

preference the subject assigned to the image. This was done separately for the JP and Cantor 

image stimuli. We then tested the between-subject significance of these correlations (after 

normalization via Fisher’s z-transform) using two one-sample t-tests. We also compared 

within-subject correlations between fractal dimension and preference using a paired-sample 

t-test. Finally, given previous reports that there might exist subgroups of individuals with 

different fractal dimension-aesthetic preference relationships (Bies, Blanc-Goldhammer, et 
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al., 2016; Spehar et al., 2016; Street et al., 2016), we tested for this possibility by clustering 

individuals on the basis of within-subject correlations between fractal dimension and rating 

(two observations per subject). Note that we clustered on within-subject correlations because 

our sample size could not support clustering directly on ratings for stimuli of different fractal 

dimensions (180 total observations) (Dolnicar et al., 2014). For this analysis we fit Gaussian 

mixture models (GMMs; latent profile analysis) for one and two components to the 

dimension-preference correlation data. The best-fitting model was selected using the 

Bayesian Information Criteria (BIC) (Schwarz, 1978).

Single-trial analyses of power spectral density (PSD) EEG were also conducted within 

individual subjects. For each point (sensor × frequency), Spearman correlations were 

computed across trials between single-trial EEG power spectra and fractal dimension. To 

facilitate condition comparisons, correlations were run separately for JP and Cantor images. 

This resulted in four sets of Spearman correlations for each participant (JP dimension, JP 

rating, Cantor dimension, Cantor rating), which were normalized via Fisher’s z-transform 

prior to mass univariate significance testing. Significance of single-trial correlations was 

assessed by using permutation-based cluster corrected (Maris & Oostenveld, 2007) one-

sample t-tests against a null hypothesis of zero correlation, in order to obtain sets of 

contiguous data points that responded to parametric variations in complexity and rating of 

fractal images. As an inherent subjective choice in the use of cluster correction is the alpha 

level at which neighboring points are set to join as a cluster (Maris & Oostenveld, 2007), we 

used the implementation of threshold-free cluster enhancement (TFCE) described in 

(Mensen & Khatami, 2013) with 5000 permutations to obtain clusters of significance 

without any subjective selection of cluster joining threshold. We used this same method to 

compare single-trial fractal dimension and rating correlation maps obtained for JP and 

Cantor images using paired-samples t-tests. Additionally, since TFCE provides a test value 

for each point (unlike more traditional testing), we calculated effect sizes for between-

subject EEG-PSD significance tests (Cohen’s d).

3. Results

3.1. Image statistics

A Wilcoxon rank-sum test indicated that fractal dimensions did not significantly differ 

between JP and Cantor images, z = −0.95, p = .34, confirming that our comparison images 

were properly matched in their fractal dimensions. To rule out other potential low-level 

confounds in our results, for each image we also calculated a summary statistic describing 

the distribution of energy across spatial frequencies according to (Eskicioglu & Fisher, 

1995). We confirmed that within each type of image, distribution of spatial frequencies was 

uncorrelated with fractal dimension (JP images: p = .22, Cantor images: p = .12). As all of 

our primary analyses used the fractal dimension of each image as the primary variable of 

interest, this confirms that our results cannot be explained by a systematic relationship of 

spatial frequency with fractal dimension. We note that all images were also implicitly 

controlled for contrast, Michelson contrast (Michelson, 1927) = 1 for all images, since all 

images were black-and-white.
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3.2. Single-trial behavioral results

Results of single-trial Spearman correlations indicated that for both JP and Cantor images, 

most subjects rated higher fractal dimension images more favorably than lower fractal 

dimension images (Fig. 2), and correlations were significantly non-zero and positive for both 

JP and Random Cantor images (both p < .001). See Fig. 2 for a summary of the single-trial 

relationships between fractal dimension and preference ratings, including within-subject 

correlation values and group-level t-tests for significance. Across subjects, the fractal 

dimension-rating correlation was stronger for Cantor images, compared to JP images (p 
= .007). We also calculated a Spearman correlation between the (within-subject) correlation 

coefficients for each type of image. This result indicated that across subjects, within-subject 

correlations between fractal dimension and rating were positively correlated (Spearman’s 

rho = .47, p = .001); as such, subjects that preferred high-D JP images also tended to prefer 

high-D Cantor images. Latent profile analysis indicated that a one-component model 

provided the best fit to our data (S1), and as such we proceed in the remainder of our 

analysis without dividing participants into subgroups.

3.3. Single-trial EEG correlates of fractal dimension perception

Single-trial power spectral analysis of EEG was used to examine frequency-specific 

representations of fractal dimension for both JP and random Cantor images. For JP images, 

increasing fractal dimension correlated with decreased alpha power predominately over left 

occipital and parietal sensors (maximal at sensor O1, 14 Hz, t(43) = −5.41, TFCE-corrected 

p = .001), an effect that was associated with a large effect size (Cohen’s d = 0.82). 

Increasing fractal dimension of JP images also correlated with decreased beta power, 

predominately over occipital and parietal sensors (maximal at sensor P8, 21 Hz, t(43) = 

−5.15, TFCE-corrected p = .004), an effect that was associated with a medium-large effect 

size (Cohen’s d = 0.77).

For random Cantor images, we found a broadband decrease in spectral power with 

increasing fractal dimension. This effect was present in delta, theta, alpha, and beta 

frequency ranges, and was most prominent over parietal-occipital sensors for all frequencies. 

Delta effects were maximal at sensor POz (3 Hz, t(43) = −3.43, TFCE-corrected p = .017), 

and were associated with a medium effect size (Cohen’s d = 0.52). Theta effects were most 

prominent at sensor P8 (7 Hz, t(43) = −3.91, TFCE-corrected p = .003), and were associated 

with a medium effect size (Cohen’s d = 0.59). Alpha effects were maximal over sensor O2 

(13.5 Hz, t(43) = −6.18, TFCE-corrected p < .001), and were associated with a large effect 

size (Cohen’s d = 0.94). Beta effects were most prominent over sensor P3 (18 Hz, t(43) = 

−4.81, TFCE-corrected p = .003), and were associated with a medium-large effect size 

(Cohen’s d = 0.72). Single-trial PSD-fractal dimension correlations did not significantly 

differ for JP and Cantor images, all p > .1. See Fig. 3 for a summary of PSD-fractal 

dimension correlations, and see Fig. 5 for a summary of effect sizes.

3.4. Single-trial power spectral correlates of fractal image preference

Single-trial EEG power spectral analysis was used to probe frequency-specific 

representations of aesthetic preference for both JP and random Cantor images. For JP 

images, only power at alpha frequencies correlated significantly with preference for fractal 
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patterns. This effect was maximal over sensor P3 at 13 Hz (t(43) = −4.13, TFCE-corrected p 
= .036), and was associated with a medium effect size (Cohen’s d = 0.62). For random 

Cantor images, alpha frequencies correlated with preference ratings over a cluster of parietal 

channels (maximal at sensor O2, 13.5 Hz, t(43) = −5.15, TFCE-corrected p = .006), an effect 

that was associated with a medium-large effect size (Cohen’s d = 0.78). Beta frequencies 

correlated with preference ratings over a cluster of frontal channels (maximal at sensor Fz, 

16.5 Hz, t(43) = −3.59, TFCE-corrected p = .023), an effect that was associated with a 

medium effect size (Cohen’s d = 0.55). Single-trial PSD-preference correlations did not 

significantly differ for JP and Cantor images, all p > .1. See Fig. 4 for a summary of PSD-

preference correlations, and see Fig. 5 for a summary of effect sizes.

4. Discussion

In the present study, we sought to understand electrophysiological brain activity in response 

to artistic and mathematical fractal patterns. Participants were presented with either artistic 

fractals (Jackson Pollock [JP] white layers) or statistically matched random Cantor fractals, 

while recording electrical activity with EEG. After presentation of each image, participants 

were asked to rate each image in terms of personal preference. Behavioral results indicated 

that subjects preferred higher fractal dimension (D) stimuli to lower D stimuli, for both JP 

fractals and matched random Cantor sets, and whole-scalp EEG analysis revealed that 

occipital-parietal alpha and beta activity was modulated by fractal complexity of the 

patterns, with power decreasing as complexity increased. Furthermore, we found that 

parietal alpha power parametrically tracked personal preference for JP images and for 

random Cantor sets, with decreased parietal alpha power predicting increased subjective 

preference. The recovered average Spearman correlations using EEG-PSD have maximal 

magnitudes of ~0.08–0.10, which are generally in line with those reported in similar single-

trial correlation analyses (Cavanagh, 2015; Rawls & Lamm, 2021), and the effects were 

found to be highly reliable and associated with medium-to-high effect sizes (Cohen’s d for 

one-sample t-tests). As such, we present evidence that fractal complexity and preference are 

coded parametrically by EEG power spectra during pattern viewing.

4.1. Subjective preference of fractals

As D value increased, preference ratings increased. This correlation was greater for the 

random Cantor sets, but was significant and positive for the JP images as well. Patterns of 

within-subject correlations between fractal dimension and preference were themselves 

correlated, indicating that subjects who preferred high-D JP stimuli also preferred high-D 

Cantor stimuli. This result is interesting, as there is disagreement in the literature as to 

whether participants prefer high-dimension fractals or mid-dimension fractals. For example, 

one study found no relationship between fractal dimension and subjective preference when 

participants viewed fractal landscapes, but once images of water or hills were removed from 

the set there was a striking positive correlation between complexity and preference 

(Hagerhall et al., 2004) (although note that these images only covered the range from D = 

1.1–1.5, and it is thus unclear whether this result can be extrapolated to higher frequency 

ranges). As none of our image sets included water or hills, it is possible that this debate 

hinges largely on the content of the images being viewed rather than a strict preference for 
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certain fractal dimensions. Other studies have shown that ratings of exact fractals increased 

monotonically with higher D (Bies, Blanc-Goldhammer, et al., 2016). This study also found 

that a small number of participants preferred low-D fractal patterns. We also found that 

overall, participants preferred higher-D fractal patterns, while a small portion of participants 

instead preferred lower-D patterns. While latent profile analysis did not support the 

existence of subgroups (S1), it is possible that a larger sample would allow for the separation 

of a low-D preferring subgroup.

A limitation of our analysis of preference for fractal patterns is that the single-trial 

framework only allowed us to make conclusions about the presence or absence of monotonic 

relationships in the data. Future analyses might extend the single trial framework to include 

analysis of nonlinear within-subject relationships, which would allow for detection of 

nonlinear relationships such as preference for mid-range fractals compared to low- or high-D 

fractals. This analysis could presumably be done using nonlinear within-subject regression, 

although to our knowledge this procedure has never been applied to EEG data. We do, 

however, note that we compared the fit of a quadratic regression to the fit of Spearman 

correlations for the preference data, and we found that Spearman correlations describe the 

fractal dimension – preference relationship more accurately. Future methodological 

improvements might fit more detailed within-subject models to assess preference for fractal 

patterns. There is also an open question regarding the best method for assessing subjective 

preference of viewed images. Our rating scheme used a Likert-type scale, which is one of 

the most preferred methods for assessing preference, while some studies instead used two-

alternative forced-choice ranking. This difference might explain some of the discrepancies 

between our results and prior analyses. However, for the wide variety of fractal dimensions 

we assessed, a two-alternative forced-choice task would have required an impossible number 

of trials, so studies using two-alternative forced-choice procedures would have to either be 

inordinately long or use a much smaller variety of stimuli than our study used.

4.2. Single-trial eeg results

We found that alpha and beta power were negatively modulated in parietal regions with 

respect to increasing fractal complexity for both image types (artistic or mathematical), 

suggesting a shared mechanism for visually processing details of an image. Intriguingly, this 

activity occurred over similar frequencies for both Cantor and JP stimuli; that is, for both 

stimulus types, alpha and beta PSD correlated negatively with fractal dimension. This 

suggests that overall, higher-complexity imagery is associated with decreased parietal alpha 

and beta power, in line with evidence that alpha activity might be suppressed during periods 

of higher attention. Simulations suggest that gamma activity emerges in the context of local 

excitatory/inhibitory interactions, while beta activity subserves longer-range neuronal 

communication (Kopell et al., 2000). Aissani and colleagues (2014) proposed that the beta 

activity could code for mid-level processes in the visual hierarchy (e.g. depth ordering, 

computation of border ownership, contour completion, and filling in surfaces), and deep 

cortical layers that receive feedback from distant regions frequently produce more beta 

activity (Donner & Siegel, 2011).
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Our finding that higher D values resulted in less beta power is in line with the evidence 

showing that beta power is indicative of long range communication between populations of 

neurons, because the intricate detail of these images likely relies on more local, short range 

neural communication (e.g. line/edge detectors), while the less complex images allow for 

higher-level interpretations of aspects like depth ordering and contour completion. These 

results are also broadly in line with those presented in (Hagerhall et al., 2008), whose 

authors indicated that low-D fractal patterns produced lower alpha and beta power in 

compared to high-D fractal patterns. However, our results are not strictly comparable to 

those in (Hagerhall et al., 2008), due to differences in the manner of EEG frequency analysis 

and the parametric design and analysis employed in the current manuscript.

Beta synchronization also modulates other perceptual processes, such as perceptual switches 

in binocular rivalry, with low beta synchronization correlating with holding a consistent 

perceptual state, while a significant increase in beta power occurs during perceptual switches 

(i.e. while integrating a new percept) (Piantoni et al., 2010). The higher beta power at lower 

D values could be attributable to the ambiguity of the image, as the observer actively 

explores possible interpretations of bistable contours in the object recognition process, given 

that low to mid D values induce object pareidolias at a higher rate than more complex D 

values (Bies et al., 2016). Conversely, low alpha and beta at high D values may reflect active 

visual processing, as well as the inherent perceptual stability of an image that contains 

intricate details too complex to give rise to multiple interpretations. Future research will 

examine our interpretation of the role of cortical alpha and beta modulations in reports of 

object pareidolia; if this interpretation is correct, it is expected that fractals generating lower 

parietal alpha and beta power will also result in fewer reported pareidolias.

Though the discovered parametric relationship between alpha/beta power and fractal 

complexity is intriguing, an important limitation should be noted. The complexity level of 

the stimuli used in the present study is correlated with the number of black pixels in the 

image. Given that brightness may affect parietal and occipital activity (Eroğlu et al., 2020), 

further neuroscience research with stimuli that can be modulated to control for overall 

luminance is needed.

4.3. Brain-behavior relationships: Neural correlates of subjective preference

Using our single-trial parametric analysis of EEG power spectra, we were able to identify 

consistent neural correlates of preference for both JP and random Cantor images. For both 

image types, increased preference correlated with decreased alpha power in occipital and 

parietal regions. As such, we suggest that alpha power may indicate the degree to which a 

subject finds an image aesthetically pleasing. Previous research suggests that alpha power is 

related to both creative processes and turning attention inwards (Benedek et al., 2014). 

Additionally, alpha power is reliably expressed by the default mode network (DMN) 

(Knyazev et al., 2011), which is associated with mind wandering and self-referential thought 

(Buckner et al., 2008). Furthermore, the DMN is consistently activated by paintings rated 

most “aesthetically moving” with respect to each individual (Vessel et al., 2012, 2013). 

Thus, alpha power found in relation to fractal pattern preference (JP and Cantor) could 

reflect participants actively turning attention inwards to relate the image to themselves. 
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Furthermore, increasing complexity of fractals (JP and Cantor), and increasing ratings of 

these fractals, both correlated with decreased alpha power. This suggests that similar cortical 

regions engaged by pattern complexity are related to aesthetic preference, providing 

intriguing initial evidence of a brain mechanism that might instantiate the theorized direct 

relationship between complexity and aesthetic preference (Birkhoff, 1933).

A limitation of these results putatively describing a neural correlate of preference for 

complex fractal patterns must be noted. There is a strong relationship between dimension 

and aesthetic preference for images. Our analyses also indicate substantial overlap between 

neural power spectra coding for preference and for complexity of fractal patterns. As such, 

there is limited evidence for neural power spectral correlates specific to personal preference, 

and there remains the possibility that parietal alpha power tracks primarily fractal 

complexity. This might be the case, as previous work has indicated that choice preference 

for patterns might instead be reflected in frontal alpha power (Chew et al., 2016). Thus, 

while we provide some evidence that fractal dimension and preference might be coded by 

parietal alpha power, future studies should aim to orthogonalize measures of preference and 

dimension so that neural correlates of dimension perception and preference can be 

independently analyzed. Additionally, we note that there are many different types of fractals. 

As such, these are only a few possible explanations of these results and future work should 

clarify neural activity underlying aesthetic response to other classes of fractals, such as 

strange attractors (Aks & Sprott, 1996) and Brownian motion images (Bies, Boydston, et al., 

2016).

4.4. Conclusion

We present a detailed analysis of whole-scalp EEG PSD patterns influenced by the 

complexity of fractal images. We used a set of fractal art patterns, derived from Jackson 

Pollock paintings (Taylor et al., 2007, 2011), and a well-matched set of random Cantor sets 

with the same fractal dimension distribution as the artistic fractals. For both artistic and 

mathematical random fractal patterns, subjective preference increased for higher fractal 

dimensions (D), representing more complex patterns. Increasing D also correlated with 

lower alpha and beta power over parietal sensors. Furthermore, preference for both artistic 

fractals and for random Cantor fractals correlated with parietal alpha. This is the first 

parametric (rather than categorical) analysis of EEG frequencies during fractal pattern 

viewing, as previous analyses have grouped fractals into discrete categories, while fractal 

dimension is in reality a continuous variable. Future work should build on these results by 

examining nonlinear relationships between brain activity, fractal dimension, and aesthetic 

preference, as well as the relationship of visual pareidolias to fractal dimension, preference, 

and EEG activity.
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Fig. 1. 
A: Timing and design of the fractal pattern viewing and rating task (pattern in diagram is 

scaled up for visibility). B: Distribution of fractal dimensions for the Jackson Pollock (JP) 

white layers employed in the current study with three example patterns. C: Distribution of 

fractal dimensions for the random Cantor sets employed in the current study with three 

example patterns.
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Fig. 2. 
Swarm plots of within-participant Spearman correlations between the fractal dimension and 

subjective preference (plotSpread.m function, https://www.mathworks.com/matlabcentral/

fileexchange/37105-plot-spread-points-beeswarm-plot). Points represent single-subject 

correlations of fractal dimension and rating, error bar represents ±1 SEM. Horizontal spread 

of points indicates the density of observations at that level of y (akin to a vertical histogram, 

or a violin plot). Dotted lines represent within-subject significance level (Spearman rho = 

± .207).
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Fig. 3. 
Plots of significant PSD-fractal dimension correlations. Topographic plots are shown 

threshholded at TFCE-p < .05. Line plots show correlation coefficients at sensors with 

maximal effects (marked by + signs on topographic plots), as determined quantitatively 

using TFCE. Red shading on line plots indicates ± 1 SEM, and blue horizontal lines indicate 

regions with TFCE p < .05 (i.e. regions of significance).
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Fig. 4. 
Plots of significant PSD-preference correlations. Topographic plots are shown threshholded 

at TFCE-p < .05. Line plots show correlation coefficients at selected sensors with maximal 

effects (marked by + signs on topographic plots), as determined quantitatively using TFCE. 

Red shading on line plots indicates ± 1 SEM, and blue horizontal lines indicate regions with 

TFCE p < .05 (i.e. regions of significance).
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Fig. 5. 
Topographic plots of effect size (Cohen’s d) for each EEG-PSD analysis reported.
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